
 

 

 

  

Abstract—To investigate the neural activity corresponding to 
different cognitive states, it is of great importance to localize the 
cortical areas that are associated with task-related modulation. 
In this paper, we propose a novel discriminant pattern source 
localization (DPSL) method to analyze MEG data. Unlike most 
traditional source localization methods that aim to find 
“dominant” sources, DPSL is developed to capture the 
“differential” sources that distinguish different cognitive states. 
As will be demonstrated by the experimental results in this 
paper, the proposed DPSL method offers superior accuracy to 
identify the spatial locations of task-related sources. 

I. INTRODUCTION 
agnetoencephalography (MEG) is a noninvasive 
modality that measures the magnetic fields produced 

by the neural activity within the brain. To study and 
understand the neural activity based on MEG measurement, 
source localization has been identified as one of the most 
important tools [1]-[6]. The objective of source localization is 
to estimate the locations of electrical sources in the brain. 
During the past several decades, a large number of source 
localization algorithms have been developed, including 
dipole fitting [1], multiple signal classification (MUSIC) [2], 
beamforming [3], minimum norm estimation (MNE) [4], 
sLORETA [5], minimum current estimation (MCE) [6], etc.  

While most traditional source localization algorithms aim 
to find electrical sources for a given cognitive state, we 
attempt to address a different source localization problem in 
this paper. Our goal is to identify the electrical sources that 
differentiate two or more different cognitive states. Such a 
problem is referred to as task-related source localization in 
this paper. It is an important tool that helps to study and 
compare the neural activity associated with different 
cognitive states. 
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Traditionally, inferential statistics have been applied to 
determine task-related electrical sources [7]. These 
techniques are typically composed of two phases. First, a 
source localization algorithm (e.g., MNE [4]) is used to find 
the electrical sources associated with each cognitive state. 
Next, statistical hypothesis testing is applied to determine if 
the electrical sources found from the first phase carry the 
information to distinguish different cognitive states. This 
approach heavily relies on the accuracy of the source 
localization algorithm that is applied during the first phase. In 
other words, the hypothesis testing in the second phase is 
meaningful, if and only if all electrical sources are accurately 
found in the first phase. In practice, it is well-known that the 
source localization problem is profoundly underdetermined 
due to the limited observability of MEG measurement [1]. 
Hence, it is almost impossible to perfectly find all electrical 
sources in the first phase, especially if the signal-to-noise 
ratio (SNR) is low. In most cases, a source localization 
algorithm can only capture the dominant sources which are 
not necessarily associated with the differential pattern for 
different cognitive tasks. For this reason, the traditional 
techniques based on inferential statistics do not guarantee to 
identify the electrical sources corresponding to task-related 
modulation. It, in turn, poses an immediate need to re-think 
the fundamental strategy of source localization and develop a 
new algorithm for the proposed task-related source 
localization problem. 

Towards this goal, we propose a novel discriminant pattern 
source localization (DPSL) algorithm in this paper. DPSL 
consists of two major steps. First, discriminant analysis is 
applied to create a spatial filter that can optimally 
differentiate different cognitive states. Second, based on the 
forward model of the magnetic field, the task-related 
electrical sources are found by studying the response of the 
optimal spatial filter. Unlike most traditional source 
localization algorithms that capture the dominant sources, 
DPSL algorithm aims to identify the differential sources by 
applying an optimal discriminant analysis in the first step. 
Hence, DPSL can efficiently minimize the impact of both 
external noise (e.g., due to external magnetic sources) and 
internal interference (e.g., due to non-task-related neural 
activity). 

The remainder of this paper is organized as follows. In 
Section II, we derive the DPSL algorithm and demonstrate its 
efficiency by the experimental examples in Section III. 
Finally, we draw our conclusions and discuss several 
theoretical and practical aspects of DPSL in Section IV. 
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II. DISCRIMINANT PATTERN SOURCE LOCALIZATION 

A. Discriminant Analysis 
Without loss of generality, we consider two cognitive states 

that are labeled as “State-A” and “State-B”, respectively. We 
further assume that MEG signals are recorded from M 
channels. We use a vector x ∈ RM to represent the MEG 
features corresponding to these M channels, where xm ∈ x 
denotes the mth feature associated with the mth MEG channel. 
Here, the feature vector x can be a collection of MEG signals 
from M different channels at a particular time t. Alternatively, 
if a linear transformation (e.g., short-time Fourier transform, 
wavelet transform, etc.) is applied, the feature vector x can be 
a set of transformed signals in the frequency or wavelet 
domain. Several examples of representing the measured 
MEG signals as a feature vector x can be found in Section III. 

With the feature vector x, the objective of discriminant 
analysis is to find a decision function F(x) that can 
appropriately distinguish the two cognitive states: 
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The aforementioned discriminant analysis is essentially a 
binary classification problem. A large number of machine 
learning techniques, such as linear discriminant analysis 
(LDA), support vector machine (SVM), common spatial 
pattern (CSP), logistic regression, etc., can be used to 
construct the binary discriminant function F(x) in (1). 

Taking the linear L1-norm SVM as an example, it takes the 
MEG features collected from repeated trials as the input. 
Given the feature vectors {xl,1; l = 1,2,…,L} and {xl,2; l = 
1,2,…,L} from L different trials of “State-A” and “State-B” 
respectively, a linear L1-norm SVM aims to find the 
following discriminant function to distinguish two different 
cognitive states [8]: 
2 ( ) cF T +⋅= xwx  (2) 
where w ∈ RM and c ∈ R stand for the SVM coefficients and 
they can be found by solving a convex optimization problem: 
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In (3), ||w||1 denotes the L1-norm of the vector w, {ξl; l = 
1,2,…,2⋅L} are slack variables and λ is a regularization 
parameter that can be determined by cross-validation [8]. 
Since SVM is a well-known technique, we do not discuss its 
technical details here. The background of L1-norm SVM can 
be found in [8]. 

While we use the linear L1-norm SVM as an example to 
illustrate the basic idea of discriminant analysis, many other 
classification techniques [11] can also be applied to find the 
discriminant function F(x) in (1)-(2). In addition, the 
aforementioned discriminant analysis can be extended to 

more than two cognitive states, e.g., by using a multi-class 
classification algorithm [11]. 

The discriminant function F(x) in (2) is the linear 
combination of multiple MEG features {xm; m = 1,2,…,M}. 
Remember that the mth feature xm is associated with the mth 
MEG channel. It, in turn, implies that the discriminant 
function F(x) in (2) can be conceptually viewed as a spatial 
filter wT⋅x that extracts the discriminant information from all 
MEG channels to distinguish different cognitive states. For 
this reason, the spatial filter wT⋅x should amplify the MEG 
signals generated by task-related electrical sources and 
simultaneously attenuate the signals coming from 
non-task-related sources. Based upon these observations, we 
will next describe our proposed source localization algorithm 
that aims to reveal the differential pattern inside the brain 
corresponding to different cognitive states. 

B. Task-Related Source Localization 
Once F(x) in (2) is known, the key idea of DPSL is to 

identify the locations of the electrical sources that are 
“selected” by the spatial filter wT⋅x. These electrical sources 
should carry the differential information that distinguishes 
different cognitive states. On the other hand, if an electrical 
source is “filtered out” by the spatial filter wT⋅x, it should be 
weakly correlated with the task-related modulation. 

To derive the proposed DPSL algorithm, a human brain is 
first partitioned into a number of voxels. Each voxel contains 
a current dipole that models the electrical source within the 
brain. Such a voxel-based model has been widely adopted by 
many source localization algorithms [1]-[7]. In this paper, we 
apply a similar model with N voxels and, hence, N current 
dipoles: 
4 ( )Nnr nnn ,,2,1=⋅= vq  (4) 
where qn ∈ R3 denotes the moment of the nth dipole, rn ∈ R 
stands for the magnitude of the dipole, and vn ∈ R3 is a unit 
vector representing the orientation of the dipole. 

The N current dipoles in (4) generate the magnetic fields 
that are measured by M MEG channels. Given the dipole 
model in (4), the MEG feature vector x ∈ RM collected from 
M channels is a linear combination of the dipole moments [1]: 
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where An ∈ RM is the leadfield matrix of the nth dipole and n 
∈ RM is a vector containing the measurement noise of all 
MEG channels. The leadfield matrix An models the influence 
of the nth dipole on the measured MEG signals. It can be 
calculated according to the geometrical structure and the 
conducting medium of the human head [1]. 

Next, we consider the discriminant function F(x) in (2) 
which is essentially a spatial filter applied to the MEG feature 
vector x. Substituting (5) into (2) yields: 
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As previously discussed, the optimal spatial filter wT⋅x should 
amplify the MEG signals generated by task-related current 

2352



 

 

 

dipoles and simultaneously attenuate the signals coming from 
non-task-related dipoles. Based upon these observations, we 
propose to calculate the gain of the spatial filter wT⋅x for each 
dipole and use it as a quantitative metric to assess the 
contribution of each dipole to the discriminant function F(x): 
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Substituting (4) into (7), we get a further simplified 
representation: 
8 ( )Nng nn

T
n ,,2,1=⋅⋅= vAw . (8) 

If the value of gn in (8) is large, it implies that the nth dipole 
qn is “selected” by the spatial filter wT⋅x and, hence, it carries 
the differential information for different cognitive states. On 
the other hand, if the value of gn is small, it means that the nth 
dipole qn is “neglected” by the spatial filter wT⋅x and, hence, it 
is weakly correlated with the task-related modulation. By 
calculating the gain values {gn; n = 1,2,…,N} for different 
dipoles, we can identify the spatial locations of the 
task-related electrical sources. 

Studying (8), one would notice that we must know the 
orientation vn for each dipole in order to calculate the gain gn. 
In this paper, we consider the case where the dipole 
orientation vn is parallel to the vector An

T⋅w and, hence, the 
gain gn reaches the maximum possible value: 
9 ( )Nng n

T
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It should be noted that other approaches may be used to 
determine the dipole orientation vn. Different choices of 
dipole orientation lead to different source localization results. 
Hence, it is extremely important to appropriately interpret the 
results when different dipole models are applied. 

III. EXPERIMENTAL STUDIES 

A. Experimental Setup and Data Pre-processing 
In our experiment, a healthy human subject performs a 

four-target center-out task with his right wrist holding an 
MEG-compatible joystick [10]. During each trial, visual 
signals are presented on a screen in front of the subject. The 
subject is instructed to move the cursor from the center to one 
of the four locations (i.e., up, down, left or right) by making 
wrist movements (i.e., radial deviation, ulnar deviation, 
flexion and extension) while keeping the rest of the body in a 
relaxed position. In addition, the subject is instructed to keep 
their gaze at the center of the screen, and only attend to the 
targets using his peripheral vision. A successful repetition is 
characterized by reaching one of the four peripheral targets 
within a pre-specific time window after the onset of the target 
and holding the cursor position there without overshooting. 
Only successful repetitions are used for our off-line data 
analysis. 

During the experiment, MEG data are acquired by using a 
306-channel whole-head MEG system (Elekta Neuromag®) 
with 1 kHz sampling frequency. During a separate visit, the 
subject takes a standard head structural MRI scan. The MRI 

data are co-registered with the MEG data for source 
localization. 

In our data analysis, we consider the MEG data for two 
movement directions: left and right (i.e., two different 
cognitive states). There are 123 trials collected for each 
movement direction. In this study, although the MEG signals 
are measured by 306 channels, only 204 gradiometer 
channels are used for the following analysis. The other 102 
magnetometer channels carry large noise and, hence, are 
removed due to their low SNR. 

B. Source Localization 
Previous neuroscience research on MEG movement 

decoding demonstrates that significant power modulation 
related to movement directions can be observed in 
low-frequency band (≤ 7 Hz) [9]. In addition, the important 
neural activity that carries movement information can be 
found during a short time window [9]. For these reasons, we 
only consider the low-frequency band for the time window t 
∈ [150 ms, 450 ms], where t = 0 represents target onset. We 
apply discrete wavelet transform (DWT) with second-order 
Symlet wavelet function [12] to decompose the MEG signals 
from each channel and each trial to multiple resolution levels. 
The aforementioned DWT results in five wavelet coefficients 
corresponding to five selected time-frequency windows for 
each channel. Here, each time-frequency window is around 
60 ms in length and covers the low-frequency band (≤ 7 Hz). 

Next, we apply DPSL to find the electrical sources for each 
time-frequency window separately. Such an analysis allows 
us to study and compare the source locations over different 
time and/or frequency. In each DPSL run, the MEG feature 
vector x contains 204 wavelet coefficients corresponding to 
204 gradiometer channels. Fig. 1 shows the source 
localization results, i.e., the spatial maps of the spatial filter 
gain estimated by DPSL. 

Studying Fig. 1, we notice that the task-related sources are 
activated in the following order: (1) the primary visual area in 
Fig. 1(a), (2) the parietal area in Fig. 1(b), (3) the contralateral 
somatosensory area in Fig. 1(c)-(d), (4) the contralateral 
motor cortical area in Fig. 1(d)-(e), and (5) the visual area in 
Fig. 1(e). These observations are consistent with the results of 
neuroscience studies. During the experiment, the subject first 
receives the visual stimulus on a screen and, hence, the 
primary visual cortex is activated [13]. Next, during the motor 
planning phase, the parietal cortex and the pre-motor cortex 
are activated [14]. Afterwards, the motor cortical area is 
activated to execute the movement. Finally, after the 
movement is completed, the subject attends to the visual 
target on the screen and the visual cortical area is activated 
again. It is important to note that strong modulation is 
observed in the contralateral primary somatosensory cortex 
from 270 ms to 390 ms, as shown in Fig. 1(c)-(d). We believe 
that such strong modulation is related to the role of 
somatosensory cortex in sensorimotor integration, as 
discussed in [15]-[16]. 
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IV. CONCLUSIONS AND DISCUSSIONS 
In this paper, we propose a new discriminant pattern source 

localization (DPSL) method to identify task-related electrical 
sources corresponding to different cognitive states. The 
proposed DPSL algorithm consists of two major steps. First, 
discriminant analysis is applied to find a spatial filter to 
distinguish different cognitive states. Next, the gain of the 
spatial filter is calculated for each voxel to reveal the 
locations of the task-related sources. DPSL can be 
conceptually viewed as a post-processing step for the 
traditional cognitive state decoding. It is an important tool to 
identify the locations of the discriminant sources that 
differentiate cognitive states.  

Finally, it is worth mentioning that there remain a number 
of open questions related to the proposed DPSL method. First, 
our current implementation of DPSL is limited to linear 
spatial filters. In general, the proposed methodology can be 
possibly extended to nonlinear spatial filters for discriminant 
analysis. Second, similar to other source localization methods, 
the spatial resolution of DPSL is limited by the small number 
of MEG channels. Given the limited resolution, DPSL cannot 
accurately distinguish task-related and non-task-related 
sources that are close to each other. Third, DPSL may not 
accurately detect the electrical sources that are deep in the 
brain, since the spatial filter gain can be extremely small for 
these deep sources. This is a well-known issue for many other 
traditional source localization algorithms. These open 
questions will be carefully studied and further addressed in 
our future research. 
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Fig. 1. Spatial maps of the spatial filter gain estimated by DPSL for different time-frequency windows. 
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