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ABSTRACT 
In this paper, a new sparse approximation technique is proposed 
for incremental power grid analysis. Our proposed method is 
motivated by the observation that when a power grid network is 
locally updated during circuit design, its response changes locally 
and, hence, the incremental “change” of the power grid voltage is 
almost zero at many internal nodes, resulting in a unique sparse 
pattern. An efficient Orthogonal Matching Pursuit (OMP) 
algorithm is adopted to solve the proposed sparse approximation 
problem. In addition, several numerical techniques are proposed 
to improve the numerical stability of the proposed solver, while 
simultaneously maintaining its high efficiency. Several industrial 
circuit examples demonstrate that when applied to incremental 
power grid analysis, our proposed approach achieves up to 130� 
runtime speed-up over the traditional Algebraic Multi-Grid (AMG) 
method, without surrendering any accuracy. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Verification  

General Terms 
Algorithms 

Keywords 
Integrated Circuit, Power Grid, Incremental Analysis 
 
1. INTRODUCTION 

An on-chip power grid provides the voltage supply for all 
integrated devices on a silicon chip. It is an important component 
that directly impacts signal integrity and, eventually, chip 
functionality of today’s large-scale integrated circuits (ICs). As 
the power density of high-performance ICs (e.g., microprocessors) 
continuously increases and the power grid network becomes 
increasingly complex, designing and verifying on-chip power grid 
emerges as a challenging task. A typical power grid network 
consists of millions of internal nodes and, hence, power grid 
analysis and optimization can be extremely time-consuming. 

For this reason, a large number of new CAD tools have been 
developed for power grid design and verification [1]-[15]. 
Efficient numerical algorithms are applied by these tools to 
explore the unique structure of power grid network in order to 
reduce the computational cost. These existing techniques can be 
classified into several broad categories: (1) Krylov-subspace 
method [1], (2) hierarchical analysis [2], (3) multi-grid solver [3]-

[6], (4) randomized algorithm [7]-[8], and (5) vectorless analysis 
[9]-[12]. The aforementioned CAD tools have been successfully 
applied to a wide range of practical power grid problems. 

In this paper, we focus on a unique set of power grid analysis 
problems where a power grid network is repeatedly updated 
during circuit design and we are interested in knowing the power 
grid response once a change is made. Such an incremental 
analysis is substantially different from the general-purpose power 
grid analysis that is solved by most existing tools. Namely, it is 
computationally inefficient, if not impossible, to apply a general-
purpose power grid solver to repeatedly analyze the large-scale 
power grid circuit for which a sequence of small changes are 
made. The open question here is how to efficiently and 
incrementally update the power grid response so that we do not 
need to solve the entire power grid network for many times. 

Towards this goal, we propose a new sparse approximation 
technique for incremental power grid analysis. Our work is 
motivated by the observation that a power grid network is often 
updated with local changes (e.g., increasing wire width and/or 
inserting extra vias in a local region) during circuit design. In 
these cases, the response of the power grid network also changes 
locally. In other words, the incremental “change” of the power 
grid voltage is almost zero at many internal nodes, resulting in a 
unique sparse pattern. An efficient numerical solver can be 
developed to find the underlying sparse solution with low 
computational cost. 

In this paper, we adopt the Orthogonal Matching Pursuit 
(OMP) algorithm [16]-[18] from the statistics community to 
formulate the proposed numerical solver. The OMP algorithm is 
particularly tuned to fit the needs of our application for 
incremental power grid analysis. It applies a heuristic method to 
recursively identify the non-zero elements of the sparse solution 
and then solve their values. As such, the problem size and, hence, 
the computational complexity are significantly reduced, since we 
only need to solve the unknown values of the non-zero voltage 
changes, instead of all node voltages. In addition, several efficient 
techniques (e.g., pre-conditioning) are proposed to improve the 
numerical stability of the proposed incremental power grid solver, 
while simultaneously maintaining its high efficiency. As will be 
demonstrated by the numerical examples in Section 5, our 
proposed incremental solver achieves orders of magnitude more 
efficiency (up to 130� speed-up) compared to an Algebraic Multi-
Grid (AMG) solver without incremental analysis capability. 

The remainder of this paper is organized as follows. In 
Section 2, we derive the mathematical formulation of incremental 
power grid analysis, and then describe the proposed sparse 
approximation technique in Section 3. Several efficient numerical 
techniques are developed in Section 4 to further improve the 
numerical stability of the proposed incremental power grid solver. 
The efficacy of the proposed algorithm is demonstrated by several 
industrial power grid examples in Section 5. Finally, we conclude 
in Section 6. 
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2. MATHEMATICAL FORMULATION 
Without loss of generality, we consider a power grid network 

that consists of resistors, capacitors, inductors and input (voltage 
and/or current) sources. The modified nodal analysis (MNA) 
equation of the power grid network is linear and it can be written 
in the standard form: 
1 � � bxsCG ���  (1) 
where b � RN denotes the input, x � RN represents the state 
variables, G,C � RN�N are the system matrices, and N is the size of 
the MNA equation. 

In this paper, we focus on DC analysis to calculate the IR drop 
of the power grid network. In this case, all capacitors are open, all 
inductors are short, and the MNA equation in (1) can be 
simplified as: 
2 bxG �� . (2) 
The goal of power grid analysis is to solve the linear equation in 
(2) to calculate the response x. In many practical applications, the 
MNA equation in (2) is extremely large (e.g., N > 106) and 
specific numerical algorithms are required to efficiently solve (2) 
with low computational cost, as is discussed in [1]-[15]. 

Next, we consider a change that is made to the power grid 
network (e.g., increasing wire width and/or inserting vias in a 
local region) during circuit design. We express the new MNA 
equation for the updated power grid network as: 
3 bxG

~~~
�� . (3) 

For incremental power grid analysis, we assume that Eq. (2) is 
already solved and its solution x is known. We are further 
interested in knowing the solution x̃ of (3) (namely, the response 
of the updated power grid network). Instead of solving (3) directly 
by a general-purpose power grid solver, we re-formulate (3) into 
an “incremental” form so that its solution x̃ can be determined by 
an efficient algorithm based on sparse approximation. 

Combining (2) and (3) yields: 
4 rG ��	

~  (4) 
where 
5 xx 
� ~	  (5) 

6 xGbr �
�
~~

. (6) 
Eq. (4) is the “incremental” MNA equation where the “change” δ 
of the power grid response is represented as the problem 
unknown. Once δ is found from (4), the updated response x̃ can be 
easily calculated from (5): x̃ = x + δ. 

In most practical cases, a power grid network is often updated 
with local changes and, hence, the problem unknown δ in (4) is 
sparse. In other words, the incremental “change” of the power grid 
voltage is almost zero at many internal nodes, as will be 
demonstrated by the numerical examples in Section 5. Such a 
locality has been observed and reported in several previous works 
[14]-[15]. Solving the sparse solution δ from (4) is 
computationally cheaper than solving a general, non-sparse 
solution, since we only need to identify the non-zero elements in δ 
and then find their values. In the next section, an efficient 
numerical algorithm will be derived to approximate the solution δ 
by exploring the aforementioned sparsity. 
 
3. SPARSE APPROXIMATION 

In this section, an efficient Orthogonal Matching Pursuit 
(OMP) algorithm will be applied to solve the sparse solution δ of 
(4) with low computational cost. In what follows, we will describe 
the OMP algorithm in detail and highlight its novelties. 
 

3.1 Orthogonal Matching Pursuit 
The OMP algorithm was initially developed by the statistics 

community to solve the sparse solution of a linear equation [16]-
[18]. Considering the MNA equation G̃�δ = r in (4), OMP applies 
an iterative scheme to select a small subset of “important” 
elements in δ that are non-zero. At the end of the OMP iteration, 
all other elements that are not selected are forced to zero, thereby 
rendering a sparse solution δ. OMP has been recently applied to a 
number of CAD problems, e.g., large-scale performance modeling 
[19]-[20]. In this sub-section, we will first describe the detailed 
steps of the OMP algorithm and then explain why it has low 
computational complexity and is preferred over a general-purpose 
power grid solver. 

Given the MNA equation G̃�δ = r in (4), we conceptually 
consider each column of the matrix G̃ as a basis vector. These 
basis vectors are not necessarily orthogonal. The MNA equation 
G̃�δ = r in (4) can be re-written as: 
7 NNGGGr

~~~
2211 			 ���� �  (7) 

where δi � R is the i-th element of δ and G̃i � RN is the i-th 
column of G̃. Eq. (7) represents the right-hand-side vector r as the 
linear combination of all basis vectors {G̃i; i = 1,2,...,N}. 

The key idea of OMP is to iteratively select the important 
basis vectors based on the “normalized” inner product: 

8 � �Ni
GG
Gr

i
T
i

i
T

i ,,2,1~~
~

��
�

�
�� . (8) 

Mathematically, the normalized inner product �i in (8) is the lest-
squares solution of the over-determined linear equation: G̃i��i = r. 
If �i is large, it implies that G̃i is an important basis vector as it 
contributes a significant portion of r. Hence, the corresponding 
coefficient δi in (7) should be non-zero. 

Motivated by this observation, OMP first calculates the 
normalized inner product between r and each G̃i. It finds the set of 
important basis vectors {G̃s1,G̃s2,…,G̃sm} for which the normalized 
inner product values are greater than or equal to a user-defined 
threshold �: 
9 ������ 


 smss �21 . (9) 
Once the important basis vectors {G̃s1,G̃s2,…,G̃sm} are identified, 
OMP finds the optimal approximation for r by the linear 
combination of {G̃s1,G̃s2,…,G̃sm}: 
10 smsmssss GGGr

~~~
2211 			 ���� �  (10) 

where the coefficients {δs1,δs2,…,δsm} are determined by the 
following least-squares fitting: 

11 
2

22211,,,

~~~
minimize

21
rGGG smsmssss

smss

������ 			

			
�

�
. (11) 

In (11), ||�||2 denotes the L2-norm, i.e., the square root of the sum 
of the squares of all elements in the vector. 

Next, OMP removes the components {δs1G̃s1,δs2G̃s2,…,δsmG̃sm} 
from r and calculates the residual: 
12 smsmssss GGGre

~~~
2211 �

�
�
� 			 � . (12) 

The residue e is orthogonal to the basis vectors {G̃s1,G̃s2,…,G̃sm} 
due to the least-squares fitting in (11). Based on (12), OMP 
further identifies another set of important basis vectors 
{G̃t1,G̃t2,…,G̃tn} by calculating the normalized inner product 
between e and each G̃i: 

13 � �Ni
GG
Ge

i
T
i

i
T

i ,,2,1~~
~

��
�

�
�� . (13) 

Since e is orthogonal to {G̃s1,G̃s2,…,G̃sm}, the new basis vectors 
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{G̃t1,G̃t2,…,G̃tn} selected by (13) do not overlap with the previous 
set {G̃s1,G̃s2,…,G̃sm}. All basis vectors {G̃s1,G̃s2,…,G̃sm} and 
{G̃t1,G̃t2,…,G̃tn} are then combined to approximate r by the 
following least-squares fitting: 
14 2

21111

,,
,,

~~~~
minimize

1
1

rGGGG tntnttsmsmss

tnt
sms


��������� 				
		
		

��

�
�

 .(14) 

Note that even though the coefficients {δs1,δs2,…,δsm} were 
previously solved from (11), their values are re-calculated in (14) 
where the extra basis vectors {G̃t1,G̃t2,…,G̃tn} are added. The 
aforementioned iteration continues until the residual e is 
sufficiently small. Algorithm 1 summarizes the major steps of the 
OMP algorithm. More details on OMP (e.g., convergence analysis) 
can be found in [16]-[18]. 

Algorithm 1: Orthogonal Matching Pursuit (OMP) 
1. Start from the MNA equation G̃�δ = r in (4). 
2. Let the residual e = r and the set � = {}. 
3. Based on (13), calculate the normalized inner product ξi 

between e and each G̃i where i = 1,2,...,N. 
4. Select the set of basis vectors {G̃s1,G̃s2,…,G̃sm} for which the 

normalized inner product values are greater than or equal to a 
user-defined threshold �: 

15 ������ 


 smss �21 . (15) 
5. Update � by � = � � {s1,s2,…,sm}. 
6. Approximate r by the linear combination of {G̃i; i � �}: 
16 �

��

��
i

ii Gr
~

	  (16) 

where the coefficients are determined by least-squares fitting: 

17 
2

2
;

~
minimize rG

i
iiii

��

��
��

	
	

. (17) 

7. Calculate the residual: 
18 �

��

�
�
i

ii Gre
~

	 . (18) 

8. If the residual e is sufficiently small, stop iteration and go to 
Step 9. Otherwise, go to Step 3. 

9. For any G̃i that is not selected (i.e., i � �), the corresponding 
coefficient δi is set to 0. 

Algorithm 1 requires a number of iterations to find all 
important basis vectors {G̃i; i � �} and their corresponding 
coefficients {δi; i � �}. Each of these iterations consists of two 
major operations: (1) normalized inner product calculation (Step 3 
of Algorithm 1), and (2) least-squares fitting (Step 6 of Algorithm 
1). Since the MNA matrix G̃ in (4) is sparse, calculating the 
normalized inner product by (13) involves sparse matrix-vector 
operations and it can be performed with low computational cost. 

On the other hand, to study the computational cost of least-
squires fitting in Step 6 of Algorithm 1, we assume that the 
solution δ � RN of the MNA equation G̃�δ = r is sparse. It contains 
K non-zeros where K << N. The least-squares fitting in (17) needs 
to find very few (i.e., up to K) unknown coefficients and, hence, 
also has low computational cost. The detailed algorithm for least-
squares fitting will be discussed in Section 4. 

Based on these observations, we can conclude that Algorithm 
1 is much more efficient than a general-purpose power grid solver, 
since it aims to solve K non-zero elements for the sparse solution 
δ and the general-purpose solver needs to solve all N (N >> K) 
unknowns in δ. As will be demonstrated by the numerical 
examples in Section 5, our proposed incremental solver achieves 

orders of magnitude more efficiency (up to 130� speed-up) 
compared to an Algebraic Multi-Grid (AMG) solver without 
incremental analysis capability. 
 
3.2 Comparison with Traditional Techniques 

It is worth emphasizing that the proposed OMP solver is 
substantially different from other existing techniques for power 
grid analysis. For instance, the authors of [13] propose an 
incremental power grid analysis algorithm based on domain 
decomposition. The key idea is to re-use the Cholesky 
decomposition result of the original power grid network to solve 
the MNA equation of the updated system. While the domain 
decomposition method has been successfully demonstrated with 
high efficiency for several practical applications, it is only 
applicable to a limited set of power grid analysis problems where 
a direct solver (i.e., Cholesky decomposition) is used. In other 
words, the domain decomposition method proposed in [13] 
becomes inefficient, or even inapplicable, if the multi-grid 
algorithm [3]-[6] or the randomized algorithm [7]-[8] is used as 
the core numerical engine for large-scale power grid analysis. The 
proposed OMP technique, however, is generally applicable to all 
cases where the original power grid network can be solved by any 
numerical solver that a user selects. 

On the other hand, the locality of power grid networks has 
been explored in [14]-[15] to speed-up power grid analysis. The 
method proposed in [14] aims to partition the power grid network 
based on its geometrical structure in order to reduce 
computational cost. In this paper, we further extend the locality 
concept to incremental power grid analysis. In addition, unlike the 
algorithm in [14] that needs to know the geometrical structure of 
the power grid, the proposed OMP method takes the MNA 
equation as the only input. It automatically determines the internal 
nodes for which the incremental change of the node voltage 
should be zero (or non-zero). From this point of view, the 
proposed incremental analysis engine is not constrained to any 
specific geometrical structure and it can be generally applied to a 
broad range of practical power grid circuits. 
 
4. IMPLEMENTATION DETAILS 

To make the OMP algorithm of practical utility, a number of 
implementation issues must be carefully considered. In this 
section, we will outline these implementation issues and then 
develop efficient numerical techniques to address them. 
 
4.1 Least-Squares Fitting 

The least-squares fitting in (17) is the most expensive step 
within the OMP iteration loop and it often dominates the overall 
computational cost. Hence, an efficient algorithm must be 
developed to solve (17) so that the computational cost of 
Algorithm 1 is minimized. Without loss of generality, we re-write 
(17) into the matrix form: 

19 2
2

minimize rvA
v


�  (19) 

where A � RN�K contains the basis vectors {G̃i; i � �} that are 
selected by OMP, v � RK contains the corresponding coefficients 
{δi; i � �}, and K is the total number of these unknown 
coefficients. The optimization in (19) aims to solve the least-
squares solution v of the following over-determined linear 
equation: 
20 rvA �� . (20) 

In most practical cases, QR decomposition is used to solve an 
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over-determined linear equation [21]. Given A�v = r in (20), we 
first decompose A as: 
21 WQA ��  (21) 
where Q � RN�K contains K orthonormal vectors (i.e., QTQ = I 
where I is an identify matrix), and W � RK�K is an upper triangular 
matrix. Substituting (21) into (20), the least-squares solution v can 
be represented as [21]: 
22 � �rQWv T�� 
1 . (22) 
Note that it is not necessary to explicitly calculate the matrix 
inverse W
1 in (22). Since the matrix W is upper triangular, the 
linear equation in (22) can be solved by a sequence of backward 
substitutions. 

While the aforementioned QR method has been widely 
applied to many practical applications, it is not the most efficient 
way to solve the over-determined linear equation in (20) for 
power grid analysis. Remember that the matrix A in (20) contains 
a large number of rows (i.e., N is large). In many practical cases, 
N is in the order of 106~108. Even though the matrix A is sparse, 
the matrix Q in (21) is not necessarily sparse, since a large 
number of non-zero fill-ins can be generated by QR 
decomposition. For this reason, the computational cost of forming 
the matrices Q and W in (21) can be prohibitive for large-scale 
problems. 

An alternative approach to solve the over-determined linear 
equation in (20) is based on pseudo-inverse [21]: 

23 � � � �rAAAv TT ��

1

. (23) 
In (23), since ATA is positive-definite, we can calculate its 
Cholesky decomposition: 
24 � � TTT PLLPAA ���  (24) 
where L � RK�K is a lower triangular matrix with positive diagonal 
elements, and P � RK�K is a permutation matrix that is used to 
maximize the sparsity of L [21]. Note that the matrix ATA � RK�K 
is much smaller than the matrix A � RN�K where K << N in our 
application. In other words, unlike the QR decomposition that is 
performed on a large-size matrix A, the Cholesky decomposition 
in (24) is applied to a small-size matrix ATA and, hence, can be 
efficiently computed with low computational cost. 

Substituting (24) into (23) yields: 
25 � �rAPLLPv TTT ���� 

1 . (25) 
Once the lower triangular matrix L is found by Cholesky 
decomposition, the linear equation in (25) can be easily solved by 
a sequence of forward and backward substitutions. Hence, the 
aforementioned Cholesky method is much more computationally 
efficient than the QR approach. 

However, the low computational cost of the Cholesky method 
comes with a penalty. It is well-known that the solution v solved 
by pseudo-inverse is not numerically stable [21]. To understand 
this numerical issue, we note that the condition number of the 
matrix ATA in (23) is equal to the square of the condition number 
of the matrix A. In other words, the pseudo-inverse in (23) 
substantially increases the condition number and, hence, can result 
in an inaccurate solution. It, in turn, motivates us to propose 
several important techniques to mitigate this numerical problem, 
as will be discussed in detail in the next sub-section. 
 
4.2 Improving Numerical Stability 

To address the aforementioned numerical issues, two efficient 
techniques will be developed in this sub-section: (1) pre-
conditioning, and (2) adaptive algorithm selection. In what 
follows, we will describe the mathematical formulations and 

detailed implementations of these two techniques. 
1) Pre-conditioning: The key idea of pre-conditioning is to 

scale each column of the matrix A in (20) so that its condition 
number is reduced. While there are many possible options to 
perform pre-conditioning, we apply the following simple-yet-
efficient scaling to the matrix A in (20): 
26 1~ 
�� DAA  (26) 
where D � RK�K is a diagonal matrix: 

27 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

Kd

d
d

D

0

0

2

1

�
. (27) 

In (27), the diagonal elements {di; i = 1,2,…,K} are equal to: 
28 � �KiAd ii ,,2,1

2
���  (28) 

where Ai � RN stands for the i-th column of the matrix A. In other 
words, the pre-conditioning scheme in (26)-(28) normalizes each 
column of A. Substituting (26) into (20), the linear equation A�v = 
r can be re-written as: 
29 rvA ��~

~  (29) 
30 vDv ~1 �� 
 . (30) 
After pre-conditioning, we first solve the solution ṽ from (29) and 
then find the solution v from (30). As will be demonstrated by the 
numerical examples in Section 5, the proposed pre-conditioning is 
able to reduce the condition number of ATA by orders of 
magnitude (up to 104�). 

2) Adaptive algorithm selection: Even though the 
aforementioned pre-conditioning can effectively improve the 
numerical stability, it is possible that the matrix Ã in (29) remains 
ill-conditioned. This can happen if the power grid network is ill-
conditioned (e.g., containing a number of extremely small 
resistors). In these cases, we want to apply the QR method to 
solve the over-determined linear equation in (29), since it is more 
numerically stable than the Cholesky approach. On the other hand, 
if the matrix Ã is well-conditioned, the Cholesky approach is 
preferred, since it has low computational cost. For this reason, we 
need an efficient algorithm to estimate the condition number of Ã 
so that the appropriate solver (i.e., either Cholesky decomposition 
or QR decomposition) can be selectively applied. 

Remember that if Eq. (29) is solved by pseudo-inverse, we 
need to calculate the following Cholesky decomposition: 
31 � � TTT PLLPAA ~~~~~~

���  (31) 
where L ̃� RK�K is a lower triangular matrix with positive diagonal 
elements, and P̃ � RK�K is a permutation matrix. Since the 
permutation matrix P̃ does not change the condition number [21], 
we have: 

32 � � � � � �� �2~~~~~
LLLAA TT ��� ��  (32) 

where κ(�) denotes the condition number of a matrix. Because the 
matrix L ̃ is lower triangular with positive diagonal elements, its 
condition number is bounded by [21]: 

33 � �
MIN

MAXL
�
�

� 

~  (33) 

where σMAX and σMIN stand for the maximal and minimal diagonal 
elements of L,̃ respectively. Combining (32)-(33), we have: 

34 � � � �
MIN

MAXT AAA
�
�

�� 
�
~~~ . (34) 

Eq. (34) reveals an important fact that once the Cholesky 
decomposition in (31) is calculated to solve the over-determined 
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linear equation Ã�ṽ = r, it can be re-used to estimate the condition 
number κ(Ã). We only need to check the diagonal elements of L ̃to 
compute the lower bound of the condition number in (34). 
Therefore, the additional computational cost for condition number 
estimation is negligible. If the condition number κ(Ã) is less than 
or equal to a user-defined threshold (say, μ), the Cholesky method 
will be used to solve the least-squares solution ṽ in (29). 
Otherwise, the QR method should be used in order to improve 
numerical stability. Such a strategy of adaptive algorithm 
selection allows us to achieve minimal computational time while 
simultaneously making the proposed solver numerically stable. 
 
4.3 Summary 

Algorithm 2: Adaptive Least-Squares Fitting 
1. Start from the over-determined linear equation A�v = r in (20). 
2. Apply the pre-conditioning scheme in (26) to calculate Ã. 
3. Compute the Cholesky decomposition in (31) for ÃTÃ. 
4. Estimate the condition number κ(Ã) using (34). 
5. If κ(Ã) � μ (where μ is a user-defined threshold), solve the 

least-squares solution ṽ for the over-determined linear 
equation Ã�ṽ = r by pseudo-inverse: 

35 � �rAPLLPv TTT ~~~~~~ 1 ���� 

 . (35) 
6. Otherwise, if κ(Ã) > μ, apply QR decomposition to solve the 

over-determined linear equation Ã�ṽ = r: 
36 WQA ~~~

��  (36) 
37 � �rQWv T~~~ 1 �� 
  (37) 

where Q̃ � RN�K contains K orthonormal vectors and W � 
RK�K is an upper triangular matrix. 

7. Substitute ṽ into (30) to solve the least-squares solution v of 
the over-determined linear equation A�v = r in (20). 

Algorithm 2 summarizes the key steps for the proposed 
adaptive least-squares fitting that is required during each OMP 
iteration. Given an over-determined linear equation A�v = r in (20), 
we first normalize each column of A for pre-conditioning. Next, 
Cholesky decomposition is performed for the normalized matrix 
ÃTÃ, and the condition number κ(Ã) is estimated. If κ(Ã) is 
sufficiently small, the least-squares solution is found by pseudo-
inverse. Otherwise, QR decomposition is used to solve the least-
squares fitting problem. As will be demonstrated by the numerical 
examples in Section 5, Algorithm 2 (with pre-conditioning and 
adaptive algorithm selection) achieves up to 4� speed-up over a 
simple solver that uses QR decomposition only. 
 
5. NUMERICAL EXAMPLES 

In this section, the efficacy of the proposed incremental power 
grid solver is demonstrated by several industrial circuit examples 
where the input supply voltage is 1.8 V for all test cases. For 
testing and comparison purpose, three different power grid solvers 
are studied: (1) algebraic multi-grid solver (AMG) [4], [6], (2) 
OMP with QR decomposition for least-squares fitting (OMP-QR), 
and (3) OMP with adaptive least-squares fitting (OMP-Adaptive). 
All these solvers are implemented with C++ using the sparse 
matrix package from University of Florida 
(www.cise.ufl.edu/research/sparse/). The numerical experiments 
are performed on a 2.8 GHz Linux server with 8 GB memory. 

Table 1 summarizes the problem size of all power grid 
examples and their corresponding condition numbers. In these 
examples, the proposed pre-conditioning scheme in (26)-(28) 
reduces the condition number by up to 104�. Note that all power 

grid examples shown in Table 1 are well-conditioned, after pre-
conditioning is applied. It is expected that the advantage of pre-
conditioning would be more pronounced for the power grid 
circuits that are more ill-conditioned. 

Table 2 compares the incremental analysis accuracy for AMG 
and OMP. Here, a direct solver based on LU decomposition is 
used to calculate the exact power grid response and estimate the 
error for AMG and OMP. In these examples, both OMP-QR and 
OMP-Adaptive result in the same accuracy and, hence, we do not 
distinguish these two methods in Table 2. Studying the error 
values in Table 2, we would find that the proposed OMP solver 
offers significantly improved accuracy over AMG for these 
incremental power grid analysis examples. 

Table 1.  Power grid network size and condition number 

CKT # of 
Nodes 

Condition Number of ATA 
w/o Pre-conditioning w/ Pre-conditioning 

PG1 127,026 2.3�106 6.1�103 
PG2 285,839 7.0�106 5.6�103 
PG3 540,321 1.4�107 1.1�104 
PG4 834,384 7.8�106 1.8�103 
PG5 952,931 8.8�107 4.0�103 

Table 2.  Comparison of power grid analysis accuracy 

CKT AMG OMP (Proposed) 
EAVG (mV) EMAX (mV) EAVG (mV) EMAX (mV) 

PG1 4.40 17.70 0.120 10.10 
PG2 2.10 9.01 0.026 6.75 
PG3 1.60 5.00 0.002 1.16 
PG4 3.80 12.4 0.003 1.10 
PG5 0.07 0.44 0.001 0.07 

Table 3.  Comparison of power grid analysis time (Sec.) 
CKT AMG OMP-QR OMP-Adaptive 
PG1 1.69 0.056 0.037 
PG2 3.55 0.200 0.048 
PG3 6.63 0.262 0.155 
PG4 8.34 0.108 0.086 
PG5 12.9 0.144 0.099 

 
Table 3 further compares the runtime for all three power grid 

solvers: AMG, OMP-QR, and OMP-Adaptive. When calculating 
the runtime in Table 3, we assume that the response of the original 
power grid system in (2) is already known and our goal is to 
compute the response of the updated power grid network in (3). In 
other words, the runtime of solving the original power grid system 
(2) is not counted in Table 3. 

Two important observations can be made from the data in 
Table 3. First, the proposed OMP-Adaptive algorithm achieves up 
to 130� speed-up over the traditional AMG solver. Unlike AMG 
that considers the updated power grid network as a completely 
new system, OMP-Adaptive incrementally updates the power grid 
solution by identifying a small set of internal nodes where the 
response is changed. It, in turn, results in substantial runtime 
speed-up. Second, since OMP-Adaptive optimally applies the 
most efficient solver for least-squares fitting, it offers up to 4� 
speed-up over OMP-QR, as shown in Table 3. 

Finally, Figure 1 plots the solution δ (normalized) of the 
incremental MNA equation in (4). The exact solution of δ is found 
by a direct solver based on LU decomposition and is shown in 
Figure 1(a). Figure 1(b) plots the solution δ computed by the 
proposed OMP algorithm. Note that the results in Figure 1(a) and 
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Figure 1(b) accurately match each other. In addition, the 
“incremental” response δ is extremely sparse. Namely, its value is 
close to zero at a large number of spatial locations. Such a sparse 
structure is the necessary condition to make the proposed OMP 
algorithm efficient for incremental power grid analysis. 

 
(a) 

 
(b) 

Figure 1.  The solution δ (normalized) of the incremental MNA 
equation in (4) is sparse for the largest power grid example PG5: 
(a) exact solution calculated by a direct solver based on LU 
decomposition, and (b) approximate solution calculated by the 
proposed OMP algorithm. 
 
6. CONCLUSIONS 

In this paper, we proposed a new incremental power grid 
analysis technique where an efficient Orthogonal Matching 
Pursuit (OMP) algorithm was adopted to solve the sparse 
incremental power grid response with low computational cost. In 
addition, several numerical techniques (i.e., pre-conditioning and 
adaptive algorithm selection) were developed to improve the 
numerical stability and reduce the computational cost of the 
proposed power grid solver. As was demonstrated by a number of 
industrial circuit examples, the proposed OMP algorithm achieves 
up to 130� runtime speed-up over the traditional Algebraic Multi-
Grid (AMG) method without incremental analysis capability. The 
proposed incremental power grid solver can be further 
incorporated into a power grid optimization engine to facilitate 
efficient on-chip power grid design for nanoscale integrated 
circuits. 
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