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Abstract- The push for higher performance analog/RF circuits in 
scaled CMOS necessitates self-healing via post-manufacturing 
tuning. A major challenge with self-healing systems is the 
efficient design of on-chip sensors that capture the performance 
of interest. This is particularly difficult for metrics such as phase 
noise that are not easily measured on-chip. We propose an 
indirect sensing method that exploits the correlations between the 
performance metrics of interest and those that can be measured 
using easy-to-integrate sensors. We demonstrate indirect phase 
noise sensing for a 25GHz self-healing voltage controlled 
oscillator (VCO) design in 32nm CMOS SOI that approaches the 
best parametric yield achievable based on simulated results. 

 

I. INTRODUCTION 
 

 Increasing process variability and decreasing voltage 
headroom in advanced silicon processes make analog circuit 
design more challenging. Traditional overdesign technique, 
whereby the circuit is designed to perform better than the 
specifications with large margins for variability, is becoming 
impractical for high performance circuits. Process variability 
and the push to higher performance cause unpredictable and 
unacceptable product yield that requires self-healing design 
methodologies based on post-manufacturing tuning [1, 2]. 
Self-healing design enables the circuit to calibrate itself not 
only for varying process but also for varying environment and 
circuit conditions that can degrade the performance. A major 
challenge in self-healing systems is the efficient design of on-
chip sensors that capture the performance of interest. Phase 
noise variability in voltage controlled oscillators (VCO) is an 
extreme example of such a challenge. 
 The phase noise of a VCO quantifies the spectral purity of 
the oscillator’s output and can be a demanding specification, 
particularly for high data-rate wireless transceivers. For 
example, statistical transistor-level simulation of a 25GHz 
differential Colpitts VCO implemented in 32 nm CMOS SOI 
technology shows more than 10dB variation in phase noise 
across temperature (-20 to 80C), frequency (19.5 to 28.5GHz) 
and process variations (see Fig. 1). For the VCO considered 
here, the bias voltage, which controls the bias current of the 
VCO, can be tuned externally and 3-bit digitally switched 
capacitor banks enable coarse frequency tuning. Fig. 1 shows 
the phase noise at 10MHz offset across bias voltage for 
several process, temperature and frequency settings. 
Simulations indicate that there is no optimum bias voltage that 
can guarantee minimum phase noise under all process and 
temperature corners. Clearly, there is a need for self-healing to 
mitigate variations in VCO phase noise. 
 Automatic amplitude control (AAC) techniques have been 
previously presented to reduce variations in oscillation 

amplitude [3]. However, AAC does not completely solve the 
phase noise variability problem, as the phase noise does not 
correlate perfectly with amplitude. Control loop stability and 
the variations in the amplitude detectors also limit the efficacy 
of AAC. 
 

 
Fig. 1.  Variability in VCO phase noise due to bias voltage, process, 

environment and frequency setting. 
 
 Integrated phase-noise sensors for phase-noise 
minimization and testing after manufacturing have also been 
presented in the literature [4]. However, these sensors cannot 
be used for applications where the noise specification is close 
or below the noise floor of the integrated sensor. For example, 
the phase noise sensor in [4], achieves -75dBc sensitivity at 
100 kHz offset from a 2GHz carrier, corresponding to a 
sensitivity of -95dBc at 10MHz offset from a 20GHz carrier. 
 We propose indirect phase noise sensing to enable self-
healing VCO design. Indirect sensors exploit the correlations 
between the VCO phase noise and circuit parameters or other 
performance metrics that are already available or can be 
measured using easy-to-integrate sensors. The indirect sensor 
is based on response surface modeling that has been 
successfully applied to model performance metrics over multi-
dimensional variation space [5]. Response surface modeling 
enables us to collect and use correlation data in a compact 
form. The proposed indirect sensor can accurately predict the 
phase noise over process and temperature variations for 
different bias and frequency settings, and can be evaluated 
easily by an on-chip computing unit. We present the design 
methodology for indirect phase noise sensor in Section II.A. 
Furthermore, we present an optimization formulation that 
reduces the on-chip integration cost and the evaluation time of 
the proposed indirect sensor in Section II.B. 
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 Based on the indirect noise sensing, we propose a self-
healing VCO design (shown in Fig. 2) that provides the proper 
bias to the VCO, autonomously mitigating the effects of 
process and temperature variability on phase noise. The self-
healing design can either find the lowest VCO bias that 
achieves targeted phase noise or operate the VCO at minimum 
phase noise. In Section III, we demonstrate the efficacy of 
self-healing VCO design using statistical circuit simulations. 
We compare the self-healing VCO design with the traditional 
AAC technique and the optimum algorithm that employs an 
ideal phase noise sensor. Section IV presents our conclusions. 

 
Fig. 2.  Self-healing VCO design with control algorithm based on indirect 

sensing. 
 

II. INDIRECT PHASE NOISE SENSING  
 

A. Design Methodology 
 The design of indirect phase-noise sensing begins with 
simulation data collection over the joint space of process, 
temperature, frequency setting and bias voltage. Data 
collection in process space is achieved by running transistor-
level Monte Carlo simulations. Data collection in temperature, 
frequency setting and bias voltage space is achieved by 
variable sweeps available in circuit simulators. For each 
simulated sample in this joint space, phase noise, free-running 
oscillation frequency and amplitude are recorded.  The data set 
generation does not introduce a significant cost since such 
simulations are typically required for pre-silicon performance 
verification. 
 Both the simulated frequency and amplitude values in the 
data set are quantized to capture the quantization effects of 
actual sensors. The amplitude is quantized with 5-bit 
resolution that yields a bin size of 80mV. The frequency is 
quantized with a bin size of 300MHz. The oscillation 
frequency can easily be measured using a frequency counter. 
The oscillation amplitude and temperature can be measured by 
previously presented on-chip sensors ([3], [9]).  
 Although analytical expressions for phase noise have been 
presented in the literature, such expressions are either based 
on simplifying assumptions or involve parameters that cannot 
be measured [6]. Therefore, we employ nonlinear regression 
to predict phase noise where the phase noise is approximated 
as a polynomial function as follows: 

 FrequencyeTemperaturAmplitudeeBiasVoltagkfPhaseNoise BAND ,,,,  (1) 

where kBAND represents the value of 3-bit binary code 
controlling the frequency band.  The polynomial coefficients 
in (1) are obtained by solving the unconstrained convex 
problem that minimizes the root mean squared (rms) error 

between the predicted and simulated phase noise over N 
samples as follows: 
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M is an N-by-c matrix where each row contains the values of 
polynomial terms for each sample, α is a c-by-1 vector of 
unknown coefficients and P is an N-by-1 vector of simulated 
phase noise for each sample. The polynomial order, and 
thereby the number of coefficients denoted by c, depends on 
the phase noise sensitivity of the VCO design to observed 
performance metrics and is minimized to reduce 
implementation complexity. 
 The accuracy of indirect sensing is evaluated by 10-fold 
cross validation ([7]) using 10k samples. At each iteration of 
the cross validation, the data set is partitioned into training and 
validation subsets. The training set is used for nonlinear 
regression while the validation set that is not used during 
regression is used to evaluate prediction accuracy. Fig. 3 
shows that a second order polynomial model with logarithm 
transform provides sufficient accuracy for the 25GHz VCO 
design considered in this work. Fig. 4 compares the phase 
noise predicted by indirect sensor with the simulated phase 
noise for a randomly generated validation set. The indirect 
sensor can predict the phase noise with an rms error of 
0.5dBc/Hz and with a maximum error of 2.0dBc/Hz where the 
total phase noise variation in the data set is up to 15dBc/Hz. 
The quantization in measured performance metrics, namely 
the amplitude, frequency and temperature, has a negligible 
impact on the prediction accuracy. 
 

 
Fig. 3.  Maximum and rms prediction error versus polynomial order. 

 
Fig. 4.  Predicted versus simulated phase noise. 



B. Optimization of Indirect Performance Sensors 
 Polynomial regression that is obtained by solving the 
optimization problem stated in (2) yields a polynomial model 
with a non-zero coefficient for each polynomial term. For 
example, the solution of (2) for a quadratic model of 5 input 
variables result in 21 non-zero coefficients to be stored on-
chip. However, it is possible that some of these polynomial 
terms may be redundant with negligible contribution to 
prediction accuracy. If one can determine and eliminate such 
insignificant polynomial terms, both the on-chip memory 
overhead and the computation overhead of the indirect sensing 
can be reduced.  To optimize an indirect performance sensor 
for on-chip integration, we re-formulate the problem in (2) as 
an L1-norm minimization problem as follows: 
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where λ is the regularization factor that determines the sparsity 
of the solution [8]. The regularization factor in (3) is 
determined by cross validation and enables trade off of 
prediction accuracy for integration overhead by yielding fewer 
polynomial terms. 

TABLE I 
Comparison of full and optimized performance sensors 

 # of model 
coefficients 

Maximum 
Error 

RMS  
Error 

Full sensor 21 2.04 0.53 
Optimized sensor  13 2.07 0.55 
Sensors optimized 10 2.38 0.58 
for relaxed 9 3.38 0.69 
accuracy 8 3.61 0.73 

 
 Table I compares the full indirect sensor with all model 
coefficients with the sensors optimized by the regularization 
technique for varying accuracy targets. The optimized sensor 
reported in the 2nd row of Table I achieves almost the same 
rms error with the full sensor. This demonstrates that some of 
the model coefficients are indeed negligible, and therefore the 
integration overhead can be reduced. Table I also shows that 
more area-efficient sensors can be obtained at the cost of 
slight accuracy degradation by the formulation in (3). 
 

III. SELF-HEALING ALGORITHMS AND EVALUATION 
 

 Based on the indirect phase noise sensor, we developed 
and evaluated two self-healing algorithms. The first algorithm 
utilizes the sensor to minimize the VCO bias voltage, and 
thereby minimizes power dissipation, while achieving a given 
phase noise target. We refer to this algorithm as power-
minimized self-healing. The second algorithm adjusts VCO 
bias voltage to achieve minimum phase noise. We refer to this 
algorithm as noise-minimized self-healing. For our particular 
VCO design, we employed an incremental search for both 
algorithms since phase noise is a quasi-convex function of the 
bias voltage (due to the amplitude saturation in LC oscillators 
[6]) and power dissipation increases monotonically with the 

bias voltage. This quasi-convexity guarantees that an 
incremental search algorithm can find the global optimum. 
 To evaluate the algorithms, we simulated the VCO for 
three different temperatures from -20 to 80C; 3 different 
frequency settings; and 5 different bias voltages from 0.7 to 
1.1V. For each combination of these parameters, the VCO is 
simulated for 300 Monte Carlo samples yielding a total of 
13.5k samples. In the following comparisons, the power 
dissipation reflects the average power dissipation across 
process, temperature and frequency settings. The parametric 
yield refers to the probability that the algorithm can achieve 
the phase noise target for any temperature and frequency 
setting. We compared the power-minimized self-healing VCO 
design that utilizes the indirect phase noise sensing against the 
following approaches: 
 Optimum is an unrealizable algorithm that employs an 

ideal phase noise sensor and, therefore can determine the 
best achievable phase noise and the minimum bias voltage 
to achieve target phase-noise. The optimum represents the 
upper bound on parametric yield and the lower bound on 
the average power dissipation for a given phase noise 
target. 

 Fixed bias represents a design without any tuning 
capabilities and utilizes a fixed VCO bias for varying 
phase-noise targets. For a fair comparison, a unique bias 
voltage is selected for each phase noise target to achieve 
the best parametric yield and minimum power dissipation. 

 AAC is the traditional automatic amplitude control 
algorithm that maintains the oscillation amplitude at a 
predefined level [3]. For a fair comparison, a unique 
amplitude target is selected for each phase noise target to 
achieve the best parametric yield and minimum power 
dissipation. 
 

 Fig. 5 compares the simulated parametric yield of the 
algorithms listed above for varying phase noise target. Fig. 5 
shows that fixed bias, AAC and the power-minimized self-
healing are very close to the optimum performance. As the 
performance specification becomes more aggressive (below -
120dBc/Hz), the simulated parametric yield declines sharply 
for all algorithms since the phase noise specification can no 
longer be achieved for all temperature and frequency setting. 
 Fig. 6 compares the average power dissipation of the 
optimum, fixed bias and AAC normalized to the power-
minimized self-healing design. Although Fig. 5 shows that the 
fixed bias approach achieves parametric yield similar to self-
healing, it results in 25 to 60 percent more power dissipation 
compared to self-healing. The self-healing design offers a 
significant reduction in power dissipation compared to fixed 
bias circuit by applying only as much bias voltage as is 
necessary given the process corner, environment temperature 
and frequency setting. It is also noteworthy that the power 
dissipation achieved by self-healing is within 10% of the 
optimum. The difference in power dissipation by optimum and 
self-healing is due to the error margin added to the predicted 
noise to achieve high parametric yield. 



 Fig. 7 compares the phase noise achieved by the noise-
minimized self-healing design with the minimum phase noise 
achieved by the optimum. Fig. 7 shows that noise-minimized 
self-healing yields performance that approaches the optimum 
operating point (within 0.04dBc/Hz on the average and within 
0.7dBc/Hz in the worst-case), demonstrating the accuracy of 
indirect sensing. 

IV. CONCLUSION 
 

 In this paper we proposed indirect phase noise sensing to 
predict the phase noise using readily available circuit 
parameters and other easy-to-measure performance metrics in 
the presence of process and environment variations. We 
presented a design methodology for indirect sensors that also 
minimizes on-chip integration cost. Utilizing indirect sensing, 
we demonstrated two self-healing algorithms for phase noise 
or power minimization and evaluated their efficacy using 
simulations. Self-healing based on indirect sensing offers a 
viable solution for high performance design in advanced 
silicon processes. 
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Fig. 5.  Simulated parametric yield of phase noise achieved by optimum, fixed 

bias, AAC and power-minimized self-healing. 

 
Fig. 6.  Simulated power dissipation of optimum, fixed bias and AAC 

normalized to power-minimized self-healing. 

 
Fig. 7.  The difference between the phase noise achieved by noise-minimized 

self-healing and minimum phase noise.  


