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ABSTRACT 
In this paper, we propose a new technique, referred to as Multi-
Wafer Virtual Probe (MVP) to efficiently model wafer-level 
spatial variations for nanoscale integrated circuits. Towards this 
goal, a novel Bayesian inference is derived to extract a shared 
model template to explore the wafer-to-wafer correlation 
information within the same lot. In addition, a robust regression 
algorithm is proposed to automatically detect and remove outliers 
(i.e., abnormal measurement data with large error) so that they do 
not bias the modeling results. The proposed MVP method is 
extensively tested for silicon measurement data collected from 
200 wafers at an advanced technology node. Our experimental 
results demonstrate that MVP offers superior accuracy over other 
traditional approaches such as VP [7] and EM [8], if a limited 
number of measurement data are available. 
 
1. INTRODUCTION  

Parametric variations such as gate length variations, dopant 
fluctuations and metal thickness variations widely exist in today’s 
manufacturing process and will continue to increase in the future 
[1]-[2]. These variations manifest themselves in different scales, 
including lot-to-lot, wafer-to-wafer, within-wafer and within-
reticle/die, due to both systematic and random effects [14]. A lot 
of IC analysis and optimization techniques (e.g. statistical timing 
analysis [4], post-silicon tuning [5], etc.) have been proposed in 
recent years to combat parametric variations. These methods 
heavily rely on the accuracy of the variation models that capture 
the corresponding random distributions and their correlations. 

Accurately characterizing and modeling process variations, 
however, can be extremely expensive. Silicon wafers and chips 
must be extensively tested and characterized using a large number 
of test structures (e.g., ring oscillators) deployed in wafer scribe 
lines and/or within product chips [3]. Physically measuring all test 
structures through a limited number of I/O ports is time-
consuming. Moreover, silicon measurement such as wafer probe 
test may damage the wafer being tested due to mechanical stress, 
causing additional yield loss [6]. All these technical issues lead to 
today’s prohibitive cost for nanoscale manufacturing technology. 

Recently, two different methods, Virtual Probe (VP) [7] and 
Expectation-Maximization (EM) [8], have been proposed to 
reduce the cost of silicon characterization. Both methods aim to 
physically sample a small subset of test structures, and predict 
parametric variations at other locations by a numerical algorithm. 
On one hand, VP takes the measurement data from a single wafer 
and predicts the spatial variations for that wafer. Since VP does 
not simultaneously consider the measurement results from 
multiple wafers, the similarity among different wafers (i.e., wafer-
to-wafer correlation) is completely ignored. On the other hand, 
EM requires to measure a large number of (e.g., more than 100) 
wafers to extract an accurate statistical model. Hence, it cannot 
efficiently handle a number of practical cases where measurement 

data are limited and/or non-stationary (e.g., due to low-volume 
manufacturing or equipment aging). 

Motivated by these observations, it is desirable to develop a 
new prediction technique that can efficiently explore the wafer-to-
wafer correlation information from a small number of (e.g., 10~20) 
wafers. In practice, since the variation between wafers within the 
same lot tends to be much smaller than the within-wafer variation 
between chips [14], wafers from the same lot present strongly-
correlated parametric variations, as will be demonstrated by our 
industrial examples in Section 5. If such correlation information is 
appropriately extracted, it is possible to substantially improve 
prediction accuracy. In other words, since strong correlation exists 
between different wafers, we can predict the spatial variations of a 
wafer by borrowing measurement data from the other wafers in 
the same lot. The open question, however, is how to develop a 
new modeling and prediction algorithm to achieve this goal. 

In this paper, we propose a new Multi-Wafer Virtual Probe 
(MVP) technique that is derived from the VP framework. Given 
multiple wafers from the same lot, MVP takes a few physical 
samples from different locations of each wafer. By exploring 
wafer-to-wafer correlation, the spatial variations of all wafers are 
estimated together through a two-step technique. In the first step, 
a Bayesian inference is adopted from the statistics community 
[12] to find a shared model template for spatial variations of the 
wafers being tested. Next, a detailed modeling scheme is applied 
to predict spatial variations of each wafer using the extracted 
template. The proposed two-step approach is the key technique 
that makes MVP superior over other traditional methods such as 
VP and EM. 

Another important contribution of this paper is to develop a 
robust regression algorithm to accurately detect and remove 
measurement outliers (i.e., large measurement errors). Silicon 
measurement data are usually error-prone. Taking wafer probe 
test as an example, probe misalignment and/or manufacturing 
defect can cause a number of measurement results that are greatly 
deviated from the actual values [6]. To address this issue, MVP 
uses robust statistics such as interquartile range [15] to distinguish 
outliers from regular measurement data. An iterative algorithm is 
developed and integrated with MVP to automatically detect and 
remove all outliers. 

The proposed MVP method has been extensively tested for a 
large set of silicon measurement data that are collected from 200 
wafers at an advanced technology node. As will be demonstrated 
by the experimental results in Section 5, to accurately extract the 
wafer-to-wafer correlation information, the number of wafers 
required by MVP is up to 14.3× less than that of EM [8]. On the 
other hand, MVP reduces the number of required sampling points 
by up to 3.9× compared to VP [7], while offering the same 
prediction accuracy. Note that even though MVP must measure 
different locations of different wafers and, hence, does not reduce 
the silicon area of test structures, it minimizes 
testing/characterization time by measuring fewer test structures 
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for each wafer. 
The remainder of this paper is organized as follows. We 

briefly review the background of VP in Section 2 and then 
describe the proposed MVP method in Section 3. In Section 4, we 
further develop a robust regression method for MVP to 
automatically detect and remove outliers. The efficacy of MVP is 
demonstrated by several industrial examples in Section 5. Finally, 
we conclude in Section 6. 
 
2. BACKGROUND 

In this section, we briefly summarize the existing algorithms 
for spatial variation modeling. Since our proposed MVP technique 
is derived from the VP framework [7], we mainly focus on the 
background for VP here. The technical details of EM can be found 
in [8]. 

Let g(x, y) be the two-dimensional function of the 
performance of interest, where x and y represent the coordinate of 
a location within the two-dimensional plane. The performance g 
can be the frequency of a ring oscillator, the threshold voltage of a 
transistor, etc. Without loss of generality, we discretize the two-
dimensional function g(x, y) and denote the coordinates x and y as 
integers x ∈ {1,2,...,P} and y ∈ {1,2,...,Q}. Mathematically, the 
relation between the performance value and its frequency-domain 
component can be represented by a two-dimensional linear 
transform such as discrete cosine transform (DCT) [16]: 

1 ( ) ( ) ( )( )

( )( )
Q

vy
P

uxyxgvuG
P

x

Q

y
vu

⋅
−−⋅

⋅
−−⋅⋅⋅=∑∑

= =

2
112cos

2
112cos,,

1 1

π

πβα  (1) 

where {G(u, v); u = 1,2,...,P, v = 1,2,...,Q} is a set of DCT 
coefficients and: 
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Equivalently, the performance value {g(x, y); x = 1,2,...,P, y = 
1,2,...,Q} can be represented as the linear combination of {G(u, v); 
u = 1,2,...,P, v = 1,2,...,Q} by inverse discrete cosine transform 
(IDCT): 
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Virtual Probe (VP [7]) aims to measure a small number of 
(say, M) samples at the locations {(xm, ym); m = 1,2,...,M} and 
recover the performance value g(x, y) at other locations {(xm, ym); 
m = M+1,M+2,...,PQ} where M << PQ. Towards this goal, we 
formulate the following linear equation based on the measurement 
data {g(xm, ym); m = 1,2,...,M}: 
5 BA =⋅η  (5) 
where 
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We need to solve {G(u, v); u = 1,2,...,P, v = 1,2,...,Q} from (5)-(9). 
Once the DCT coefficients are known, the unknown performance 
values {g(xm, ym); m = M+1,M+2,...,PQ} can be easily calculated 
by IDCT in (4).  

Note that the linear equation (5)-(9) is profoundly 
underdetermined. To solve (5), the authors of [7] further assume 
that the solution η is sparse. Since the exact locations of the non-
zeros in η are unknown, VP formulates the following optimization 
to find the sparse solution η: 
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where ||•||0 stands for the L0-norm of a vector, i.e., the number of 
non-zeros in the vector. The optimization problem in (10) is NP 
hard and, hence, is extremely difficult to solve [9]-[10]. For this 
reason, VP further adopts an alternative formulation based on L1-
norm regularization – a relaxed version of L0-norm [7], [9]-[10]: 
11 
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where ||•||1 denotes the L1-norm of a vector, i.e., the summation of 
the absolute value of all elements in the vector. The L1-norm 
regularization in (11) can be re-formulated as a linear 
programming problem and solved efficiently [7]. 

The aforementioned VP algorithm aims to efficiently model 
within-wafer spatial variations from a minimum number of 
sampling points. However, the current implementation of VP 
completely ignores the wafer-to-wafer correlation that can be 
observed for multiple wafers within the same lot. Motivated by 
this observation, we will develop a new Multi-Wafer Virtual 
Probe (MVP) algorithm in order to further improve modeling 
accuracy by integrating the wafer-to-wafer correlation information 
into the VP framework. 
 
3. MULTI-WAFER VIRTUAL PROBE  

Our proposed Multi-Wafer Virtual Probe (MVP) consists of 
two major steps: (1) solve a shared model template for all wafers 
being tested, and (2) apply a detailed modeling scheme to predict 
the spatial variations of each wafer. In this section, we describe 
the mathematical formulation of MVP and highlight its novelties. 
 
3.1 Problem Definition 

Given L wafers from the same lot, we denote the measurement 
data from all wafers as {g(l)(x(l),m, y(l),m); l = 1,2,…L, m = 
1,2,...,Ml}, where g(l) and (x(l),m, y(l),m) are the performance 
function and the m-th sampling point of the l-th wafer, 
respectively. Note that the number of samples can vary from 
wafer to wafer. For each wafer, a linear equation can be 
formulated based on (4) to solve the DCT coefficients: 
12 ( )LlBA lll ,,2,1)()()( ==⋅η  (12) 

where 

13 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

QPMlMlMl

QPlll

QPlll

l

lll
AAA

AAA
AAA

A

,,),(2,1,),(1,1,),(

,,2),(2,1,2),(1,1,2),(

,,1),(2,1,1),(1,1,1),(

)(

 (13) 

48



 

14 
( )( )

( )( )
Q

vy
P

ux
A

ml

ml
vuvuml

⋅
−−

⋅

⋅
−−

⋅⋅=

2
112

cos

2
112

cos

),(

),(
,,),(

π

π
βα  (14) 

15 ( ) ( )[ ]Tlll QPGG ,1,1 )()()( =η  (15) 

16 ( ) ( )[ ]TMlMllllll ll
yxgyxgB ),(),()(1),(1),()()( ,,= . (16) 

In (15), G(l)(u,v) is the DCT coefficient of the l-th wafer at the 
frequency (u,v). 

In (12), each equation A(l)·η(l) = B(l) can be individually solved 
by the L1-norm regularization in (11). Such an approach, however, 
is not optimal, since it ignores the wafer-to-wafer correlation 
among these L wafers. This, in turn, motivates us to develop a 
new algorithm in the following sub-sections to further improve 
the modeling accuracy for spatial variations of multiple wafers. 
 
3.2 L2-Norm Regularization 

In this sub-section, we first introduce the L2-norm 
regularization method, as it is one of the key mathematical tools 
that facilitate the proposed MVP algorithm. L2-norm 
regularization [17] is a classic method in statistics to solve the 
linear equation A(l)·η(l) = B(l) in (12). It can be formulated as the 
following optimization: 
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where ||•||2 denotes the L2-norm of a vector, i.e., the square root of 
sum of squared value of all elements in the vector. Comparing 
(17) to the L1-norm regularization in (11), we would notice two 
key differences. First, the cost function in (17) is defined as L2-
norm, instead of L1-norm. Second, the inequality constraint in 
(17) forces the sum of squared error to be less than or equal to a 
threshold e(l). Here, e(l) is added to consider measurement noise. In 
the extreme case, if e(l) equals 0 and, hence, there is no 
measurement noise, the inequality constraint in (17) is equivalent 
to the equality constraint in (11). 

Eq. (17) can be converted to the following unconstrained 
optimization based on the Lagrange multiplier theory [18]: 
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where w(l),0 is the Lagrange multiplier of the inequality constraint 
in (17). Given a fixed value of e(l), there exists a unique w(l),0 that 
makes (17) and (18) equivalent, i.e., both optimizations share the 
same solution η(l). 

While Eq. (18) shows the basic formulation of L2-norm 
regularization, we can further derive a weighted formulation that 
is slightly different from (18) [11]: 
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where W(l) is a diagonal matrix with w(l) = [w(l),1, w(l),2,… w(l),PQ]T 
as its diagonal entries and w(l),i is the weight associated with the 
DCT coefficient η(l),i. It can be shown that the optimization in (19) 
is convex [18] and, hence, can be solved efficiently and robustly. 

Compared to (18), Eq. (19) further allows us to specify the 
“importance” of each DCT coefficient η(l),i by assigning an 
appropriate weight w(l),i to it. Intuitively, if the weight w(l),i of the 
DCT coefficient η(l),i is small, η(l),i is likely to be zero, as it is 
strongly penalized in the cost function of (19). In the extreme case, 
if w(l),j equals 0, η(l),j must be 0 in order to minimize the cost 
function in (19). For this reason, the L2-norm regularization in 
(19) results in a sparse solution η(l), if the weights {w(l),i; i = 

1,2,…,PQ} are appropriately designed.  
The aforementioned discussion implies an important fact that 

the weights {w(l),i; i = 1,2,…,PQ} in (19) serve as a model 
template to determine whether the DCT coefficient η(l),i is likely to 
be zero or non-zero. Once these weight values are known, solving 
the DCT coefficients becomes trivial, as shown in (19). In what 
follows, we will derive a Bayesian algorithm to determine the 
optimal weight values by exploring the wafer-to-wafer correlation 
information. 
 
3.3 Wafer-to-Wafer Correlation 

An efficient way to explore the correlation among different 
wafers can be motivated by closely observing the wafer-level 
measurement data. Figure 1 (a)-(c) show the normalized ring 
oscillator (RO) period measured for three randomly chosen 
industrial wafers, where Figure 1 (a)-(b) are within the same lot.  
Studying Figure 1, it can be seen that wafers across different lots 
exhibit much larger variation than wafers within the same lot. 
Moreover, it can be seen that the within-wafer variation between 
chips is much larger than the variation between wafers within the 
same lot. The same observation is also stated in [14]. If we further 
study the wafer variation within the same lot, it can be seen that 
the variation mainly lies in the mean value, instead of the within-
wafer spatial variation pattern. Such a variation in mean, for 
example, can be caused by the systematic shift of manufacturing 
equipment that uniformly affects the entire wafer rather than a 
particular location on the wafer [14]. Therefore, if we remove the 
wafer-level mean value, the resulting spatial pattern presents 
strong similarity among different wafers within the same lot. 
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                         (d)                                                 (e) 
Figure 1.  (a)-(c) measured ring oscillator (RO) period (normalized by a 
randomly selected constant) for three wafers, where (a) and (b) are within 
the same lot. (d)-(e) DCT coefficients (magnitude) of the measured RO 
period for (a) and (b) respectively. 
 

The aforementioned discussion implies an important fact that 
since different wafers have similar spatial variation patterns, the 
corresponding DCT coefficients are strongly correlated among 
these wafers. To intuitively illustrate this concept, Figure 1 (d)-(e) 
show the magnitude of the DCT coefficients for two different 
wafers within the same lot. Note that these DCT coefficients 
almost share the same pattern in this example. 

Motivated by this observation, it is possible for us to develop 
a shared “model template” in order to accurately estimate spatial 
variations of multiple wafers. Remember that the weights {w(l),i; i 
= 1,2,…,PQ} in (19) serve as a model template to determine the 
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corresponding DCT coefficients, as mentioned in Section 3.2. 
Hence, we propose to use identical weight values among L 
different wafers: 
20 ),...,2,1(... ),(),2(),1( PQiwwww iiLii ===== . (20) 

It, in turn, results in a shared model template that efficiently 
explores the wafer-to-wafer correlation information. 

To complete the definition of our model template, we further 
set up the following constraint for the Lagrange multipliers {w(l),0; 
l = 1,2,…L} in (19): 
21 
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Eq. (21) implies that the measurement noise is an intrinsic 
property of the testing equipment and, hence, it should be similar 
over different wafers. Note that the measurement noise of the l-th 
wafer is expressed as ||A(l)·η(l)−B(l)||2 in (19). Even though different 
wafers share the same Lagrange multiplier w0, the exact value of 
||A(l)·η(l)−B(l)||2 can still be different. In other words, given a testing 
equipment, the statistics (e.g., variance) of its measurement noise 
are fixed. However, since measurement noise is random, we can 
get different noise values from different measurements. 

Once the shared model template is defined in (20)-(21), we 
need to further determine the optimal value of {wi; i = 0,1,…,PQ} 
based on the measurement data collected from all wafers. In the 
next sub-section, we will borrow a Bayesian method from the 
statistics community [12] to address this problem. 
 
3.4 Bayesian Inference 

The essence of Bayesian inference is to model unknown 
parameters using probability. In this sub-section, we borrow the 
Bayesian inference idea in [12] to solve {wi; i = 0,1,…PQ} in a 
probabilistic setting. Towards this goal, we first derive a 
probabilistic formulation for the L2-norm regularization in (19). 

Substituting (20)-(21) into (19) yields: 
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where W is a diagonal matrix with w(l) = [w1, w2,…,wPQ]T as its 
diagonal entries. In (22), w0||A(l)·η(l)−B(l)||2 is included in the cost 
function to penalize the measurement noise (or equivalently, the 
measurement uncertainty). In a probabilistic sense, such 
uncertainty can be modeled by representing B(l) as the sum of the 
following two terms: 
23 
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In (23), A(l)η(l) denotes the actual performance values which 
depend on the DCT coefficients η(l). On the other hand, ε(l) is a 
vector of random variables that models the measurement noise of 
the l-th wafer. 

The noise ε(l) is typically modeled as independent and 
identically distributed (i.i.d.) zero-mean Normal random variables: 
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In (24), the Lagrange multiplier w0 is used to define the precision 
of the measurement B(l),i (i.e., the inverse of the variance of the 
measurement noise). Intuitively, if w0 is large (or equivalently, the 
variance of noise is small), the L2-norm ||A(l)·η(l)−B(l)||2 is strongly 
penalized in (22) so that the residue A(l)·η(l)−B(l) is small. The 
equivalence between the L2-norm representation w0||A(l)·η(l)−B(l)||2 
in (22) and the probability formulation in (24) can be 
mathematically proven by applying several statistical theorems 
[17]. More details on this topic can be found in [17]. 

Due to the random noise ε(l), the measured performance B(l) is 

a random variable, even if the DCT coefficients η(l) are fixed. 
Given the noise distribution in (24), it is easy to verify that B(l) 
satisfies the following Multivariate Normal distribution: 
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Eq. (25) models the statistical uncertainty of the measured 
performance B(l) due to the measurement noise ε(l). 

Next, the second term ||W−1η(l)||2 in (22) regularizes the 
magnitude of the DCT coefficients η(l). It is this regularization 
term that allows us to find a unique solution from the 
underdetermined linear equation: A(l)·η(l) = B(l). The L2-norm 
regularization ||W−1η(l)||2 can be interpreted by the following 
statistical framework. Assume that the DCT coefficients η(l) are 
statistically modeled as independent zero-mean Normal random 
variables: 

26 ( )( )

( )Ll
W

w

ww
wpdf

PQ

i

l

i

PQ

i i

il

i
PQl

,,2,1
2

||||
exp

2
1

2
exp

2
1|

1

2
2)(

1

2

1
2

2
),(

2,...,1

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅=

∏

∏

=

−

=

η
π

η
π

η
. (26) 

Intuitively, the probability distribution in (26) indicates the 
“uncertainty” of the unknown DCT coefficients η(l). Studying (26), 
we would have two important observations. First, the probability 
density function decreases, as the magnitude of η(l) increases. It, in 
turn, implies that small DCT coefficients are more likely to occur 
than large ones. This observation is consistent with the L2-norm 
regularization in (22) where the term ||W−1η(l)||2 is added to the 
cost function to penalize large DCT coefficients. Second, the 
weight wi is used to define the standard deviation of the DCT 
coefficients {η(l),i; l = 1,2,…,L} in (26). If wi is small, the 
corresponding DCT coefficients {η(l),i; l = 1,2,…,L} are likely to 
be small. In the extreme case, if wi equals 0, the distribution of 
{η(l),i; l = 1,2,…,L} becomes a Dirac delta function centered at 
{η(l),i = 0; l = 1,2,…,L}, meaning that {η(l),i; l = 1,2,…,L} must be 
0 for all wafers. This observation is also consistent with the 
formulation in (22) where the weight wi specifies the 
“importance” of the DCT coefficients {η(l),i; l = 1,2,…,L}. 

Based on the Bayes’ theorem [17], combining (25) and (26) 
yields: 
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The objective of deriving the Bayesian inference in (27) is to 
solve the optimal value of {wi; i = 0,1,…,PQ}. Towards this goal, 
we apply Maximum Likelihood Estimation (MLE) to find the 
optimal {wi; i = 0,1,…,PQ} that are most likely to occur. Namely, 
we aim to maximize the following conditional probability: 
28 ( )PQLw

wBpdf
PQ

,...,0),...,2,1( |maximize
,...,0

. (28) 

If the measurement of different wafers is performed 
independently, Eq. (28) can be represented as: 
29 ( )∏

=

L

l
PQlw

wBpdf
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,...,0)( |maximize
,...,0

. (29) 

Since the function log(•) monotonically increases, Eq. (29) is 
equivalent to maximizing the following log-likelihood: 
30 ( )[ ]∑
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Combining (27) and (30), we would notice that 
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pdf(B(l)|w0,…,PQ) is the marginal probability density function of 
pdf(B(l),η(l)|w0,…,PQ). Therefore, pdf(B(l)|w0,…,PQ) can be found 
from (27) by integrating out η(l): 

31 ( ) ( ) ( )( )
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Note that pdf(B(l)|η(l),w0) and pdf(η(l)|w1,…,PQ) are defined in (25) 
and (26) respectively. Combining (25) and (26), we can derive an 
analytical expression for (31): 
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where 
33 T
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2
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0)( += −  (33) 

and I represents the identity matrix and det(•) stands for the 
determinant of a matrix. Substituting (32) into (30), we have: 
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Eq. (34) shows the analytical form of the cost function that we 
should minimize, in order to determine the optimal value of {wi; i 
= 0,1,…,PQ}. It should be noted that the optimization in (34) is 
not convex. However, an efficient greedy algorithm has been 
developed in [12] to solve {wi; i = 0,1,…,PQ} from (34), and it 
has been demonstrated as an efficient numerical method for many 
practical problems. More details on the numerical solver can be 
found in [12]. Once {wi; i = 0,1,…,PQ} are determined, the DCT 
coefficients η(l) of each wafer can be efficiently solved from (22). 
 
3.5 Summary 

Algorithm 1 summarizes the major steps of the proposed 
MVP method. Starting from the measurement data 
{g(l)(x(l),m,y(l),m); l = 1,2,…,L, m = 1,2,…,Ml}, MVP first adopts a 
recently developed statistical algorithm [12] to determine the 
shared weights {wi; i = 0,1,…,PQ} by solving the optimization in 
(34). The objective of this step is to extract a shared model 
template by exploring the wafer-to-wafer correlation information. 
Next, we solve the convex optimization in (22) to determine the 
DCT coefficients {G(l)(u,v); l = 1,2,…,L, u = 1,2,…,P, v = 
1,2,…,Q} for all wafers. Finally, the spatial variations {g(l)(x,y); l 
= 1,2,…,L, x = 1,2,…,P, y = 1,2,…,Q} are re-constructed by 
IDCT, as discussed in Section 2. 

 
Algorithm 1: Multi-Wafer Virtual Probe (MVP) 
1. Start from the measurement data {g(l)(x(l),m,y(l),m); l = 1,2,…,L, 

m = 1,2,…Ml} collected from L different wafers. 
2. Formulate the linear equations in (12)-(16). 
3. Apply the greedy algorithm in [12] to solve the optimization 

in (34) where the matrices {C(l); l = 1,2,…,L} are defined in 
(33). Determine the weights {wi; i = 0,1,…,PQ}. 

4. Solve the convex optimization in (22) for each wafer to 
determine the DCT coefficients for all wafers. 

5. Apply IDCT to estimate the performance values {g(l)(x,y); l = 
1,2,…L, x = 1,2,…,P, y = 1,2,…,Q}. 

 
4. OUTLIER REMOVAL 

As discussed in the previous section, the proposed MVP 
method (i.e., Algorithm 1) models the measurement noise as 
Normal random variables. However, such a modeling assumption 
is not always valid, because a number of non-ideal effects exist in 
reality. For example, silicon chips may fail to work due to 
manufacturing defects, and wafer probe test may produce wrong 

measurement results due to probe misalignment [6]. Such non-
ideal effects may cause the measurement results to greatly deviate 
from the actual values. These abnormal observations are referred 
to as outliers [15] by the statistics community. If these outliers are 
not appropriately removed from the measurement data, they will 
introduce substantial error when applying the proposed MVP 
algorithm. For this reason, we propose a robust regression method 
to further improve the accuracy of MVP by automatically 
detecting and removing all outliers. Our proposed outlier removal 
consists of two major steps: (1) data processing, and (2) outlier 
detection. In this section, we first illustrate the detailed procedure 
for data processing in Section 4.1, and then discuss the outlier 
detection algorithm in Section 4.2. 

 
4.1 Data Processing 

Outliers must be clearly separable from the regular data in 
order to accurately detect and remove them. In our application of 
wafer-level spatial variation modeling, the measured performance 
g at the location (x, y) is a random variable. In other words, if g(x, 
y) is measured from L different wafers, we get L different 
performance values. The key idea of outlier detection is to extract 
the statistics of g(x, y), i.e., probability distribution, lower bound, 
upper bound, etc. As such, outliers can be identified, since they do 
not follow the same statistics due to large measurement error. 
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Figure 2. Normalized ring oscillator (RO) period (μ ± 3σ) varies as a 
function of RO location where silicon measurement data are collected 
from 24 wafers of the same lot. 
 

To intuitively illustrate this concept, Figure 2 shows the 
normalized ring oscillator (RO) period as a function of the RO 
location. In this example, silicon measurement data are collected 
from 24 wafers of the same lot. For each wafer, RO period is 
measured at 117 different spatial locations. Next, the mean (i.e., μ) 
and the standard deviation (i.e., σ) are calculated from the 
measurement data (without including outliers) for each spatial 
location. The variation range (i.e., μ ± 3σ) is plotted in Figure 2. If 
a particular measurement result does not follow the statistics in 
Figure 2, it is likely to be an outlier and should be removed from 
the data set. 

While the aforementioned idea for outlier detection can be 
directly applied to MVP, it can be further improved. Ideally, we 
want to process the measurement data so that the corresponding 
variation range is minimized. As such, we can accurately detect 
and remove the outliers that are abnormal. In what follows, we 
propose a number of comprehensive data processing steps to 
achieve this goal. 

Remember that a significant portion of the wafer-to-wafer 
variation lies in the systematic shift that uniformly affects the 
entire wafer, instead of a particular location on the wafer, as 
shown in Figure 1. In other words, the performance g measured at 
different wafer locations share a common “global” variation 
component. If we can extract and remove that global component, 
we will substantially reduce the variance of g(x, y) and, 
consequently, improve the accuracy of outlier detection. 

Following this idea, we first estimate the median of the spatial 
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variation of each wafer, i.e., {Median(l); l = 1,2,…,L}. Here, 
“median” is chosen instead of “mean”, because “mean” can be 
highly biased by outliers. Next, we subtract the median 
{Median(l); l = 1,2,…,L} from the measured performance 
{g(l)(x,y); l = 1,2,…,L}, resulting in a new data set for outlier 
detection: 
35 
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To illustrate the impact of the proposed data processing steps, we 
re-use the measurement data shown in Figure 2. Figure 3 plots the 
statistics of {f(l)(x,y); l = 1,2,…,L}, after {Median(l); l = 1,2,…,L} 
is removed for each wafer. Comparing Figure 2 and Figure 3, we 
would notice that the variation range is greatly reduced (2× 
smaller). It, in turn, allows us to accurately detect and remove 
outliers. The outlier detection algorithm will be discussed in detail 
in the next sub-section. 
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Figure 3.  Normalized ring oscillator (RO) period (μ ± 3σ) varies as a 
function of RO location where silicon measurement data are collected 
from 24 wafers of the same lot and the median of the spatial variation is 
removed for each wafer. 
 
4.2 Outlier Detection  

Given the data set {f(l)(x,y); l = 1,2,…,L} in (35), our outlier 
detection method aims to estimate the variation range of {f(l)(x,y); 
l = 1,2,…,L} and then remove the outliers that sit outside the 
estimated range. In this paper, we borrow the Interquartile Range 
(IQR) method [15] from statistics and apply it to automatic outlier 
detection. Quartiles are defined as the three values in ascending 
order, [Q1 Q2 Q3], which divide the sorted data set into four equal 
parts. In other words, Q1 Q2 and Q3 correspond to the 25%, 50% 
and 75% points of the cumulative distribution function (CDF) of 
the data. 

Based on the IQR method, we first compute the following 
quartiles: 

36 

),...,2,1,,...,2,1(

},...,2,1);,({),(
},...,2,1);,({),(

)(33

)(11

QyPx

LlyxfQyxQ
LlyxfQyxQ

l

l

==

==

==
. (36) 

Next, we compute the IQR of the data: 
37 ),(),(),( 13 yxQyxQyxIQR −=  (37) 
to estimate the variability. If the measurement data satisfy a 
Normal distribution, IQR is nearly equal to 4/3⋅σ where σ denotes 
the standard deviation of the distribution. 

Finally, for each location {(x,y); x = 1,2,…,P, y = 1,2,…,Q}, 
we consider the measured performance g(l)(x,y) as an outlier, if the 
corresponding f(l)(x,y) is outside the following variation range: 
38 )],(3),(),,(3),([),( 31 yxIQRyxQyxIQRyxQyxR ⋅+⋅−= . (38) 
The scaling factor 3 in (38) is decided empirically by the statistics 
community. If the measurement data satisfy a Normal distribution, 
the IQR method removes the data outside ±4.7σ range. 

To intuitively illustrate the idea of IQR, Figure 4 shows an 
outlier detection example containing 9 regular data points and 1 
outlier. In this example, the variability of the regular data is 
correctly captured by the quartiles, and the outlier is beyond the 

boundary defined by Q3+3⋅IQR. On the other hand, both the mean 
(i.e., μ) and the standard deviation (i.e., σ) cannot be accurately 
estimated due to the influence of the outlier. As a result, the 
outlier remains inside the interval specified by μ ± 3σ. It, in turn, 
implies that outlier detection cannot be performed by using simple 
statistics (e.g., mean and standard deviation), since they are 
extremely sensitive to the large measurement error posed by 
outliers.  

 
Figure 4.  The proposed IQR method successfully detects the outlier that 
strongly biases the estimation of mean and standard deviation. 
 
4.3 Iterative Solver 

The aforementioned IQR method can be directly applied as a 
preprocessing step of MVP for outlier detection and removal. 
However, since IQR must estimate the quartiles in (36), its 
accuracy depends on the number of available data samples. In our 
application of MVP, we measure an extremely small number of 
samples per wafer. As will be demonstrated by the numerical 
examples in Section 5, when MVP is applied to 14 wafers from 
the same lot, only about 2 data samples are available at each 
spatial location. In this case, it is not feasible to estimate the 
quartiles accurately. 

Motivated by this observation, we borrow the idea of robust 
regression from statistics [15] to develop an iterative algorithm. 
As shown in Algorithm 2, we first apply Algorithm 1 to predict 
the spatial variation and then use the IQR method to detect and 
remove outliers. In this case, Algorithm 1 can help to generate a 
large number of “estimated” data samples so that the quartiles can 
be accurately estimated. On the other hand, once the outliers are 
detected and removed, Algorithm 1 should be applied again in 
order to predict the accurate spatial variation pattern that is not 
influenced by the outliers. The aforementioned two steps (i.e., 
Algorithm 1 and IQR) are repeatedly performed until convergence 
is reached, i.e., no new outliers are detected and removed between 
two successive iteration steps. For most experimental examples 
that we tested, Algorithm 2 converges within two iteration steps. 

 
Algorithm 2: Robust Regression for MVP 
1. Randomly select M sampling locations for each of the L 

wafers. 
2. Collect the measurement data {g(l)(x(l),m,y(l),m); l = 1,2,…L, m = 

1,2,…M} from all wafers. 
3. Run Algorithm 1 on all wafers to predict the performance 

values {g(l)(x,y); l = 1,2,…,L, x = 1,2,…,P, y = 1,2,…,Q}. 
4. Perform data processing using (35). 
5. Use the IQR method (36)-(38) to detect and remove outliers 

from the measurement data set. 
6. If any new outliers are detected and removed in step 5, go to 

3. Otherwise, stop. 
 
5. NUMERICAL EXAMPLES 

In this section, we demonstrate the efficacy of MVP using 
silicon measurement data collected from 200 wafers at an 
advanced technology node. Each wafer contains 117 ring 
oscillators (ROs) distributed over different spatial locations. For 
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testing and comparison, three different techniques are 
implemented: (1) the VP method [7], (2) the EM method [8], and 
(3) the proposed MVP method. For all three methods, Latin 
Hypercube Sampling [13] is used to generate a set of random 
spatial locations to collect measurement data. All numerical 
experiments are performed on a 2.8GHz Linux server. 
 
5.1 RO Period Measurement Data 

To demonstrate the efficiency of the proposed wafer-to-wafer 
correlation modeling, we first compare VP and MVP (i.e., 
Algorithm 1) for the RO period data measured from the same lot 
(say, lot A). This lot contains 24 wafers with no measurement 
outliers. Our objective is to predict the period of each RO by 
measuring a small number of ROs per wafer. 

Figure 5 shows the prediction error of RO period as a function 
of the number of measured ROs. In this paper, we define the 
prediction error as: 
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where g(l)(x,y) and g'(l)(x,y) denote the exact value and the 
estimated value of the performance of interest respectively, and L 
is the total number of the wafers being tested. 

Studying Figure 5, we would notice that MVP achieves up to 
2.8× error reduction over VP. The error of MVP is around 2.7% 
when 16 ROs (out of 117 ROs in total) are tested. To achieve the 
same accuracy, VP has to measure around 50 ROs (3.1× more). In 
this example, MVP offers superior accuracy over VP, since 
Algorithm 1 carefully models the wafer-to-wafer correlation 
information and uses it to predict spatial variation patterns. 
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Figure 5.  Prediction error of RO period for 24 wafers from the same lot 
(i.e., lot A) without measurement outliers. 
 

Next, we compare VP and MVP for the RO period data 
measured from another lot (say, lot B). This lot contains 14 wafers 
with a number of measurement outliers. Hence, it serves as a good 
example for us to demonstrate the accuracy of the proposed 
outlier removal algorithm (i.e., Algorithm 2). 

Figure 6 shows the prediction error of RO period as a function 
of the number of measured ROs. In this example, the prediction 
error is calculated by (39) where all outliers are excluded. Note 
that MVP achieves up to 3.5× error reduction over VP. The error 
of MVP is around 2.5% when 16 ROs (out of 117 ROs in total) 
are tested. To achieve the same accuracy, VP has to measure 
around 62 ROs (3.9× more). Compared to Figure 5, MVP offers 
additional accuracy improvement in this example, as it accurately 
detects and removes all measurement outliers. On the other hand, 

since VP does not remove these outliers, they substantially bias 
the prediction result. 
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Figure 6.  Prediction error of RO period for 14 wafers from the same lot 
(i.e., lot B) with measurement outliers. 
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Figure 7.  Prediction error of RO period where measurement outliers are 
automatically detected and removed. 
 

Finally, we further compare the accuracy of MVP and EM for 
the RO period data with measurement outliers. In this example, 
MVP is applied to 14 wafers in lot B, similar to the previous case. 
On the other hand, since EM does not utilize the prior knowledge 
that variation has spatial pattern, its solution space is much larger 
than MVP and therefore it requires a large number of wafers to 
capture spatial correlation [8]. In our measurement setup, since 
there are 117 ROs on each wafer, 200 wafers from multiple lots 
are used to extract the spatial correlation model required by EM. 

It should be noted that EM can automatically detect 
measurement outliers at the wafer level [8]. Namely, a wafer will 
be considered as an outlier and removed from the data set, if it 
contains abnormal measurement results. In this example, 40 
wafers (out of 200 wafers in total) are identified as the outliers by 
EM. Among these 40 wafers with outliers, 6 wafers are from lot B. 
In other words, since lot B contains 14 wafers in total, EM 
identifies 8 regular wafers without outliers in this lot. These 8 
wafers will be used to measure and compare the prediction error 
of MVP and EM in this example. 

Figure 7 shows the prediction error of RO period as a function 
of the number of measured ROs. Note that MVP achieves up to 
1.7× accuracy improvement compared to EM. More importantly, 
MVP requires only 14 wafers to extract the correlation 
information, while EM uses 200 wafers (14.3× more) to achieve 
the same goal. For this reason, EM cannot be easily applied to a 
number of practical applications where the number of available 
wafers is limited due to low-volume manufacturing and/or 
equipment aging. 

To further understand the difference between MVP and EM, 
Figure 8 (a) shows one of the measured wafer maps of RO period 
from lot B. Studying Figure 8 (a), we would notice several non-
ideal effects. First, a number of measurement data are missing, as 
indicated by the white spaces in Figure 8 (a). Second, this 
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particular wafer contains a measurement outlier at the lower right 
corner. The measured RO period for this outlier is significantly 
larger than other regular measurement data. From Figure 8 (b), it 
can be seen that EM fails to appropriately detect the outlier and 
accurately capture the wafer map. Due to spatial correlation, this 
single outlier contaminates the prediction result of the entire wafer. 
On the other hand, by applying the proposed MVP algorithm, the 
outlier is appropriately detected and removed in this example, and 
the predicted wafer map accurately gives the correct spatial 
variation pattern, as shown in Figure 8 (c). 
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               (a)                                 (b)                           (c) 
Figure 8.  (a) Measured RO period (normalized by a randomly selected 
constant) of a wafer from lot B. (b)-(c) RO period predicted by EM and 
MVP by measuring 16 ROs per wafer respectively. 
 
5.2 Leakage Power Measurement Data 

In this sub-section, we compare the prediction accuracy of VP, 
EM and MVP for the leakage power data measured for ROs. Our 
objective is to predict the leakage power, log10(Pleak) (after 
logarithmic transform), for each RO by measuring a small number 
of ROs per wafer. VP and MVP are applied to 24 wafers from lot 
A. On the other hand, 200 wafers from multiple lots are used to 
extract the spatial correlation model required by EM. 
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Figure 9.  Prediction error of leakage power, i.e., log10(Pleak), with 
different number of measured ROs. 

 
Figure 9 shows the prediction error of leakage power as a 

function of the number of measured ROs. Note that MVP 
achieves up to 2.3× error reduction over VP. The error of MVP is 
around 5.4% when 16 ROs (out of 117 ROs in total) are tested. To 
achieve the same accuracy, VP has to measure around 47 ROs 
(2.9× more). On the other hand, while EM and MVP results in 
similar prediction accuracy, EM must use a large number of 
wafers to extract the correlation information. From this point of 
point, MVP is preferred over EM in a number of practical 
applications where the number of available wafers is limited. 
 
6. CONCLUSIONS 

In this paper, we propose a novel Multi-Wafer Virtual Probe 
(MVP) technique to efficiently model wafer-level spatial 
variations for nanoscale integrated circuits. MVP explores the 
wafer-to-wafer correlation information by extracting a shared 

model template for multiple wafers from the same lot. In addition, 
a robust regression algorithm is proposed to automatically detect 
and remove outliers to further improve modeling accuracy. Our 
experimental results based on 200 industrial wafers demonstrate 
that MVP is preferred over other traditional approaches such as 
VP and EM, if a limited number of measurement data are 
available. The proposed MVP method can be applied to a wide 
range of integrated circuit applications such as variation 
characterization, wafer probe test, and speed binning. 
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