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ABSTRACT 
While statistical analysis has been considered as an important tool 
for nanoscale integrated circuit design, many IC designers would 
like to know the design-specific worst-case corners for circuit 
debugging and failure diagnosis. In this paper, we propose a novel 
algorithm to efficiently extract the worst-case corners for 
nanoscale ICs. Our proposed approach mathematically formulates 
a quadratically constrained quadratic programming (QCQP) 
problem for corner extraction. Next, it applies the Lagrange 
duality theory to convert the non-convex QCQP problem to a 
convex semi-definite programming (SDP) problem that is easier 
to solve. Our circuit example designed in a commercial CMOS 
process demonstrates that the proposed SDP formulation can find 
the worst-case corners both efficiently and robustly, while the 
traditional QCQP fails to achieve global convergence. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Verification 
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Algorithms 
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1. INTRODUCTION 

As IC technologies scale to 45nm and below, integrated 
circuits are significantly impacted by large-scale process 
variations, including both inter-die and intra-die variations [1]. 
Inter-die variations model the common/average variations across 
the die, while intra-die variations model the individual, but 
spatially correlated, local variations (e.g., random device 
mismatches) within the same die. To achieve high parametric 
yield and, hence, low manufacturing cost, it is of great importance 
to statistically model and analyze inter-die/intra-die variations for 
integrated circuits. 

To address this need, extensive researches have been 
performed during the past two decades. As one of the most 
important techniques, response surface modeling (RSM) was 
widely applied to statistical circuit analysis and optimization [2]-
[11]. Recently, it has been demonstrated that linear RSM is not 
sufficiently accurate to capture the large-scale variations that are 
observed for nanoscale technologies; instead, quadratic or even 

strongly nonlinear RSM is required to improve modeling accuracy 
[2]-[6]. Once RSM is created, it can be used to efficiently predict 
performance distribution and/or parametric yield [7]-[9]. 

While yield prediction is a necessary step for design sign-off, 
calculating the yield value only does not meet the needs of circuit 
designers. If a circuit fails the yield specification, it is important 
for the CAD tool to provide additional information that helps 
circuit designers to improve yield. Towards this goal, worst-case 
corner extraction aims to identify the unique process condition at 
which a given circuit fails to work [10]-[11]. Once the worst-case 
corners are determined, designers can simulate their circuit at 
these corners, find the reason for its performance failure, and 
eventually come up with the appropriate solution to improve 
robustness. From this point of view, worst-case corner extraction 
enables IC designers to easily debug the circuit so that they can 
efficiently use their design knowledge for yield enhancement. 

Extracting the worst-case corners, however, is not trivial, 
primarily due to the following two reasons. First, realistic worst-
case corners cannot be accurately predicted by IC foundries. 
Instead, they are topology-dependent and performance-dependent 
[10]-[11]. An efficient algorithm is required to find the worst-case 
corner for a particular circuit topology and a particular 
performance metric. Second but more importantly, quadratic RSM 
results in a non-convex quadratically constrained quadratic 
programming (QCQP) problem for corner extraction [10]-[11]. As 
will be demonstrated by our numerical example in Section 4, 
directly solving such a non-convex optimization using local 
search methods (e.g., gradient-based search) can easily get stuck 
at a local minimum. The challenge here is how to find the worst-
case corners both efficiently and robustly. 

In this paper, we propose a new mathematical formulation that 
converts the non-convex QCQP problem to a convex semi-
definite programming (SDP) problem that is easier to solve. The 
proposed approach is derived from the Lagrange duality theory of 
nonlinear optimization [15]. It explores the unique property that 
the QCQP formulated for worst-case corner extraction only 
contains a single quadratic constraint. In such a special case, the 
dual form of QCQP is a convex SDP. In addition, under some 
general assumptions, there is no duality gap between the primal 
problem (i.e., QCQP) and the dual problem (i.e., SDP). Namely, 
once the dual problem is solved by convex SDP, the solution of 
the primal problem can be easily determined. By converting the 
non-convex QCQP to a convex SDP, we can efficiently and 
robustly find the worst-case corners with global convergence. 

The remainder of this paper is organized as follows. In 
Section 2, we review the background on principal component 
analysis, response surface modeling, and performance distribution 
estimation. We propose our mathematical formulation for worst-
case corner extraction in Section 3. The efficacy of the proposed 
corner extraction is demonstrated by the numerical example in 
Section 4. Finally, we conclude in Section 5. 
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2. BACKGROUND 
2.1 Principal Component Analysis 

Principal component analysis (PCA) [13] is a statistical 
method that finds a set of independent factors to represent a set of 
correlated Normal random variables. Given N process parameters 
X = [x1 x2 ... xN]T, the process variations �X = X–X0, where X0 
contains the mean values of X, is often modeled by multiple zero-
mean Normal distributions [2]-[11], and the correlation of �X can 
be represented by a symmetric, positive semi-definite covariance 
matrix R [13]. PCA decomposes R as [13]: 
1 TVVR ⋅Σ⋅=  (1) 
where � = diag(�1,�2,...,�N) contains the eigenvalues of R, and V = 
[V1 V2 ... VN] contains the corresponding eigenvectors that are 
orthonormal, i.e., VTV = I (I is the identity matrix). Based on � and 
V, PCA defines a set of new random variables: 
2 XVY T Δ⋅⋅Σ=Δ − 5.0 . (2) 
These new random variables in �Y are called the principal 
components or factors. It is easy to verify that all principal 
components in �Y are independent and standard Normal (i.e., zero 
mean and unit variance). 
 
2.2 Response Surface Modeling 

Given a circuit design, the circuit performance (e.g., delay, 
gain, etc.) is a function of process parameters (e.g., VTH, TOX, etc.). 
A circuit performance f can be approximated as a quadratic 
response surface model (RSM) of the process variations [2]-[11]: 
3 ( ) CYBYAYYf TT +Δ⋅+Δ⋅⋅Δ=Δ  (3) 
where �Y = [�y1 �y2 ... �yN]T represents the principal components 
extracted by PCA, and C ∈ R and B ∈ RN and A ∈ RN×N stand for 
the model coefficients. The quadratic model in (3) provides 
superior accuracy over a simple linear model, when applied to 
capture the large-scale manufacturing variations observed in 
today’s IC technologies. 
 
2.3 Performance Distribution Estimation 

Once the quadratic response surface model in (3) is available, 
it can be used to predict the probability distribution of the given 
performance metric. Although no analytical form exists to 
represent the probability distribution of the performance f(�Y), the 
probability density function (PDF) and the cumulative distribution 
function (CDF) can be numerically calculated by a number of 
efficient algorithms, e.g., APEX [9]. The performance distribution 
can be further used to estimate a number of robustness metrics 
(e.g., worst-case performance, parametric yield, etc.) of the design. 
However, knowing the worst-case performance and/or parametric 
yield only is not sufficient. Circuit designers are particularly 
interested in the unique process condition (i.e., process corner) at 
which their circuit fails to work. If the worst-case corners are 
identified, circuit designers can simulate their circuit at these 
corners and find the appropriate solution to improve its robustness. 
Motivated by this observation, we aim to develop an efficient 
algorithm to find worst-case corners in this paper. 
 
3. EFFICIENT CORNER EXTRACTION 

In this section, we describe the proposed corner extraction 
algorithm in detail and highlight its novelties. We first 
mathematically formulate the corner extraction problem and then 
develop a convex semi-definite programming (SDP) method to 
solve it. 
 

3.1 Mathematical Formulation 
Once the response surface model f(�Y) is extracted for a 

performance metric f, it can be used to estimate the probability 
density function pdf(f), the cumulative distribution function cdf(f), 
and finally the worst-case performance fWC. Here, the worst-case 
performance fWC is defined by a given percentile point of cdf(f). 
Taking the delay of a digital path as an example, the worst-case 
delay can be defined by the 99% point of cdf(f) [9]. 

Our goal for worst-case corner extraction is to find the unique 
process condition (i.e., the value of �Y*) at which f(�Y*) is equal 
to the worst-case performance value fWC, i.e.: 
4 ( ) WCfYf =Δ * . (4) 
This problem, however, is not mathematically well-defined. 
Studying (4), we would notice that there are N problem unknowns 
(i.e., �Y* ∈ RN) but only one equation. In other words, Eq. (4) is 
underdetermined. Mathematically, we can find an infinite number 
of solutions (i.e., process corners) that satisfy (4). 

On the other hand, not all these process corners are useful 
from the viewpoint of a circuit designer. Some of these corners 
will “never” occur, because the probability density function pdf(f) 
is almost zero at these locations. To find the useful process 
corners, we must take the probability into account. In particular, 
we want to find the process corner that is most likely to occur, i.e., 
the maximum likelihood solution of (4) [10]. 

Recall that the random variables in �Y are independent and 
standard Normal after PCA. To find the maximum likelihood 
solution of (4), we formulate the following optimization problem: 

5 ( )
( ) WC

N
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where ||•||2 denotes the L2-norm of a vector. Since exp(•) 
monotonically increases, Eq. (5) can be re-written as: 
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..
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2 . (6) 

Substituting (3) into (6) yields the following quadratically 
constrained quadratic programming (QCQP) problem: 

7 
WC

TT
Y

fCYBYAYTS

Y

=+Δ⋅+Δ⋅⋅Δ

Δ
Δ

..

min 2
2 . (7) 

While the cost function in (7) is convex, the constraint set is not 
convex. In this case, directly solving (7) using local search 
methods (e.g., gradient-based search) can easily get stuck at a 
local minimum. In what follows, we will propose a novel 
technique to convert the non-convex QCQP problem in (7) to a 
convex semi-definite programming (SDP) problem that is easier 
to solve. 
 
3.2 Lagrange Dual Formulation 

Our proposed SDP formulation is derived via three steps: (a) 
relax the equality constraint in (7) to an inequality constraint; (b) 
find the Lagrange dual formulation that turns out to be an SDP 
problem; (c) demonstrate the strong duality so that solving the 
dual problem yields the solution of the primal problem. In this 
sub-section, we describe the mathematical details of all these three 
steps. 

First, we relax the equality constraint in (7) to an inequality 
constraint that depends on the definition of the worst-case 
performance. If the worst case is defined as the upper bound of 
the performance variation (e.g., the worst-case delay of a digital 
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path), we write the constraint as: 
8 WC

TT fCYBYAY ≥+Δ⋅+Δ⋅⋅Δ . (8) 
Otherwise, if the worst case is defined as the lower bound of the 
performance variation (e.g., the worst-case bandwidth of an 
analog amplifier), the constraint is represented as: 
9 WC

TT fCYBYAY ≤+Δ⋅+Δ⋅⋅Δ . (9) 
Without loss of generality, we represent both (8) and (9) by the 
following standard form: 
10 0

~~~
≤+Δ⋅+Δ⋅⋅Δ CYBYAY TT . (10) 

For example, to convert (8) to (10), we simply have: Ã = −A, B� = 
−B and C� = fWC − C. 

Based on (10), we obtain the following relaxed formulation of 
the QCQP problem in (7): 

11 
0

~~~
..

min 2
2

≤+Δ⋅+Δ⋅⋅Δ

Δ
Δ

CYBYAYTS

Y
TT

Y . (11) 

It is important to note that the two optimization problems in (7) 
and (11) are exactly equivalent for our corner extraction 
application. Namely, solving (11) results in the solution of (7). 
Intuitively, if the constraint in (11) is not active, removing the 
constraint does not change its solution. In this case, the 
optimization becomes unconstrained and its solution is simply �Y 
= 0. This, however, should never happen in our application, since 
the worst-case corner cannot be at the nominal condition. For this 
reason, the constraint in (11) must be active. Mathematically, this 
conclusion can be formally proven by using the Karush-Kuhn-
Tucker condition from the optimization theory [15]. 

The relaxed optimization in (11), however, may not be convex 
either. As will be demonstrated by the numerical example in 
Section 4, the quadratic coefficient matrix Ã in (11) can be neither 
positive semi-definite nor negative semi-definite. In this case, the 
constraint set in (11) is not convex. To efficiently solve (11), we 
write the corresponding Lagrange dual problem [15]: 

12 

0~~5.0

~5.0
~0..

max
,

≥
�
�
	




�
�
�



−
+

≥

γλ
λ

λ

γ
γλ

CB
BAI

TS

T

. (12) 

Eq. (12) is a semi-definite programming (SDP) problem [15]. It 
can be proven that SDP is convex and, hence, it can be solved 
both robustly and efficiently [15]. 

While the dual problem in (12) is convex and easy to solve, 
we need to further demonstrate that solving the dual problem in 
(12) yields the solution of the primal problem in (11). Denote the 
cost function value at the optimal solution as p* and d* for (11) 
and (12), respectively. The Lagrange duality theorem guarantees 
[15]: 
13 ** dp ≥ . (13) 
Namely, d* is a lower bound of p*. In addition, the following 
theorem gives a sufficient condition for strong duality [15]. 

Theorem 1: Strong duality holds for (11) and (12), i.e., p* = d*, if 
there exists an �Y with: 
14 0

~~~
<+Δ⋅+Δ⋅⋅Δ CYBYAY TT . (14) 

In other words, the constraint set in (11) is strictly feasible. 

Eq. (14) is referred to as the Slater’s constraint qualification. It is 
obvious that this condition is typically satisfied for our corner 
extraction application. Namely, we can find a process corner �Y 
at which the performance f(�Y) is worse than fWC. 

Solving the SDP in (12) yields the optimal value � = �* that 
maximizes the cost function �. Once �* is known, the solution �Y 
of (11) is given by [15]: 

15 ( ) BAIY ~~
2

1*
*

* ⋅⋅+⋅−=Δ
−

λλ . (15) 

Eq. (15) gives the unique process corner where the performance 
f(�Y) reaches the worst-case value fWC. 
 
3.3 Summary 

Algorithm 1: Worst-case corner extraction 
1. Given a performance function f(�Y) of interest, generate a 

number of sampling points {(�Y(i), f(i)); i = 1,2,...,K} based on 
the design of experiments (DOE) [14]. 

2. Fit the quadratic performance model in (3) to approximate 
f(�Y). 

3. Based on the fitted quadratic performance model, predict the 
cumulative distribution function cdf(f) by either Monte Carlo 
analysis or APEX [9]. 

4. Estimate the worst-case performance value fWC that is defined 
by the 99% (or 1%) point of cdf(f). 

5. Based on the quadratic model coefficients A, B and C in (3) 
and the worst-case performance value fWC, calculate the 
coefficients Ã, B� and C� in the standard form (10) by using (8)-
(9). 

6. Solve the semi-definite programming (SDP) in (12) for �*. 
7. Calculate the worst-case corner �Y* using (15). 

Algorithm 1 summarizes the major steps of the proposed 
worst-case corner extraction: (a) quadratic performance modeling, 
(b) worst-case performance estimation, and (c) worst-case corner 
extraction. Once the corners are extracted, designers can simulate 
their circuit at these corners, find the reason for its performance 
failure, and eventually come up with the appropriate solution to 
improve robustness. 
 
4. NUMERICAL EXAMPLE 

 
Fig 1.  Simplified circuit schematic of an 8-bit ripple carry adder. 

In this section, we demonstrate the efficacy of the proposed 
corner extraction algorithm using an 8-bit ripple carry adder, as 
shown in Fig 1. The circuit is implemented in a commercial 
CMOS process. It consists of a chain of 1-bit adders. In this 
example, only inter-die variations are considered for MOS 
transistors. After PCA based on foundry data, 34 independent 
random variables are extracted to model these variations. It should 
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be noted, however, that nothing would preclude us from handling 
intra-die variations by using the proposed methodology. 

In this example, we are interested in the variability of the 
propagation delay from “B0” to “S7”. We first apply quadratic 
performance modeling [14] to approximate the delay (i.e., f) as a 
function of the random variations (i.e., �Y). The relative modeling 
error is 0.39%. Fig 2 shows the eigenvalues of the quadratic 
coefficient matrix A for the performance model f(�Y). Similar to 
the previous example, the quadratic function f(�Y) is neither 
positive semi-definite nor negative semi-definite in this example. 

Next, we apply Monte Carlo analysis to the quadratic 
performance model f(�Y), and calculate the worst-case delay that 
is defined as the 99% point of cdf(f). The semi-definite 
programming (SDP) problem in (12) is then solved by CVX [12], 
and the worst-case corner �Y* is calculated by using (15). In this 
example, the runtime for SDP is 1.5 seconds on a LINUX 2.8GHz 
server with 2GB memory. 
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Fig 2.  Eigvalues of the quadratic coefficient matrix A for the 
performance model f(�Y). 
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Fig 3.  The minimized cost function ||�Y||22 by semi-definite 
programming (SDP) and 100 runs of quadratically constrained 
quadratic programming (OCQP) with random initial guess. 

For testing and comparison, we apply sequential quadratic 
programming (SQP) [15] to solve the quadratically constrained 
quadratic programming (QCQP) problem in (11) to extract the 
corner �Y*. One hundred independent QCQP runs are performed 
with random initial guess in order to check the convergence 
property. As shown in Fig 3, a large number of (83 out of 100) 
QCQP runs get stuck at a local minimum. It, in turn, demonstrates 
that QCQP fails to robustly extract the worst-case corner �Y* 

from a non-convex quadratic model. 
 
5. CONCLUSIONS 

In this paper, we propose a novel semi-definition 
programming (SDP) method to efficiently extract design-specific 
worst-case corners for nanoscale circuits. The proposed SDP 
approach is facilitated by the Lagrange duality theory of nonlinear 
optimization [15]. It converts a non-convex quadratically 
constrained quadratic programming (QCQP) problem to a convex 
SDP problem that is easier to solve. Our numerical experiments 
demonstrate that while the traditional QCQP fails to achieve 
global convergence, our proposed SDP formulation can find the 
worst-case corners both robustly and efficiently. The proposed 
SDP method can be further incorporated into a statistical circuit 
analysis flow to provide design insights and assist failure 
diagnosis. 
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