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Abstract—In this paper, we propose an efficient numerical algo-
rithm for estimating the parametric yield of analog/RF circuits,
considering large-scale process variations. Unlike many tradi-
tional approaches that assume normal performance distributions,
the proposed approach is particularly developed to handle mul-
tiple correlated nonnormal performance distributions, thereby
providing better accuracy than the traditional techniques. Starting
from a set of quadratic performance models, the proposed param-
etric yield estimation conceptually maps multiple correlated per-
formance constraints to a single auxiliary constraint by using
a MAX operator. As such, the parametric yield is uniquely
determined by the probability distribution of the auxiliary con-
straint and, therefore, can easily be computed. In addition, two
novel numerical algorithms are derived from moment matching
and statistical Taylor expansion, respectively, to facilitate efficient
quadratic statistical MAX approximation. We prove that these
two algorithms are mathematically equivalent if the performance
distributions are normal. Our numerical examples demonstrate
that the proposed algorithm provides an error reduction of
6.5 times compared to a normal-distribution-based method while
achieving a runtime speedup of 10–20 times over the Monte Carlo
analysis with 103 samples.

Index Terms—Analog/RF circuits, MAX operator, parametric
yield.

I. INTRODUCTION

THE CONTINUOUS scaling of IC feature size has resulted
in relatively large process variations [2]. For analog/RF

circuits designed in sub-90-nm-technology nodes, parametric
yield loss due to random variations becomes a significant
or even dominant portion of the total yield loss. Therefore,
accurately predicting parametric yield, considering large-scale
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process variations, becomes an important task for today’s robust
analog/RF design.

During the last decade, various techniques have been pro-
posed for statistical analysis of analog/RF circuits [3]–[14].
Most of these works [3]–[8] apply response surface modeling
to approximate the performances of interest (e.g., gain and
bandwidth) as polynomial (e.g., linear or quadratic) functions
of process parameters (e.g., VTH and TOX). These response
surface models are then utilized to estimate the parametric yield
of a given circuit design.

Many existing response surface modeling techniques (e.g.,
[4] and [5]) rely on linear approximation, which is efficient and
accurate when process variations are sufficiently small. Given
the increasingly larger variations in nanoscale technologies,
however, such a linear approximation can yield inaccurate
results, particularly because a great number of analog/RF per-
formances are strongly nonlinear in the presence of large-scale
process variations. As will be demonstrated by the numerical
examples in Section IV, a 9% absolute error is observed for
parametric yield estimation by using linear performance models
for several analog/RF circuits designed in commercial manu-
facturing processes.

To achieve better accuracy, quadratic response surface
modeling [6]–[8] can be used, but it makes parametric yield es-
timation much more difficult. Although linear response surface
modeling can easily map a set of performance constraints to
a well-defined polyhedron [9]–[13] (called the feasible space)
in the process parameter space, such a mapping becomes
nonlinear for quadratic modeling. In general, when quadratic
response surface modeling is applied, the feasible space can
be nonconvex or even discontinuous. Therefore, the parametric
yield, which is equal to the integral of the probability density
function over the feasible space, becomes much more difficult
to compute [14].

The Monte Carlo analysis is applied in [6] and [7] to
estimate the parametric yield defined by a set of quadratic
performance constraints. Traditionally, the quadratic response
surface modeling cost dominates the overall computational
cost, since it requires running expensive transistor-level simu-
lations to generate a number of sampling points. In such cases,
the Monte Carlo analysis cost is negligible. However, recent
advances in statistical circuit optimization make it possible
to extract the response surface models only once in a local
design space and then use them to estimate the parametric
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yield values at different design points [5], [8]. In this case,
the yield estimation takes a large portion of the total com-
putational cost, since it is repeatedly performed inside the
optimization loop.

Li et al. [15], [16] propose an asymptotic probability extrac-
tion (APEX) algorithm to estimate the performance distribution
of a given quadratic response surface model. The APEX ap-
proach, however, can only be applied to a single performance
metric, whereas the parametric yield of most analog/RF circuits
is defined by multiple performance constraints. The challenging
problem here is how one can simultaneously consider multiple
and correlated performance metrics whose probability distri-
butions are nonnormal.

In this paper, we propose a novel algorithm for efficient
parametric yield estimation of multiple correlated nonnormal
performance distributions. Our proposed algorithm conceptu-
ally maps multiple performance constraints to a single aux-
iliary constraint by using a MAX operator. The auxiliary
constraint is analytically approximated as a quadratic function
of process parameters. As such, the parametric yield is uniquely
determined by a single quadratic constraint (i.e., the auxil-
iary constraint) and, therefore, can easily be estimated using
the APEX algorithm [15], [16], which is based on moment
matching.

Another important contribution of this paper is to propose
two novel numerical algorithms for efficient statistical MAX
approximation. Unlike many statistical timing analysis tech-
niques that linearly approximate the MAX operator [18]–[22],
we approximate MAX as a quadratic function to capture the
nonlinearities that are observed for most analog/RF perfor-
mance variations. The proposed MAX approximation algo-
rithms are derived from moment matching and statistical Taylor
expansion, respectively. We prove that the moment match-
ing algorithm yields an optimal approximation, for which the
weighted squared error is minimized.

Although both moment matching and statistical Taylor ex-
pansion have widely been applied to linear MAX approxi-
mation for statistical timing analysis [18]–[22], the theoretical
connection between these two approaches is not well studied
and remains unclear. In this paper, we prove that the statis-
tical Taylor expansion is exactly equivalent to the moment
matching method if the performance distributions are normal.
This observation provides a theoretical foundation for mathe-
matically connecting these two algorithms. For many practical
circuit examples, both moment matching and statistical Taylor
expansion are equally efficient in approximation accuracy and
computational cost. As will be demonstrated by the numerical
examples in Section IV, our proposed quadratic MAX approx-
imation provides an error reduction of 6.5 times compared to
the traditional linear approximation while achieving a runtime
speedup of 10–20 times over the Monte Carlo analysis with
103 samples.

The remainder of this paper is organized as follows. In
Section II, we review the background materials, and then, in
Section III, we propose our parametric yield estimation algo-
rithm. The efficacy of the proposed algorithm is demonstrated
by numerical examples in Section IV. Finally, we conclude in
Section V.

II. BACKGROUND

A. Process Variation Modeling

Process variations are the deviations from the intended or
designed values for the structural or electrical parameters of
concern. According to the geometrical scale of their occurrence,
process variations can be classified into two broad categories:
1) interdie variations and 2) intradie variations. Interdie vari-
ations model the common/average variations across the die,
whereas intradie variations model the individual but spatially
correlated local variations within the same die.

In most practical applications, both interdie and intradie
variations are modeled as the random variables that are jointly
normal. In such cases, principal component analysis (PCA) can
be applied to find a set of independent factors to represent the
original correlated random variables [26].

Given N process parameters η = [η1, η2, . . . , ηN ]T , the
process variations ∆η = η − η0, where η0 contains the mean
values of η, are modeled as zero-mean normal distributions. The
correlation of ∆η can be represented by a symmetric positive
semidefinite covariance matrix R [26]. PCA decomposes R as
follows:

R = V · Θ · V T (1)

where Θ = diag(θ1, θ2, . . . , θN ) contains the eigenvalues of
R, and V = [V1V2, . . . , VN ] contains the corresponding eigen-
vectors that are orthonormal, i.e., V T V = I (I is an identity
matrix). Based on Θ and V , PCA defines a set of new random
variables, i.e.,

ε = Θ−0.5 · V T · ∆η. (2)

These new random variables ε = [ε1, ε2, . . . , εN ]T are called
the principal components or factors. It is easy to verify that
{εi; i = 1, 2, . . . , N} are independent and standard normal
(i.e., have zero mean and unit variance) [26].

The essence of PCA can be interpreted as a coordinate ro-
tation of the space defined by the original random variables. In
addition, if the magnitude of the eigenvalues θi dramatically de-
ceases, it is possible to use a small number of random variables,
i.e., a small subset of principal components, to approximate
the original N -dimensional space. More details on PCA can
be found in [26].

B. Response Surface Modeling

Given a circuit topology, the circuit performance (e.g., gain
or bandwidth) is a function of both design parameters (e.g., bias
current and transistor sizes) and process parameters (e.g., VTH

and TOX ). The design parameters are determined during the de-
sign phase; however, the process parameters must be modeled
as random variables to account for uncertain manufacturing
fluctuations. Given a set of fixed design parameters, the circuit
performance f can be approximated as a linear response surface
model [4], [5], [28], i.e.,

f(ε) = BT · ε + C (3)
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where ε = [ε1ε2, . . . , εN ]T denotes the independent random
variables defined in (2), and B ∈ RN and C ∈ R are the model
coefficients.

The linear response surface model in (3) is accurate if
the process variations are sufficiently small. However, the
large-scale variations in nanoscale technologies suggest that
quadratic response surface models are required to improve the
modeling accuracy [6]–[8], [28], i.e.,

f(ε) = εT · A · ε + BT · ε + C (4)

where A ∈ RN×N , B ∈ RN , and C ∈ R are the model coef-
ficients. The unknown model coefficients in (3) and (4) can
be determined by solving the following overdetermined linear
equations at a number of sampling points [28]:

BT ε(m) + C = f̃(m) (m = 1, 2, . . . , M) (5)

εT
(m)Aε(m) + BT ε(m) + C = f̃(m) (m = 1, 2, . . . , M) (6)

where ε(m) and f̃(m) denote the values of ε and f at the mth
sampling point, respectively, and M is the total number of
sampling points.

It should be noted that the aforementioned response surface
models are substantially different from the macromodels pro-
posed in [24]. Since macromodels are utilized for circuit syn-
thesis [24], they must cover an extremely large analog design
space (e.g., 100 times of changes in design variables) and,
therefore, are strongly nonlinear. In contrast, our response sur-
face models are extracted to capture process variations where
most process parameters only vary by ±20 ∼ 40%. Hence, the
response surface models in this paper will likely be weakly
nonlinear. In practice, the response surface modeling accuracy
depends on multiple factors, e.g., the circuit topology, the per-
formance of interest, and the probability distribution of process
variations. We notice that quadratic response surface models
are sufficiently accurate for many practical circuits designed in
today’s commercial manufacturing processes. However, as IC
technologies are scaled to finer feature sizes, process variations
will increasingly become larger. The quadratic model assump-
tion may become invalid, and a strongly nonlinear model may
be required in the future.

C. Parametric Yield Estimation

If all analog/RF performance metrics are approximated as
response surface models, the performance constraints can be
expressed as the following standard form:

fk(ε) ≤ 0 (k = 1, 2, · · · ,K) (7)

where fk(ε) represents the response surface model of the kth
performance metric, and K is the total number of performance
constraints. The standard form in (7) is capable of handling
several extensions. For example, fk(ε) ≤ C and fk(ε) ≥ C
can be expressed as fk(ε) − C ≤ 0 and −fk(ε) + C ≤ 0,
respectively.

Given the performance constraints in (7), the parametric
yield is equal to the probability that all performance constraints

Fig. 1. Approximate the feasible space by a maximal inscribed ellipsoid for
parametric yield estimation. In this example, the ellipsoid becomes a ball, since
the random variables ε1 and ε2 defined in (2) are independent and standard
normal after principal component analysis.

are satisfied, i.e.,

Yield = P (f1 ≤ 0 & f2 ≤ 0 & · · ·& fK ≤ 0) (8)

where P (•) denotes the probability. The probability in (8)
depends on all performance distributions as well as their
correlations.

If the response surface models in (7) are linear, then

fk(ε) = BT
k ε + Ck (k = 1, 2, . . . ,K) (9)

where Bk ∈ RN and Ck ∈ R are the linear model coefficients
of the kth performance function, and the feasible space, i.e.,

F =
{
ε|BT

k ε + Ck ≤ 0 (k = 1, 2, . . . ,K)
}

(10)

is a polyhedron. The parametric yield in (8) is equal to the
integral of the probability density function PDFε(ε) over the
feasible space, i.e.,

Yield =
∫
F

PDFε(ε) · dε (11)

where PDFε(•) is the joint probability density function of the
N -dimensional random variable ε.

To estimate the parametric yield, one traditional approach is
to approximate the feasible space in (10) as a maximal inscribed
ellipsoid, and then, the integral in (11) can easily be evaluated,
as shown in Fig. 1. Such an ellipsoid approximation has widely
been used in both analog and digital applications [9]–[13].

The aforementioned ellipsoid approximation, however, suf-
fers from several major limitations. First, as shown in Fig. 1,
the maximal inscribed ellipsoid does not cover the entire fea-
sible space. Therefore, the estimated yield value is a lower
bound of the actual parametric yield. In practice, the estima-
tion error can be large, particularly if the feasible space is
high dimensional. Second, the ellipsoid approximation cannot
easily handle quadratic response surface models for which the
feasible space can be nonconvex or even discontinuous. These
observations, therefore, motivate us to develop a more accurate
parametric yield estimation algorithm in this paper.
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D. Linear Statistical MAX Approximation

Our proposed parametric yield estimation is based on the sta-
tistical approximation of the MAX operator. Linear statistical
MAX approximation is a traditional technique that has widely
been studied for statistical timing analysis [17]–[22]. Given
two random variables x and y, the linear MAX approximation
attempts to approximate MAX(x, y) as a linear function of
x and y, i.e.,

MAX(x, y) = α · x + β · y + γ. (12)

The coefficients α and β can be determined by the following
probabilities [19]:

α = P (x ≥ y)

β = P (y ≥ x). (13)

P (x ≥ y) and P (y ≥ x) in (13) are referred to as the tightness
probabilities of x and y [19], respectively. Intuitively, (13)
implies that the weight for x (or y) is large if x (or y) will likely
be greater than y (or x). The constant term γ in (12) can be
determined by matching the mean value [19] as follows:

γ = E [MAX(x, y)] − α · E[x] − β · E[y] (14)

where E(•) stands for the expected value.
Li et al. [22] further prove that the tightness probabilities in

(13) are equal to the following first-order statistical sensitivities:

α =P (x ≥ y) =
∂ {E[MAX(x, y)]}

∂ {E[x]}

β =P (y ≥ x) =
∂ {E [MAX(x, y)]}

∂ {E[y]} . (15)

Although the MAX operator is not analytical (i.e., does not
have continuous derivatives), it can statistically be approxi-
mated as in the form of (12)–(15), which is similar to the
traditional Taylor expansion. We refer to (12) as the linear
statistical Taylor expansion in this paper.

The linear statistical Taylor expansion has widely been ap-
plied to statistical timing analysis, where digital delay varia-
tions can accurately be captured by such a linear approximation.
Most analog/RF performance variations, however, are strongly
nonlinear in the presence of large-scale process variations
and cannot accurately be approximated by the aforementioned
linear models. To intuitively illustrate the limitation of the
linear MAX approximation, we consider a simple example
where two random variables x ∼ N(0, 1/9) and y ∼ N(0, 1)
are independent and normal. Fig. 2 shows the probability
density functions of x, y, and MAX(x, y). In this example,
MAX(x, y) is strongly nonlinear, because the probability den-
sity functions of x and y are significantly overlapped. As a re-
sult, the simple linear MAX approximation yields a large error
compared to the Monte Carlo analysis result (106 samples) in
Fig. 2. This observation, therefore, motivates us to propose a
novel quadratic statistical MAX approximation in this paper
to improve the approximation accuracy.

Fig. 2. Probability density functions of x, y, and MAX(x, y).

III. PARAMETRIC YIELD ESTIMATION

Our proposed parametric yield estimation conceptually maps
multiple correlated performance constraints to a single aux-
iliary constraint by using a MAX operator. The auxiliary
constraint is then analytically approximated as a quadratic
function of process parameters. As such, the parametric yield
can easily be estimated from the probability distribution of the
auxiliary constraint. In this section, we first mathematically
define the auxiliary constraint and then derive two novel algo-
rithms from moment matching and statistical Taylor expansion,
respectively, for quadratic MAX approximation.

A. Parametric Yield Formulation

Given the parametric yield formulation in (8), we conceptu-
ally define the auxiliary performance constraint as follows:

faux(ε) = MAX [f1(ε), f2(ε), . . . , fK(ε)] . (16)

Equation (16) maps multiple performance metrics to a single
auxiliary performance metric by using a MAX operator. It
is straightforward to verify that the parametric yield defined
in (8) can uniquely be determined by the following auxiliary
constraint:

Yield = P [faux(ε) ≤ 0] . (17)

If the auxiliary performance faux is approximated as a quadratic
function of ε, the probability distribution of faux(ε) and, con-
sequently, the parametric yield can easily be estimated by the
APEX algorithm proposed in [15] and [16].

Next, we propose two novel algorithms for efficiently
approximating the MAX operator in (16). We will focus
on the MAX approximation of two random variables, i.e.,
MAX(x, y), since any multivariable operation can be broken
down into multiple two-variable cases. Such a two-variable
operator MAX(x, y) can further be transformed to a single-
variable operator as follows:

MAX(x, y) = x + MAX(0, z) (18)



LI et al.: QUADRATIC STATISTICAL MAX APPROXIMATION FOR PARAMETRIC YIELD ESTIMATION 835

where

z = y − x. (19)

Therefore, the remainder of this section will derive the quad-
ratic statistical MAX approximation for the single-variable
operator MAX(0, z).

B. Quadratic MAX Approximation by Moment Matching

We approximate the MAX operator as the following
quadratic function:

MAX(0, z) ≈ 0.5 · σ2 · z2 + σ1 · z + σ0 (20)

where σ2, σ1, and σ0 are the unknown model coefficients.
These coefficients can be determined by matching the following
moments:

E [MAX(0, z)] = 0.5 · σ2 · E[z2]

+ σ1 · E[z] + σ0 (21)

E [z · MAX(0, z)] = 0.5 · σ2 · E[z3] + σ1 · E[z2]

+ σ0 · E[z] (22)

E
[
z2 · MAX(0, z)

]
= 0.5 · σ2 · E[z4] + σ1 · E[z3]

+ σ0 · E[z2]. (23)

Since z is equal to y − x in (19), where x and y are two
performance metrics approximated as quadratic models, z is
also a quadratic function of the random variable ε, i.e.,

z(ε) = εT · Az · ε + BT
z · ε + Cz (24)

where Az , Bz , and Cz are the model coefficients. Given
(24), the high-order moments E[z], E[z2], E[z3], and E[z4]
can be computed by the binominal moment evaluation algo-
rithm proposed in [15] and [16]. In addition, the proba-
bility distribution of z can be extracted using APEX [15],
[16], and consequently, E[MAX(0, z)], E[z(MAX(0, z)],
and E[z2(MAX(0, z)] can be calculated using the following
1-D numerical integrations:

E [MAX(0, z)] =

+∞∫
0

z · PDFz(z) · dz (25)

E [z · MAX(0, z)] =

+∞∫
0

z2 · PDFz(z) · dz (26)

E
[
z2 · MAX(0, z)

]
=

+∞∫
0

z3 · PDFz(z) · dz (27)

where PDFz(•) denotes the probability density function of z.
Given these high-order moments, the linear equation (21)–(23)
can be solved to determine σ2, σ1, and σ0. The MAX(0, z) in

(20) can then be approximated as a quadratic function of the
random variable ε by substituting (24) into (20) and ignoring
all high-order terms. Once the quadratic function MAX(0, z)
is determined, it can be substituted into (18) to calculate the
quadratic model for MAX(x, y).

It should be noted that our moment matching in (21)–(23)
is substantially different from the algorithm proposed in [23].
Zhan et al. [23] attempt to match the moments for all random
variables {εi; i = 1, 2, . . . , N} and their cross-product terms,
whereas we match the moments only for a single random vari-
able z, thereby significantly reducing the computational cost.
In addition, the following theorem proves that the proposed
moment matching results in an optimal approximation that
minimizes the weighted squared error. The detailed proof of
Theorem 1 is given in the Appendix.
Theorem 1: Given a random variable z and the quadratic

statistical MAX approximation in (20), the coefficients σ2, σ1,
and σ0 determined by (21)–(23) minimize the weighted squared
error, i.e.,

∆(σ2, σ1, σ0) =

+∞∫
−∞

[
MAX(0, z) − (0.5 · σ2 · z2

+σ1 · z + σ0)]
2 · PDFz(z) · dz. (28)

C. Quadratic MAX Approximation by Taylor Expansion

In addition to moment matching, an alternative method for
quadratic MAX approximation can be derived from statistical
Taylor expansion. In this section, we develop the algorithm
for quadratic statistical Taylor expansion and then show the
theoretical connection between the proposed two MAX ap-
proximation schemes.

Extending the linear statistical Taylor expansion in (12)–(15)
to second-order and expanding MAX(0, z) at the expansion
point E[z] yield

MAX(0, z) ≈ 0.5 · λ2 · {z − E[z]}2 + λ1 · {z − E[z]} + λ0

(29)

where the linear and quadratic coefficients λ1 and λ2 are
determined by the following statistical derivatives:

λ1 =
d {E[MAX(0, z)]}

d {E[z]} (30)

λ2 =
d2 {E[MAX(0, z)]}

d {E[z]}2 =
dλ1

d {E[z]} . (31)

The constant term λ0 is determined by matching the mean value
as follows:

λ0 = E [MAX(0, z)] − 0.5 · λ2 · E
[
{z − E[z]}2

]
. (32)

Next, we show how we can efficiently compute the coefficients
λ0, λ1, and λ2 in (30)–(32).
1) Linear Coefficient λ1: As described in Section II-D,

the first-order derivative in (30) is equal to the following
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Fig. 3. Single variable function MAX(0, z) is convex.

probability [22]:

λ1 =
d {E [MAX(0, z)]}

d {E[z]} = P (z ≥ 0) = 1 − CDFz(0)

(33)

where CDFz(•) stands for the cumulative distribution function
of z. Given the quadratic model z(ε) in (24), CDFz(•) can be
extracted using APEX [15], [16].
2) Quadratic Coefficient λ2: Substituting (33) into (31)

yields

λ2 =
d [1 − CDFz(0)]

d {E[z]} . (34)

To calculate the derivative in (34), we rewrite z as follows:

z = µ + δ (35)

where µ is the mean value of z, and δ = z − µ is a random
variable with zero mean. Substituting (35) into (34) yields

λ2 =
d [1 − CDFµ+δ(0)]

dµ
=

d [1 − CDFδ(−µ)]
dµ

=PDFδ(−µ) = PDFµ+δ(0) = PDFz(0) (36)

where the probability density function PDFz(•) can be ex-
tracted using APEX [15], [16].

It is worth noting that the quadratic coefficient λ2 in (36) has
two interesting properties.

1) λ2 = PDFz(0) is nonnegative. Intuitively, as shown in
Fig. 3, the function MAX(0, z) is convex, and there-
fore, the quadratic model coefficient should be non-
negative [29].

2) λ2 = PDFz(0) indicates the nonlinearity. For the first
two cases in Fig. 4, MAX(0, z) can accurately be ap-
proximated as the linear models, i.e., MAX(0, z) ≈ 0
and MAX(0, z) ≈ z, respectively. This is consistent
with the fact that PDFz(0) ≈ 0 in both cases. In the
third case in Fig. 4, however, MAX(0, z) is strongly
nonlinear, corresponding to a nonzero PDFz(0).

3) Constant Term λ0: After λ1 and λ2 are known, com-
puting the constant term λ0 in (32) requires further knowing
E[MAX(0, z)] and E[{z − E[z]}2]. E[MAX(0, z)] can be
calculated using the 1-D numerical integration in (25). Since
z is a quadratic function of ε, as shown in (24), its second-
order central moment is determined by the following analytical
equation [21]:

E
[
{z − [z]}2

]
= BT

z · Σ · Bz + 2

· TRACE(Σ · Az · Σ · Az) (37)

Fig. 4. Three different cases for quadratic MAX approximation.

where TRACE(•) represents the trace of a matrix (the sum
of all diagonal elements), and Σ stands for the covariance
matrix of the N -dimensional random variable ε. Substituting
(25), (36), and (37) into (32) yields the constant term λ0. After
the coefficients λ0, λ1, and λ2 are known, the MAX(0, z)
in (29) can be approximated as a quadratic function of ε by
substituting (24) into (29) and ignoring all high-order terms.
Once the quadratic function MAX(0, z) is determined, it can
be substituted into (18) to calculate the quadratic model for
MAX(x, y).

It can be proven that the proposed quadratic statistical
Taylor expansion is mathematically equivalent to the moment
matching approach if the random variable z is normal. This
conclusion can formally be stated as the following theorem. The
detailed proof of Theorem 2 is given in the Appendix.
Theorem 2: If the random variable z is normal, the quadratic

MAX approximations in (20) (based on moment matching)
and (29) (based on statistical Taylor expansion) are equivalent.

If the random variable z is nonnormal, the theoretical
connection between moment matching and statistical Taylor
expansion is difficult to find. However, for many practical
applications, these two approaches are equally efficient in both
approximation accuracy and computational cost, as will be
demonstrated by the numerical examples in Section IV.

D. Summary

A simplified flow of the proposed parametric yield estimation
is summarized in Algorithm 1. Our proposed algorithm only
involves APEX [15], [16], the 1-D numerical integration in
(25)–(27), and a couple of other simple analytical operations
and, therefore, is computationally efficient. As will be demon-
strated by the numerical examples in Section IV, the proposed
parametric yield estimation can achieve a runtime speedup of
10–20 times over the Monte Carlo analysis with 103 samples.

Algorithm 1: Parametric Yield Estimation.
(1) Start from a set of quadratic response surface models

{fk(ε); k = 1, 2, . . . ,K}.
(2) Represent all performance constraints as in the standard

form in (7).
(3) Set faux(ε) = f1(ε).
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Fig. 5. Estimated probability density functions of MAX(x, y).

(4) For k = 2, 3, . . . ,K
(5) Represent z(ε) = faux(ε) − fk(ε) as in the form of (24).
(6) Compute the quadratic approximation of MAX(0, z) by

either moment matching (Section III-B) or statistical
Taylor expansion (Section III-C).

(7) Compute faux(ε) = fk(ε) + MAX(0, z).
(8) End for
(9) Compute the probability distribution of faux(ε) by using

APEX [15], [16].
(10) Compute the parametric yield defined in (17).

IV. NUMERICAL EXAMPLES

In this section, we demonstrate the efficacy of the proposed
parametric yield estimation by several analog/RF circuit exam-
ples. In particular, we compare the proposed quadratic MAX
approximation with several linear approximation techniques
to demonstrate the improvement in accuracy. All numerical
experiments are performed on a LINUX 2.8-GHz server.

A. Simple Example for MAX Approximation

We first consider the example in Fig. 2, where x ∼ N(0, 1/9)
and y ∼ N(0, 1) are independent normal random variables.
This simple example allows us to test the efficacy of the
proposed MAX approximation and compare it with other
traditional techniques.

Four different approaches, namely, the traditional linear
MAX approximation (Section II-D), the quadratic MAX ap-
proximation that uses moment matching, the quadratic MAX
approximation that uses statistical Taylor expansion, and the
Monte Carlo analysis with 106 samples, are applied to estimate
the probability distribution of MAX(x, y). Fig. 5 shows the
probability density functions estimated by these techniques. By
studying Fig. 5, one would notice that the moment matching
and the statistical Taylor expansion yield the same results
(except for the numerical error). This observation is consistent
with our theoretical result in Theorem 2.

In this example, the distribution of MAX(x, y) is not sym-
metric due to the nonlinearity of the MAX operator. The
traditional linear approximation cannot capture such a nonzero
skewness and, therefore, results in a large approximation error.

Fig. 6. Constraints in (38) define a 2-D square if N is equal to 2.

The proposed quadratic approximation, however, accurately
models the nonzero skewness by including second-order terms.

B. Simple Example for Parametric Yield Estimation

To compare the proposed parametric yield estimation with
the traditional ellipsoid approximation (Section II-C), we con-
sider the following constraints:




ε1 ≥ −3 & ε1 ≤ 3
ε2 ≥ −3 & ε2 ≤ 3

...
...

...
εN ≥ −3 & εN ≤ 3

(38)

where {εi; i = 1, 2, . . . , N} are independent and standard nor-
mal, and N is the total number of random variables (i.e., the
problem dimension). The constraints in (38) define a hypercube
in the N -dimensional space. For illustration purposes, Fig. 6
shows a 2-D square, where N = 2.

Given the constraints in (38), it is easy to verify that the
parametric yield can be analytically computed as follows [27]:

Yield = [Φ(3) − Φ(−3)]N (39)

where Φ(•) stands for the cumulative distribution function
of standard normal distribution. For testing and comparison
purposes, three different approaches, namely, the traditional
ellipsoid approximation (Section II-C), the quadratic MAX
approximation that uses moment matching, and the quadratic
MAX approximation that uses statistical Taylor expansion,
are applied to estimate the parametric yield. The absolute
difference between the estimated yield and the actual yield in
(39) is used as a measure of the estimation error for accuracy
comparison. Fig. 7 shows the estimation error as a function of
the problem dimension N . Two important observations can be
made from the data in Fig. 7.

First, in this example, although all performance constraints
in (38) are linear and, therefore, their probability distributions
are normal, the moment matching and the statistical Taylor
expansion do not yield exactly identical results. This is because
for any N ≥ 2, multiple two-variable MAX operations are in-
volved. Taking N = 2 as an example, the auxiliary performance
constraint in (16) is defined as follows:

faux(ε) = MAX[−ε1 − 3, ε1 − 3,−ε2 − 3, ε2 − 3]. (40)
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Fig. 7. Absolute yield estimation error varies as a function of the problem
dimension N .

This four-variable MAX operator can be broken down into the
following three two-variable MAX operators:

g1(ε) = MAX[−ε1 − 3, ε1 − 3] (41)

g2(ε) = MAX[g1(ε),−ε2 − 3] (42)

faux(ε) = MAX[g2(ε), ε2 − 3]. (43)

It is easy to verify that only the first MAX operator in (41)
computes the maximum of two normal distributions: 1) −ε1−3
and 2) ε1−3. The other two MAX operators in (42) and (43)
take the nonnormal distributions g1(ε) and g2(ε) as the input,
respectively. In this case, Theorem 2 is not applicable. However,
as shown in Fig. 7, the estimation error of the moment matching
and the statistical Taylor expansion remains close, although
the theoretical connection between these two approaches is
not clear.

Second, the error of the ellipsoid approximation continuously
increases with N . As shown in Fig. 1, the maximal inscribed
ellipsoid does not cover the entire feasible space. If the feasible
space is high dimensional, the ellipsoid approximation error can
extremely be large. For N = 10 in Fig. 7, the absolute yield
estimation error of the ellipsoid approximation reaches 50.54%.
It is 18.9 times larger than the error of our proposed method,
which is based on quadratic MAX approximation.

C. Low-Noise Amplifier

Fig. 8 shows a low-noise amplifier designed in a commercial
90-nm CMOS process. In this example, the variations of both
MOS transistors and passive components (i.e., resistors, capaci-
tors, and inductors) are considered. The probability distribution
and the correlation information of these variations are specified
in the process design kit from the foundry. After PCA, nine
principal factors are identified to model the process variations.
1) Response Surface Modeling: The performance of the

low-noise amplifier is characterized by seven specifications.
Given a fixed circuit design, each circuit performance is a func-
tion of process variations. We approximate these performance
functions by linear and quadratic response surface models,
respectively. The linear models are extracted by the direct

Fig. 8. Circuit schematic of a low-noise amplifier designed in a commercial
90-nm CMOS process.

TABLE I
RESPONSE SURFACE MODELING ERROR FOR THE LOW-NOISE AMPLIFIER

TABLE II
MINIMAL/MAXIMAL NORMALIZED EIGENVALUES OF THE QUADRATIC

MODEL COEFFICIENT MATRIX FOR THE LOW-NOISE AMPLIFIER

fitting method [28], and the quadratic models are extracted by
the PROBE algorithm proposed in [25]. In this example, the
linear and quadratic modeling takes 37 and 75 s, respectively,
including the computational time for transistor-level simulation
to collect all sampling points. Table I shows the response
surface modeling error for all performance metrics. Note that
the quadratic modeling error is four times smaller than the
linear modeling error on the average.

Table II shows the minimal and maximal normalized eigen-
values of the quadratic coefficient matrix, i.e., the matrix A
in (4). For a given performance function f(ε), A is related
to the Hessian matrix ∇2f(ε) (i.e., the second-order deriva-
tive). Therefore, it can be used to test the convexity of the
performance function f(ε). For instance, A should be positive
semidefinite (or negative semidefinite) if f(ε) is convex (or
concave) [29]. For most performance metrics in this example,
the matrix A contains both positive and negative eigenvalues
with comparable magnitude. It, in turn, implies that these
performance functions are neither convex nor concave. Hence,
the feasible space defined by the performance constraints is not
a convex set.
2) Parametric Yield Estimation: For testing and compar-

ison purposes, we randomly select 100 different design
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Fig. 9. Absolute yield estimation error for the low-noise amplifier.

TABLE III
YIELD ESTIMATION COST FOR THE LOW-NOISE

AMPLIFIER (ONE DESIGN POINT)

specifications, and the parametric yield is estimated for each
of these specifications by four different approaches: 1) the
traditional linear MAX approximation (Section II-D); 2) the
quadratic MAX approximation that uses moment matching;
3) the quadratic MAX approximation that uses statistical
Taylor expansion; and 4) the Monte Carlo analysis with 103

samples. The estimated parametric yield is compared to the
golden result extracted by the Monte Carlo analysis with 106

samples. Their absolute difference is used as a measure of the
estimation error for accuracy comparison.

Fig. 9 shows the absolute yield estimation error of the
four different approaches. The traditional linear approximation
cannot accurately capture the parametric yield, and the maxi-
mal error reaches 8.82%. The proposed quadratic approxima-
tion (both moment matching and statistical Taylor expansion)
achieves much better accuracy by reducing the maximal error
to 1.32% (i.e., 6.68 times smaller). On the average, the proposed
quadratic approximation is as accurate as the Monte Carlo
analysis with 103 samples in this example.

Table III compares the computational cost of the four dif-
ferent approaches. The traditional linear approximation has the
lowest computational cost; however, it cannot provide high
estimation accuracy. In this example, the proposed quadratic
approximation (both moment matching and statistical Taylor
expansion) achieves a runtime speedup of ten times over the
Monte Carlo analysis with 103 samples while offering the same
accuracy.

Finally, it should be noted that the yield estimation cost
shown in Table III is the computational time required to es-
timate the parametric yield of a single design point. As we
know, if the parametric yield estimation is within a statistical
optimization loop, it must be repeated many times. In this case,
the overall computational time for yield estimation may be

Fig. 10. Circuit schematic of an operational amplifier designed in a commer-
cial 0.25-µm BiCMOS process.

TABLE IV
RESPONSE SURFACE MODELING ERROR

FOR THE OPERATIONAL AMPLIFIER

expensive, even if one estimation run is cheap. For example,
assuming that one complete synthesis run requires visiting
105 design points [24] and the parametric yield estimation of
one design point takes 0.13 s by using the Monte Carlo analysis
with 103 samples, the total yield estimation cost will reach
3.8 h. However, if the proposed quadratic approximation is
applied, the total yield estimation cost can be reduced to 20 min
in this example.

D. Operational Amplifier

Fig. 10 shows a two-stage folded-cascode operational ampli-
fier designed in a commercial 0.25-µm BiCMOS process. In
this example, both interdie variations and device mismatches
are considered. The probability distribution and the correlation
information of these variations are specified in the process
design kit from the foundry. After PCA, 49 principal factors
are identified to model the process variations. It is important
to note that modeling mismatches are extremely important for
this operational amplifier example, since they can significantly
impact several circuit performances, e.g., offset voltage.
1) Response Surface Modeling: The performance of the

operational amplifier is characterized by five specifications.
Given a fixed circuit design, each circuit performance is a func-
tion of process variations. We approximate these performance
functions by linear and quadratic response surface models,
respectively. The linear models are extracted by the direct
fitting method [28], and the quadratic models are extracted by
the PROBE algorithm proposed in [25]. In this example, the
linear and quadratic modeling takes 21 and 46 s, respectively,
including the computational time for transistor-level simulation
for collecting all sampling points. Table IV shows the response
surface modeling error for all performance metrics. Compared
with the linear response surface modeling, the quadratic re-
sponse surface modeling reduces the maximal approximation
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TABLE V
MINIMAL/MAXIMAL NORMALIZED EIGENVALUES OF THE QUADRATIC

MODEL COEFFICIENT MATRIX FOR THE OPERATIONAL AMPLIFIER

Fig. 11. Absolute yield estimation error for the operational amplifier.

error from 14.65% to 3.75% (i.e., 3.9 times smaller). Note that
even though the operational amplifier is designed in a 0.25-µm
process, the linear response surface modeling is not sufficiently
accurate, as shown in Table IV. As IC technologies are scaled
to finer feature sizes, process variations will become relatively
larger, thereby making the nonlinear terms in the quadratic
model even more important.

Table V shows the minimal and maximal normalized
eigenvalues of the quadratic coefficient matrix, i.e., the ma-
trix A in (4). Similar to the low-noise amplifier example in
Section IV-C, most operational amplifier performance functions
are neither convex nor concave. Hence, the feasible space
defined by the performance constraints is not a convex set.
2) Parametric Yield Estimation: For testing and compari-

son purposes, we randomly select 100 different design spec-
ifications, and the parametric yield is estimated for each of
these specifications by four different approaches: 1) the tra-
ditional linear MAX approximation (Section II-D); 2) the
quadratic MAX approximation that uses moment matching;
3) the quadratic MAX approximation that uses statistical
Taylor expansion; and 4) the Monte Carlo analysis with 103

samples. The estimated parametric yield is compared to the
golden result extracted by the Monte Carlo analysis with 106

samples. Their absolute difference is used a measure of the
estimation error for accuracy comparison.

Fig. 11 compares the yield estimation accuracy for the four
different approaches. The traditional linear approximation re-
sults in a maximal error of 8.92%. The proposed quadratic
approximation (both moment matching and statistical Taylor
expansion) is much more accurate, and it reduces the maximal
error to 1.37% (i.e., 6.51 times smaller). On the average, the

TABLE VI
YIELD ESTIMATION COST FOR THE OPERATIONAL

AMPLIFIER (ONE DESIGN POINT)

proposed quadratic approximation is as accurate as the Monte
Carlo analysis with 103 samples in this example.

Table VI shows the computational cost of the four different
approaches. In this example, the proposed quadratic approxima-
tion (both moment matching and statistical Taylor expansion)
achieves a runtime speedup of 20 times over the Monte Carlo
analysis with 103 samples while offering the same accuracy.

V. CONCLUSION

We have proposed an efficient parametric yield estimation
algorithm for multiple correlated nonnormal analog/RF per-
formance distributions. The proposed algorithm is facilitated
by two key techniques, including: 1) an auxiliary constraint
formulation that uses a MAX operator and 2) two efficient
algorithms (based on moment matching and statistical Taylor
expansion, respectively) for quadratic statistical MAX ap-
proximation. We prove that these two quadratic MAX ap-
proximation algorithms are mathematically equivalent if the
performance distributions are normal. Our numerical exam-
ples demonstrate that, compared to the traditional normal-
distribution-based method, the proposed parametric yield
estimation reduces the estimation error by 6.5 times while
achieving a runtime speedup of 10–20 times over the Monte
Carlo analysis with 103 samples. Our future research will
further study the theoretical connection between the proposed
quadratic MAX approximation algorithms for nonnormal per-
formance distributions. In addition, we will incorporate the pro-
posed yield estimation algorithm into a statistical optimization
flow for robust analog/RF design.

The quadratic statistical MAX approximation proposed in
this paper is not limited only to the parametric yield estimation
of analog/RF circuits. The same idea can widely be applied to
many other applications that require MAX operations, e.g., the
statistical static timing analysis for digital circuits.

APPENDIX

PROOF OF THEOREM 1

Given the weighted squared error in (28), the optimal values
of σ2, σ1, and σ0 can be determined by the following
optimization:

minimize
σ1, σ2, σ3 ∆(σ2, σ1, σ0) (44)

where ∆(σ2, σ1, σ0) is given in (28). Equation (44) defines
an unconstrained nonlinear programming problem. The cost
function ∆(σ2, σ1, σ0) in (44) is a quadratic function of σ2,
σ1, and σ0. In addition, ∆(σ2, σ1, σ0) is always nonnegative
for any σ2, σ1, σ0 ∈ R. In other words, the quadratic cost
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function ∆(σ2, σ1, σ0) is positive semidefinite and, therefore,
is convex [29].

Since the cost function in (44) is quadratic and convex, it
does not contain any local minimum, and its global optimum
can be determined by the following first-order gradient:

∂∆(σ2, σ1, σ0)
∂σ2

= 0 (45)

∂∆(σ2, σ1, σ0)
∂σ1

= 0 (46)

∂∆(σ2, σ1, σ0)
∂σ0

= 0. (47)

We rewrite the weighted squared error in (28) as in the form
of (56). Substituting (56) into (45)–(47) yields (57)–(59). Note
that the optimality conditions in (57)–(59) are exactly equiva-
lent to the moment matching equations in (21)–(23). Therefore,
the moment matching in (21)–(23) yields the optimal σ2, σ1,
and σ0 that minimize the weighted squared error in (28).

APPENDIX

PROOF OF THEOREM 2

Without loss of generality, we assume that the random vari-
able z satisfies the normal distribution N(µ, σ2), where the
mean value is µ, and the standard deviation is σ. In this case, the
high-order moments E[z], E[z2], E[z3], and E[z4] in (21)–(23)
can be represented as functions of µ and σ [27], i.e.,

E[z] =µ (48)

E[z2] =µ2 + σ2 (49)

E[z3] =µ3 + 3µσ2 (50)

E[z4] =µ4 + 6µ2σ2 + 3σ4. (51)

In addition, the high-order moments E[MAX(0, z)],
E[z(MAX(0, z)], and E[z2(MAX(0, z)] in (21)–(23) can be
computed by the integrals in (60)–(62), where ϕ(•) and Φ(•)
denote the probability density function and the cumulative
distribution function of the standard normal distribution, re-
spectively. Substituting (48)–(51) and (60)–(62) into (20)–(23)
yields the quadratic MAX approximation in (63).

On the other hand, the statistical Taylor expansion coeffi-
cients in (36), (33), and (32) are equal to

λ2 =PDFz(0) =
1
σ
· ϕ

(µ

σ

)
(52)

λ1 = 1 − CDFz(0) = 1 − Φ
(
−µ

σ

)
(53)

λ0 =E [MAX(0, z)] − 0.5 · λ2 · σ2. (54)

Substituting (60) and (52) into (54) yields

λ0 =
σ

2
· ϕ

(µ

σ

)
+ µ ·

[
1 − Φ

(
−µ

σ

)]
. (55)

Substitute (52)–(53) and (55) into (29). After some mathe-
matical manipulations, we obtain the approximated quadratic
function in (63). Therefore, if z is normal, the moment
matching and the statistical Taylor expansion are exactly
equivalent

∆(σ2, σ1, σ0)

=

+∞∫
−∞

[
MAX2(0, z) +

σ2
2 · z4

4
+ σ2

1 · z2 + σ2
0

− σ2 · z2 · MAX(0, z) − 2 · σ1 · z · MAX(0, z)

− 2 · σ0 · MAX(0, z) + σ2 · σ1 · z3

+ σ2 · σ0 · z2 + 2 · σ1 · σ0 · z
]
· PDFz(z) · dz

= E
[
MAX2(0, z)

]
+

σ2
2

4
· E[z4] + σ2

1 · E[z2]

+ σ2
0 − σ2 · E

[
z2 · MAX(0, z)

]
− 2 · σ1 · E [z · MAX(0, z)] − 2 · σ0 · E [MAX(0, z)]

+ σ2 · σ1 · E[z3] + σ2 · σ0 · E[z2] + 2 · σ1 · σ0 · E[z]

(56)

∂∆(σ2, σ1, σ0)
∂σ2

= 0.5 · σ2 · E[z4] + σ1 · E[z3] + σ0 · E[z2]

− E
[
z2 · MAX(0, z)

]
= 0 (57)

∂∆(σ2, σ1, σ0)
∂σ1

= σ2 · E[z3] + 2 · σ1 · E[z2] + 2 · σ0 · E[z]

− 2 · E [z · MAX(0, z)] = 0 (58)

∂∆(σ2, σ1, σ0)
∂σ0

= σ2 · E[z2] + 2 · σ1 · E[z] + 2 · σ0

− 2 · E [MAX(0, z)] = 0 (59)

E [MAX(0, z)]

=

+∞∫
0

z · PDFz(z) · dz

= σ · ϕ
(µ

σ

)
+ µ ·

[
1 − Φ

(
−µ

σ

)]
(60)

E [z · MAX(0, z)]

=

+∞∫
0

z2 · PDFz(z) · dz

= µσ · ϕ
(µ

σ

)
+ (µ2 + σ2) ·

[
1 − Φ

(
−µ

σ

)]
(61)
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E
[
z2 · MAX(0, z)

]

=

+∞∫
0

z3 · PDFz(z) · dz

= (µ2σ + 2σ3) · ϕ
(µ

σ

)
+ (µ3 + 3µσ2) ·

[
1 − Φ

(
−µ

σ

)]

(62)

MAX(0, z)

≈ 1
2σ

· ϕ
(µ

σ

)
· z2 +

[
1 − Φ

(
−µ

σ

)
− µ

σ
· ϕ

(µ

σ

)]
· z

+
µ2 + σ2

2σ
· ϕ

(µ

σ

)
. (63)
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