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ABSTRACT 
Large-scale process fluctuations (particularly random device 
mismatches) at nanoscale technologies bring about high-
dimensional strongly nonlinear performance variations that cannot 
be accurately captured by linear or quadratic response surface 
models. In this paper, we propose a novel projection-based 
piecewise linear modeling technique, P2M, to address such a 
modeling challenge with affordable computational cost. P2M 
borrows the projection pursuit idea from mathematics to convert a 
high-dimensional modeling problem to a low-dimensional one. In 
addition, a new piecewise-linear model template is proposed and 
tuned for strongly nonlinear performance variations. By exploiting 
the unique piecewise-linear nature of the model template, a robust 
numerical algorithm is further developed to determine all model 
coefficients by solving a sequence of over-determined linear 
equations. Several circuit examples designed in a commercial 
65nm CMOS process demonstrate that compared with the 
traditional quadratic modeling, P2M achieves 2x error reduction 
with negligible computational overhead. 
 
1. INTRODUCTION 

As IC technologies are scaled to nanoscale regime, it becomes 
increasingly difficult to control the variations in manufacturing 
process [1]-[2]. Process variations can be classified into two broad 
categories: inter-die variations and intra-die variations. Inter-die 
variations model the common/average variations across the die, 
while intra-die variations model the individual, but spatially 
correlated, local variations (e.g., random device mismatches) 
within the same die. Both inter-die and intra-die variations 
introduce substantial uncertainties in circuit performance and 
significantly impact parametric yield. Hence, accurately modeling 
and analyzing process variations to ensure manufacturability has 
been identified as a top priority for today’s IC design. 

To address this issue, response surface modeling has been 
widely applied to solve various statistical circuit analysis 
problems [1], [3]-[7], [15]. The objective of response surface 
modeling is to approximate the circuit performance (e.g., delay, 
gain) as an analytical function of process parameters (e.g., VTH, 
TOX). Most existing response surface models are either linear or 
quadratic, assuming that the approximated performance functions 
are weakly nonlinear. However, two recent changes in advanced 
IC technologies suggest a need to revisit this assumption. 

Firstly, among all sources of variations, random mismatches 
become dominant at 45nm process and beyond [2]. As a result, 
any two transistors on the same die can have significantly 
different electrical performance (e.g., mobility, VTH, etc.). To 
accurately model this effect, a large number of random variables 
must be utilized, rendering a high-dimensional variation space. 
Even for a small-size circuit block (e.g., an analog amplifier), the 
total number of random process parameters can easily reach 
50~100 [6], [8]. 

Secondly, process variations become relatively larger, as IC 

technologies are scaled to finer feature size. For example, the 3-
sigma VTH variation is expected to reach 35% in 2008 and it 
continuously increases in future technology generations [2]. Such 
large-scale variations yield strongly nonlinear performance 
variations that cannot be accurately captured by linear or 
quadratic models. This nonlinearity issue is especially critical for 
analog and mixed-signal circuits. As will be demonstrated by the 
numerical examples in Section 5, the error of a quadratic model 
can reach 13.6% for a commercial 65nm SRAM cell. 

To improve accuracy, high-order (e.g., cubic) polynomial 
models can be used. Directly applying existing response surface 
modeling techniques to high order, however, results in expensive 
computational cost. For example, if the total number of random 
process parameters reaches 100 [6], [8], a cubic polynomial will 
contain 176,851 unknown model coefficients! 

The authors of [8] propose a new projection-based nonlinear 
modeling technique based on neural network. While it has been 
successfully applied to various circuit problems, a neural network 
must be trained by nonlinear optimization where global 
convergence is difficult to achieve. In other words, the quality of 
the extracted model heavily depends on the initial guess that is 
provided to the optimizer. The challenging problem here is how to 
solve such a high-dimensional strongly nonlinear modeling 
problem both robustly and efficiently. 

In this paper, we propose a novel projection-based piecewise-
linear modeling (P2M) algorithm that is especially tuned for high-
dimensional strongly nonlinear fitting problems. P2M borrows the 
projection pursuit idea that was initially developed by 
mathematicians in 1980s [9]. It converts a high-dimensional 
modeling problem to a low-dimensional problem that is easy to 
solve. In addition to dimension reduction, we propose to capture 
strongly nonlinear performance variations by piecewise-linear 
functions. Compared with the traditional quadratic response 
surface modeling, the proposed P2M approach reduces modeling 
error by 2x without substantially increasing computational cost, as 
will be demonstrated by the numerical examples in Section 5. 

An important contribution of this paper is to propose a robust 
numerical algorithm to determine all unknown model coefficients. 
Our proposed algorithm recursively approximates a high-
dimensional performance function by a number of one-
dimensional piecewise-linear functions. Furthermore, by 
exploiting the unique piecewise-linear nature of the model 
template, P2M formulates the modeling problem in a special form 
for which all model coefficients can be solved from a sequence of 
over-determined linear equations. Therefore, unlike the existing 
optimization-based techniques that suffer from several numerical 
issues such as local convergence, our proposed P2M approach 
offers robust convergence with low computational cost. 

The remainder of this paper is organized as follows. In 
Section 2, we review the background on response surface 
modeling and projection pursuit. Then, we propose our P2M 
approach in Section 3 and describe the numerical algorithms in 
Section 4. The efficacy of P2M is demonstrated by several 
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numerical examples in Section 5, followed by the conclusions in 
Section 6. 
 
2. BACKGROUND 
2.1 Response Surface Modeling 

Given a circuit design, the circuit performance (e.g., delay, 
gain) is a function of process parameters (e.g., VTH, TOX). These 
process parameters must be modeled as random variables to 
account for uncertain manufacturing fluctuations. A circuit 
performance f can be approximated as a linear response surface 
model of process parameters [1], [15]: 
1 ( ) CXBXf T +=  (1) 
where X = [x1 x2 ... xN]T represents the random variables to model 
process variations, B ∈ RN and C ∈ R stand for the model 
coefficients, and N is the total number of random variables. 

The linear approximation in (1) is efficient and accurate when 
process variations are sufficiently small. As manufacturing 
variations become relatively large in nanoscale technologies, 
quadratic response surface models are required to improve 
modeling accuracy [4], [6], [15]: 
2 ( ) CXBAXXXf TT ++=  (2) 
where C ∈ R is the constant term, B ∈ RN contains the linear 
coefficients, and A ∈ RN×N contains the quadratic coefficients. 

The unknown model coefficients in (1) and (2) can be 
determined by solving the over-determined linear equations at a 
number of sampling points [15]: 
3 ( )SifCXB ii

T ,,2,1
~

==+  (3) 

4 ( )SifCXBAXX ii
T

i
T
i ,,2,1

~
==++  (4) 

where Xi and f̃i are the value of X and the exact value of f for the i-
th sampling point respectively, and S is the total number of 
sampling points. 

Even if quadratic response surface models are utilized, 
however, large modeling error can still be observed in some cases 
[8]. For instance, as will be demonstrated by the numerical 
examples in Section 5, the quadratic modeling error can reach 
13.6% for an SRAM cell designed in a commercial 65nm CMOS 
process. It, in turn, motivates us to develop a new piecewise-linear 
modeling technique to accurately capture strongly nonlinear 
performance variations. 
 
2.2 Projection Pursuit 

One major technical difficulty of fitting high-dimensional 
nonlinear response surface models stems from the large number of 
unknown model coefficients. To address this issue, projection 
pursuit was proposed by mathematicians in 1980s [9] and it has 
been recently applied to several circuit modeling problems [6]-[8]. 
The key idea of projection pursuit is to approximate a high-
dimensional nonlinear function by the sum of several low-
dimensional functions. In particular, a one-dimensional projection 
has the form of [9]: 
5 ( ) ( ) ( ) ( )XPgXPgXPgXf T

KK
TT +++= 2211  (5) 

where f(X) is the approximated high-dimensional nonlinear 
function, {gi(•); i = 1,2,...,K} contains K one-dimensional 
nonlinear functions, {Pi ∈ RN; i = 1,2,...,K} defines K one-
dimensional projection vectors, and K is referred to as the rank of 
the model. 

PROBE was developed in [6] to handle the special case where 
all nonlinear functions {gi(•); i = 1,2,...,K} in (5) are quadratic. A 
quadratic function defined in (2) can be re-written as [6]: 

6 ( ) ( ) CXBXQXf T
N

i

T
ii ++⋅=∑

=1

2
λ  (6) 

where λi and Qi ∈ RN are the i-th dominant eigenvalue and 
eigenvector of the quadratic coefficient matrix A, respectively. In 
this case, the optimal projection vectors are determined by the 
eigenvectors and they can be extracted by the implicit power 
iteration algorithm proposed in [6]. 

The idea of projection pursuit has been further applied to 
strongly nonlinear circuit problems in [8]. The SiLVR algorithm 
developed in [8] determines the optimal projection vectors by 
nonlinear optimization. Such an optimization-based approach, 
however, suffers from several numerical issues such as local 
convergence. In this paper, we propose a new projection-based 
piecewise linear modeling algorithm, P2M, that aims to robustly 
solve the high-dimensional nonlinear modeling problem. By 
exploiting the unique piecewise-linear nature of the model 
template, P2M determines all unknown model coefficients by 
solving a sequence of over-determined linear equations, thereby 
offering low computational complexity and robust convergence. 
 
3. PIECEWISE-LINEAR MODELING 

Our proposed P2M approach utilizes one-dimensional 
piecewise-linear functions to approximate {gi(•); i = 1,2,...,K} in 
(5). Such a piecewise-linear model template allows us to 
approximate strongly nonlinear performance functions both 
accurately and efficiently, which is one of the major advantages of 
the P2M method. 

A one-dimensional M-segment piecewise-linear function 
gi(Pi

TX) is uniquely specified by the projection vector Pi and the 
M+1 grid points {(αi,j, βi,j); j = 0,1,...,M}: 

7 ( ) ( )1,
1,,

1,,
1, −

−

−
− −⋅

−

−
+= ji

T
i

jiji

jiji
ji

T
ii XPXPg α

αα

ββ
β . (7) 

where 
8 ji

T
iji XP ,1, αα ≤≤− . (8) 

In other words, the value of gi(Pi
TX) is determined by the linear 

interpolation of the M+1 grid points. Fig 1 shows a simple 
piecewise-linear function example with four segments. 

0 αi,0 αi,1 αi,2 αi,3 αi,4

βi,0

βi,1 βi,2 βi,3

βi,4

PiTX

gi(PiTX)

 
Fig 1.  A one-dimensional 4-segment piecewise-linear function. 

Given the one-dimensional M-segment piecewise linear 
functions {gi(•); i = 1,2,...,K}, the nonlinear model f(X) in (5) is 
the sum of all {gi(•); i = 1,2,...,K}. Theoretically, this is equivalent 
to partitioning the variation space X into MK polytopes: 

9 

( )
( )

( )MjXP

MjXP
MjXP

KjK
T
KjK

j
T

j

j
T

j

KK
,,2,1

,,2,1
,,2,1

,1,

2,221,2

1,111,1

22

11

=≤≤

=≤≤
=≤≤

−

−

−

αα

αα
αα

 (9) 

and approximating f(X) as a linear function within each polytope. 
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Fig 2 shows a two-dimensional space that is partitioned by the 
projection vectors P1 = [1 0]T and P2 = [1 1]T. Note that the 
polytopes in Fig 2 are not rectangular, because P1 and P2 are not 
orthogonal. 

0 x1

x2
P1 = [1 0]T

P2 = [1 1]T

 
Fig 2.  Partitions of a two-dimensional space [x1 x2]T. 

The proposed piecewise-linear model f(X) defined in (5), (7)-
(8) has two important properties: 

• Continuous: Since all {gi(•); i = 1,2,...,K} are continuous, it is 
straightforward to verify that f(X) = g1(•) + g2(•) + ... + gK(•) 
is also continuous. 

• Low-rank: For many high-dimensional problems, the rank K is 
substantially smaller than the variation space dimension N. In 
other words, the performance of interest is only affected by 
several “dominant” directions of process variations and the 
variations on other “non-dominant” directions can be ignored 
[6]-[8]. This rank-deficient property allows us to accurately 
extract a compact low-rank model with low computational 
cost. 

To determine a rank-K piecewise-linear model f(X), we must 
determine the projection vectors {Pi; i = 1,2,...,K} in (5) and the 
grid points {(αi,j, βi,j); i = 0,1,...,K, j = 0,1,...,M} in (7)-(8). In what 
follows, we propose an efficient numerical algorithm to solve 
these unknown model coefficients. 
 
4. IMPLEMENTATION OF P2M 

The proposed P2M algorithm is facilitated by two key 
techniques, including: (1) a nonlinear sensitivity analysis to 
determine the projection vectors; and (2) an iterative algorithm to 
decompose a rank-K modeling problem into multiple rank-one 
problems. In this section, we first develop the numerical algorithm 
for rank-one P2M approximation, and then extend it to rank-K 
approximation. 
 
4.1 Rank-One Approximation 

Given a rank-one M-segment P2M model, the unknown model 
coefficients include the projection vector P1 and the M+1 grid 
points {(α1,j, β1,j); j = 0,1,...,M}. Ideally, P1 and {(α1,j, β1,j); j = 
0,1,...,M} should be optimized concurrently to extract the optimal 
model. However, such a co-optimization can be computationally 
expensive and does not guarantee global convergence. For this 
reason, we propose a heuristic algorithm to decompose the 
modeling process into two separate steps. We first apply a 
nonlinear sensitivity analysis to find the projection vector P1 and 
then perform a least-square fitting to determine the grid points 
{(α1,j, β1,j); j = 0,1,...,M}. Our numerical examples in Section 5 
demonstrate that the proposed heuristic algorithm yields excellent 
results for most circuit problems. 

To determine the projection vector P1, we need to find out the 
dominant direction along which the performance function f(X) 

varies significantly. If f(X) is linear, the projection vector P1 is 
determined by linear sensitivities and it can be easily found by 
fitting a linear response surface model. However, such a linear-
sensitivity-based approach does not work well if f(X) is strongly 
nonlinear. Motivated by this observation, we propose to borrow 
the PROBE algorithm [6] to fit a rank-one quadratic model from 
which the projection directions for both linear and quadratic terms 
are determined. Such an approach is referred to as nonlinear 
sensitivity analysis in this paper. 

A rank-one PROBE model contains the constant term, the 
linear term, and the first dominant quadratic term [6]: 

10 ( ) ( ) CXBXQXf TT ++⋅=
2

11λ . (10) 
From (10), we obtain two projection directions: B for the linear 
term and Q1 for the quadratic term. For rank-one P2M 
approximation, we need to select one of them as the dominant 
projection vector P1. 

Toward this goal, we define the following expected “energies” 
and use them as a criterion to compare the significance of the 
linear and quadratic terms: 
11 ( ) [ ]22

L
T

Linear fEXBEEnergy =



=  (11) 

12 ( ) [ ]42
1

4
1

2
1 Q

T
Quadratic fEXQEEnergy ⋅=



 ⋅= λλ  (12) 

where E(•) denotes the expected value [14] and 
13 XBf T

L =  (13) 

14 XQf T
Q 1= . (14) 

To compute the statistical measures in (11)-(12), we assume that 
all random variables X = [x1 x2 ... xN]T are mutually independent 
and standard Normal (i.e., zero mean and unit variance). If {xi; i = 
1,2,...,N} are correlated Normal distributions, they can be 
converted into independent Normal distributions by principal 
component analysis (PCA) [12]. 

Given the definitions in (13)-(14), both fL and fQ are Normal, 
since they are the linear combinations of multiple Normal 
distributions. In addition, the first-order and second-order 
moments of fL and fQ can be determined by [12]: 

15 [ ] [ ] 2
2

20 BfEandfE LL ==  (15) 

16 [ ] [ ] 2
21

20 QfEandfE QQ ==  (16) 
where ||•||2 denotes the 2-norm of a vector. Substituting (15) into 
(11) yields the expected energy for the linear term BTX: 
17 [ ] 2

2
2 BfEEnergy LLinear == . (17) 

The expected energy for the quadratic term λ1⋅(Q1
TX)2 is 

determined by the eigenvalue λ1 and the fourth order moment of fQ 
[14]: 

18 [ ] 4
21

2
1

42
1 3 QfEEnergy QQuadratic ⋅=⋅= λλ . (18) 

Based on (17) and (18), we make P1 equal the linear projection 
direction B (or the quadratic projection direction Q1) if the 
expected linear energy EnergyLinear is greater (or smaller) than the 
expected quadratic energy EnergyQuadratic. This heuristic rule is 
summarized by the following equation: 

19 
( )
( )





⋅<

⋅≥
= 4

21
2
1

2
21

4
21

2
1

2
2

1
3

3

QBifQ

QBifB
P

λ

λ
. (19) 

Next, given the projection vector P1, we need to determine the 
grid points {(α1,j, β1,j); j = 0,1,...,M}. We evenly partition the axis 
P1

TX into M segments, resulting in M+1 equally-spaced grid 

110110



 

points {α1,j; j = 0,1,...,M}, as shown in Fig 1. Then, using a set of 
sampling points, we list the following linear equations for {β1,j; j = 
0,1,...,M}: 

20 
( )

( )SiXP

fXP

ji
T

j

iji
T

jj

jj
j

,,2,1

~

,111,1

1,11
1,1,1

1,1,1
1,1

=<≤

=−⋅
−

−
+

−

−
−

−
−

αα

α
αα

ββ
β

 (20) 

where Xi and f̃i are the value of X and the exact value of f for the i-
th sampling point respectively, and S is the total number of 
sampling points. Solving the over-determined linear equations in 
(20) yields the optimal values of {β1,j; j = 0,1,...,M}. It, in turn, 
determines the approximated one-dimensional piecewise-linear 
model. 

Algorithm 1: Rank-one piecewise-linear approximation 
1. Start from a set of sampling points {(Xi, f̃i); i = 0,1,...,S}. 
2. Fit the rank-one quadratic model in (10) using PROBE [6]. 
3. Calculate EnergyLinear and EnergyQuadratic using (17)-(18). 
4. Determine the projection vector P1 using (19). 
5. Evenly partition the axis P1

TX into M segments, resulting in 
M+1 equally-spaced grid points {α1,j; j = 0,1,...,M}. 

6. Solve the linear equations (20) for {β1,j; j = 0,1,...,M}. 
7. The rank-one piecewise-linear model is determined by 

substituting the solved model coefficients P1 and {(α1,j, β1,j); j 
= 0,1,...,M} into (7)-(8). 

Algorithm 1 summarizes the major steps of the proposed rank-
one piecewise-linear modeling. Note that both the PROBE 
algorithm in Step 2 and the piecewise-linear fitting in Step 6 only 
require solving a sequence of over-determined linear equations. 
No further nonlinear optimization is involved in Algorithm 1. 
Therefore, the proposed piecewise-linear modeling algorithm 
completely eliminates the local convergence issue incurred by 
nonlinear optimization. 
 
4.2 Rank-K Approximation 

Algorithm 2: Rank-K piecewise-linear approximation 
1. Start from a set of sampling points {(Xi, f̃i); i = 0,1,...,S}. 
2. For k = 1,2,...,K 
3.  Apply Algorithm 1 to the sampling points {(Xi, f̃i); i = 

0,1,...,S} and extract the rank-one model gk(X). 
4.  Update the sampling points: 
21 ( ) ( )SiXgff ikii ,,2,1

~~
=−= . (21) 

5. End For 
6. The rank-K piecewise-linear model is: 
22 ( ) ( ) ( ) ( )XgXgXgXf KK +++= 21 . (22) 

Algorithm 2 shows the proposed P2M algorithm for rank-K 
piecewise-linear approximation. Starting from a set of sampling 
points, P2M first extracts a rank-one piecewise-linear model 
g1(X). Then, the sampling points are updated in (21) to calculate 
the residue which is further approximated as a new rank-one 
piecewise-linear model in the next iteration. The rank-one 
piecewise-linear fitting and the residue update are repeatedly 
applied for K times until the rank-K model fK(X) in (22) is 
achieved. 

Algorithm 2 assumes a given approximation rank K. In 
practical applications, the value of K can be iteratively determined 
based on the approximation error. For example, starting from a 
low-rank approximation, K should be iteratively increased if the 
modeling error remains large. 

 
5. NUMERICAL EXAMPLES 

In this section we demonstrate the efficacy of P2M using two 
circuit examples. For each example, two independent sampling 
sets, called training set and testing set respectively, are generated. 
The training set contains 1000 sampling points that are created by 
Latin hypercube sampling [11]; it is used for coefficient fitting. 
For testing and comparison, we collect 500 random samples as the 
testing set and use them to measure the modeling error. All 
numerical experiments are performed on a 2.8GHz Linux server. 
 
5.1 SRAM Cell 

 
Fig 3.  Circuit schematic of a 6T SRAM cell. 

Fig 3 shows the circuit schematic of a 6T SRAM cell designed 
in a commercial 65nm CMOS process. We consider three 
important performance metrics for this SRAM cell: static noise 
margin (SNM), read margin (RM) and write margin (WM). These 
performance metrics are functions of both inter-die variations and 
device mismatches. The probability distribution and the 
correlation information of all variations are specified in the 
process design kit provided by the foundry. 

We first apply fractional factorial experiment [16] to identify 
a subset of important process parameters that have significant 
influence on the performances of interest. After such a variable 
screening, 32 random variables are left to model process 
variations in this example. 
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Fig 4.  PROBE and P2M modeling error of SRAM cell. 

We create performance models over the 5-sigma variation 
range using two different techniques: the traditional quadratic 
modeling (PROBE [6]) and the proposed piecewise-linear 
modeling (P2M). Fig 4 compares the modeling error for PROBE 
and P2M. As shown in Fig 4, the error of both PROBE and P2M 
decreases, as the approximation rank K increases. However, after 
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K ≥ 6, further increases in K do not have a significant impact on 
reducing the error. It, in turn, implies that selecting the rank K = 6, 
instead of the full rank K = 32, is sufficient in this example. 

Studying Fig 4, one would notice that the proposed P2M is 
substantially more accurate than PROBE when modeling the static 
noise margin and the read margin in this example. For instance, 
the modeling error of read margin is reduced by 2.1x, from 13.6% 
(PROBE) to 6.6% (P2M). It should be noted that as IC 
technologies are scaled to finer feature sizes, process variations 
are expected to become increasingly larger. It, in turn, would 
make the performance nonlinearities even more pronounced. 

To intuitively understand the strongly nonlinear performance 
variations, we plot all training samples of read margin over the 
first dominant projection direction P1

TX, as shown in Fig 5. Note 
that the strongly nonlinear relation between read margin and 
process variations cannot be predicted by a simple linear model. 
Namely, the first dominant projection vector P1 of read margin 
cannot be extracted by a simple linear sensitivity analysis. This 
observation demonstrates the importance of the nonlinear 
sensitivity analysis proposed in Section 4.1. On the other hand, 
although applying quadratic sensitivity analysis yields the correct 
projection vector P1, a simple quadratic model fails to accurately 
approximate the performance function. In this example, the 
proposed piecewise-linear model is required to achieve 
sufficiently small modeling error. 
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Fig 5.  Sampling points of read margin over the first dominant 

projection direction P1
TX. 

Table 1.  Computational cost of PROBE and P2M for SRAM cell 
performance modeling 

Fitting Cost (Sec.) Total Cost (Sec.) Rank Simulation 
Cost (Sec.) PROBE P2M PROBE P2M 

1 5.35 10.45 985.35 990.45 
2 7.63 13.05 987.63 993.05 
3 11.74 16.79 991.74 996.79 
4 15.33 21.69 995.33 1001.69 
5 19.33 28.80 999.33 1008.80 
6 23.20 37.46 1003.20 1017.46 
7 26.93 47.65 1006.93 1027.65 
8 29.45 57.48 1009.45 1037.48 
9 32.59 67.97 1012.59 1047.97 
10 

980 

34.89 80.24 1014.89 1060.24 
 

Table 1 compares the computational cost for PROBE and 

P2M. The overall computational cost consists of two portions: 
simulation cost and fitting cost. The simulation cost is the 
computational time to run a numerical simulator (e.g., SPICE) to 
generate a number of sampling points. The fitting cost is the 
computational time to solve all unknown model coefficients from 
a sequence of over-determined linear equations. Studying Table 1, 
one would find that P2M has higher fitting cost than PROBE. 
However, since the simulation cost is dominant, the overall 
computational overhead of P2M is negligible (within 5%) in this 
example. 
 
5.2 Operational Amplifier 

 
Fig 6.  Circuit schematic of a two-stage operational amplifier. 
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Fig 7.  PROBE and P2M modeling error of operational amplifier. 

Shown in Fig 6 is the circuit schematic of a two-stage 
operational amplifier designed in a commercial 65nm CMOS 
process. We consider six performance metrics in this example: 
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offset voltage (VOS), gain, bandwidth (BW), phase margin (PM), 
power supply rejection ratio (PSRR), and power. These 
performance metrics depend on both inter-die variations and 
device mismatches. The probability distribution and the 
correlation information of all variations are specified in the 
process design kit provided by the foundry. 

Similar to the SRAM cell example, we first apply fractional 
factorial experiment [16] to identify a subset of important process 
variations. After such a variable screening, 47 random variables 
are left to model process variations in this example. 

We create performance models over the 4-sigma variation 
range using two different techniques: the traditional quadratic 
modeling (PROBE [6]) and the proposed piecewise-linear 
modeling (P2M). Fig 7 compares the modeling error for PROBE 
and P2M. Two important observations can be made from Fig 7. 
Firstly, for both PROBE and P2M, selecting the rank K = 6, 
instead of the full rank K = 47, is sufficient in this example. 
Secondly, compared with PROBE, P2M achieves significant error 
reduction for most performance metrics. Taking bandwidth (BW) 
as an example, the PROBE error is 14.5%, while the P2M error is 
6.6% (2.2x difference). 

Table 2.  Computational cost of PROBE and P2M for operational 
amplifier performance modeling 

Fitting Cost (Sec.) Total Cost (Sec.) Rank Simulation 
Cost (Sec.) PROBE P2M PROBE P2M 

1 15.42 23.13 7775.42 7783.13 
2 33.48 31.23 7793.48 7791.23 
3 54.04 46.86 7814.04 7806.86 
4 68.43 62.53 7828.43 7822.53 
5 86.96 82.84 7846.96 7842.84 
6 104.97 104.14 7864.97 7864.14 
7 122.85 124.82 7882.85 7884.82 
8 141.60 142.24 7901.60 7902.24 
9 159.48 184.80 7919.48 7944.80 
10 
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186.25 237.65 7946.25 7997.65 
 

Table 2 shows the computational cost for PROBE and P2M. 
In this example, P2M has slightly higher fitting cost than PROBE. 
However, since the simulation cost is dominant, the overall 
computational overhead of P2M is negligible (within 1%) in this 
example. 
 
6. CONCLUSIONS 

In this paper, we propose a novel projection-based piecewise-
linear modeling (P2M) algorithm to capture high-dimensional 
strongly nonlinear performance variations that are observed in 
nanoscale technologies. P2M borrows the projection pursuit idea 
from mathematics to achieve dimension reduction. As such, a 
high-dimensional modeling problem can be converted to a low-
dimensional problem that is tractable. In addition, piecewise-
linear functions are utilized by P2M to model strongly nonlinear 
performance variations. By exploiting the unique piecewise-linear 
nature of the model template, a robust numerical algorithm is 
proposed to determine all model coefficients by solving a 
sequence of over-determined linear equations. Our numerical 
examples demonstrate that compared with the traditional 

quadratic modeling, P2M achieves 2x error reduction without 
substantially increasing the computational complexity. The 
response surface models created by P2M can be further 
incorporated into a statistical analysis/optimization environment 
for accurate and efficient parametric yield analysis/optimization. 
 
7. ACKNOWLEDGEMENT 

This work has been supported in part by the Semiconductor 
Research Corporation (SRC) and the National Science Foundation 
(NSF). 
 
8. REFERENCES 
[1] S. Nassif, “Modeling and analysis of manufacturing 

variations,” IEEE CICC, pp. 223-228, 2001. 
[2] Semiconductor Industry Associate, International 

Technology Roadmap for Semiconductors, 2005. 
[3] Z. Wang and S. Director, “An efficient yield optimization 

method using a two step linear approximation of circuit 
performance,” IEEE EDAC, pp. 567-571, 1994. 

[4] A. Dharchoudhury and S. Kang, “Worse-case analysis and 
optimization of VLSI circuit performance,” IEEE Trans. 
CAD, vol. 14, no. 4, pp. 481-492, Apr. 1995. 

[5] F. Schenkel, M. Pronath, S. Zizala, R. Schwencker, H. 
Graeb and K. Antreich, “Mismatch analysis and direct yield 
optimization by spec-wise linearization and feasibility-
guided search,” IEEE DAC, pp. 858-863, 2001. 

[6] X. Li, J. Le, L. Pileggi and A. Strojwas, “Projection-based 
performance modeling for inter/intra-die variations,” IEEE 
ICCAD, pp. 721-727, 2005. 

[7] Z. Feng and P. Li, “Performance-oriented statistical 
parameter reduction of parameterized systems via reduced 
rank regression,” IEEE ICCAD, pp. 868-875, 2006. 

[8] A. Singhee and R. Rutenbar, “Beyond low-order statistical 
response surfaces: latent variable regression for efficient, 
highly nonlinear fitting,” IEEE DAC, pp. 256-261, 2007. 

[9] J. Friedman and W. Stuetzle, “Projection pursuit 
regression,” Journal of the American Statistical Association, 
vol. 76, no. 376, pp. 817-823, 1981. 

[10] X. Li, J. Le and L. Pileggi, “Projection-based statistical 
analysis of full-chip leakage power with non-log-Normal 
distributions,” IEEE DAC, pp. 103-108, 2006. 

[11] M. Mckay, R. Beckman and W. Conover, “A comparison of 
three methods for selecting values of input variables in the 
analysis of output from a computer code,” Technometrics, 
vol. 21, no. 2, pp. 239-245, May. 1979. 

[12] G. Seber, Multivariate Observations, Wiley Series, 1984. 
[13] G. Golub and C. Loan, Matrix Computations, The Johns 

Hopkins Univ. Press, 1996. 
[14] A. Papoulis and S. Pillai, Probability, Random Variables 

and Stochastic Processes, McGraw-Hill, 2001. 
[15] R. Myers and D. Montgomery, Response Surface 

Methodology: Process and Product Optimization Using 
Designed Experiments, Wiley-Interscience, 2002. 

[16] D. Montgomery, Design and Analysis of Experiments, John 
Wiley & Sons, 2005. 

 

113113


	Main
	ISQED08
	Table of Contents
	Author Index




