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ABSTRACT 
The continuous technology scaling brings about high-dimensional 
performance variations that cannot be easily captured by the 
traditional response surface modeling. In this paper we propose a 
new statistical regression (STAR) technique that applies a novel 
strategy to address this high dimensionality issue. Unlike most 
traditional response surface modeling techniques that solve model 
coefficients from over-determined linear equations, STAR 
determines all unknown coefficients by moment matching. As 
such, a large number of (e.g., 103~105) model coefficients can be 
extracted from a small number of (e.g., 102~103) sampling points 
without over-fitting. In addition, a novel recursive estimator is 
proposed to accurately and efficiently predict the moment values. 
The proposed recursive estimator is facilitated by exploiting the 
interaction between different moment estimators and formulating 
the moment estimation problem into a special form that can be 
iteratively solved. Several circuit examples designed in 
commercial CMOS processes demonstrate that STAR achieves 
more than 20x runtime speedup compared with the traditional 
response surface modeling. 
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1. INTRODUCTION 

As IC technologies are scaled to nanoscale regime, it becomes 
increasingly difficult to control the variations in manufacturing 
process [1]. Process variations can be classified into two broad 
categories: inter-die variations and intra-die variations. Inter-die 
variations model the common/average variations across the die, 
while intra-die variations model the individual, but spatially 
correlated, local variations (e.g., random device mismatches) 
within the same die. Both inter-die and intra-die variations 
introduce substantial uncertainty in circuit behavior and 
significantly impact parametric yield. Hence, accurately modeling 
and analyzing process variations to ensure manufacturability has 
been identified as one of the most critical problems for today’s IC 
design. 

To address this variation issue, response surface modeling 

(RSM) has been widely applied to various statistical circuit 
analysis problems [2]-[8], [12]. The objective of response surface 
modeling is to approximate the circuit performance (e.g., delay, 
gain) as an analytical (either linear or nonlinear) function of 
process parameters (e.g., VTH, TOX). Once response surface models 
are fitted from transistor-level simulation data, they can be used to 
predict performance distributions and, more importantly, identify 
the critical device-level variation sources that cause circuit-level 
performance variations. While response surface modeling was 
extensively studied in the past, two recent trends in advanced IC 
technologies suggest a need to revisit this area. 
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Fig 1.  Predicted relative process variations (3σ/mean) [1]. 

Firstly, among all sources of variations, random mismatches 
are expected to become dominant within the next few technology 
generations [1], as shown in Fig 1. Hence, any two transistors on 
the same die can have significantly different electrical behaviors 
(e.g., mobility, VTH, etc.). To accurately model this effect, a large 
number of random variables must be utilized, rendering a high-
dimensional variation space. Secondly, the aggressive scaling of 
VLSI technologies makes it possible to integrate more and more 
devices onto a single chip, further increasing the problem size of 
statistical performance modeling. As will be demonstrated by the 
numerical examples in Section 5, more than 20,000 independent 
random variables must be used to model the inter-die and intra-die 
variations of a simplified SRAM critical path in a commercial 
65nm CMOS process. In this case, even if a linear model template 
is used, we must solve more than 20,000 unknown model 
coefficients! 

Recently, a number of advanced response surface modeling 
techniques [5]-[8] have been proposed to address this high 
dimensionality issue. The key idea of these methods is to find an 
optimal projection subspace to map the high-dimensional 
modeling problem to a low-dimensional problem that is easy to 
solve. Such a projection strategy substantially reduces the number 
of unknown model coefficients and, therefore, only a small 
number of simulation samples are required to determine all model 
coefficients. The aforementioned projection techniques have been 
successfully applied to many practical applications with 10~100 
variables. However, they seem still ill-equipped to address the 
modeling challenges of today’s mixed-signal IC designs that 
contain 103~105 variables. How do we make response surface 
modeling feasible for such a large problem size? 
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Unlike the projection-based techniques, we attempt to 
approach the high dimensionality issue from a completely 
different avenue. We aim to develop an efficient numerical 
algorithm that allows us to fit a large number of model 
coefficients from a small set of sampling points. In general, all 
existing modeling techniques solve model coefficients from over-
determined linear equations. As such, the number of sampling 
points must be equal to or greater than the number of model 
coefficients. In contrast, we ask the following fundamental 
question: can we uniquely determine more model coefficients than 
sampling points? Certainly, this is not feasible if the coefficients 
are solved from deterministic equations. However, we will show 
in this paper that such an ambitious task is possible if we 
determine the model coefficients statistically. 

In this paper, we propose a novel statistical regression 
(STAR) algorithm for high-dimensional linear/nonlinear response 
surface modeling. STAR determines all unknown model 
coefficients from a set of random samples by moment matching. 
The proposed moment matching approach is derived from 
statistics theory [9], [11], [13]. It is especially tuned for circuit 
modeling applications such that a large number of (e.g., 103~105) 
unknown model coefficients can be accurately and efficiently 
extracted from a small set of (e.g., 102~103) sampling points 
without over-fitting. We theoretically prove that such a moment-
matching strategy is optimal where the weighted fitting error is 
minimized. 

An important contribution of this paper is to develop a new 
recursive estimator to accurately predict the moment values. The 
proposed recursive estimator is facilitated by exploiting the 
interaction between different moment estimators and formulating 
the moment estimation problem into a special form that can be 
iteratively solved. It is provably unbiased. Most importantly, 
compared with the direct estimator that is traditionally used in 
statistics, our recursive estimator offers substantial (more than 20x 
for our examples in Section 5) error reduction and, therefore, 
makes the proposed moment matching approach of practical 
interest and utility. 

The remainder of this paper is organized as follows. In 
Section 2, we review the background on principal component 
analysis and response surface modeling. Then, we propose our 
STAR algorithm in Section 3. Several implementation issues, 
including the recursive estimator, are discussed in detail in 
Section 4. The efficacy of STAR is demonstrated by several 
numerical examples in Section 5, followed by the conclusions in 
Section 6. 
 
2. BACKGROUND 
2.1 Principal Component Analysis 

Given N process parameters X = [x1 x2 ... xN]T, the process 
variations ∆X = X–X0, where X0 contains the mean values of X, are 
often approximated as zero-mean, correlated Normal distributions. 
Principal component analysis (PCA) [10] is a statistical method 
that finds a set of independent factors to represent the correlated 
Normal distributions. Assume that the correlations of ∆X are 
represented by a symmetric, positive semi-definite covariance 
matrix R. PCA decomposes R as: 
1 TUUR ⋅Σ⋅=  (1) 
where Σ = diag(λ1, λ2, ..., λN) contains the eigenvalues of R, and U 
= [U1 U2 ... UN] contains the corresponding eigenvectors that are 
orthonormal, i.e., UTU = I. (I is the identity matrix.) Based on Σ 
and U, PCA defines a set of new random variables ∆Y = [∆y1 ∆y2 
... ∆yN]T: 

2 XUY T ∆⋅⋅Σ=∆ − 5.0 . (2) 
These new random variables in ∆Y are called the principal 
components or factors. It is easy to verify that all principal 
components in ∆Y are independent and standard Normal (i.e., zero 
mean and unit standard deviation). 

The essence of PCA can be interpreted as a coordinate 
rotation of the space defined by the original random variables. In 
addition, if the magnitude of the eigenvalues {λn; n = 1,2,...,N} 
deceases dramatically, it is possible to use a small number of 
random variables, i.e., a small subset of principal components, to 
approximate the original N-dimensional space. More details on 
PCA can be found in [10]. 
 
2.2 Response Surface Modeling 

Given a circuit design, the circuit performance f (e.g., delay, 
gain) is a function of the process variations ∆Y defined in (2). If 
the process variations are sufficiently small, the performance 
function f(∆Y) can be approximated as a linear response surface 
model [2]-[8], [12]: 
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where {αn; n = 0,1,...,N} are the model coefficients. If the 
performance function f(∆Y) is strongly nonlinear due to large-
scale variations, nonlinear (e.g., quadratic) response surface 
models may be used to improve modeling accuracy [2], [5], [12]. 

Traditionally, the unknown model coefficients in (3) are 
determined by solving the over-determined linear equations at a 
number of sampling points [12]: 
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where ∆yi
(m) and f(m) are the values of ∆yi and f(∆Y) at the m-th 

sampling point respectively, and M is the total number of 
sampling points. To solve the over-determined linear equations in 
(4), the number of samples must be equal to or greater than the 
number of coefficients. Taking the linear response surface model 
in (3) as an example, the total number of model coefficients is 
N+1 and, therefore, at least N+1 simulation samples are required 
to determine these coefficients. It, in turn, makes response surface 
modeling extremely expensive, if N is large (e.g., around 
103~105). For this reason, the traditional response surface 
modeling is limited to small-size or medium-size applications 
(around 10~100 variables). In this paper, we propose a novel 
response surface modeling scheme that aims to solve a large 
number of model coefficients from a small set of sampling points 
with low computational cost. 
 
3. STATISTICAL REGRESSION 

Most traditional response surface modeling techniques rely on 
two major assumptions: (1) all model coefficients are solved from 
over-determined linear equations; and (2) all sampling points are 
deterministically located and the locations are optimized by 
design of experiments (DOE) [16]. In contrast, our proposed 
statistical regression (STAR) applies a completely different 
strategy: it randomly distributes all sampling points in the 
variation space and statistically extracts the model coefficients by 
moment matching. In this section, we describe the mathematical 
formulation of STAR and prove that the proposed statistical 
regression is optimal where the weighted fitting error is 
minimized. 
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3.1 Mathematical Formulation 
Given the linear response surface model in (3) where all 

random variables in ∆Y are independent and standard Normal, it is 
easy to verify the following relations: 
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where E(•) represents the expected value. Eqn. (5)-(6) imply an 
important fact that the model coefficients {αn; n = 0,1,...,N} can 
be uniquely determined by the moments E(f) and {E(f⋅∆yn); n = 
1,2,...,N}. 

The aforementioned linear statistical regression can be 
extended to nonlinear cases using orthogonal polynomials [14]. 
Define a set of N-dimensional polynomial functions {gk(∆Y); k = 
1,2,...,K} that are normalized and orthogonal: 
7 ( ) ( )KkgE k ,,2,10 ==  (7) 
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In our case, since all random variables in ∆Y are independent and 
standard Normal, the functions {gk(∆Y); k = 1,2,...,K} can be 
constructed by the expansion of Hermite series [14] and, 
therefore, are referred to as the Hermite polynomials. For 
example, the one-dimensional Hermite polynomials can be 
expressed as: 

9 ( ) ( ) ( )1
2

1 2
21 −∆⋅=∆∆=∆ yygyyg . (9) 

The key idea of nonlinear statistical regression is to 
approximate the performance function f(∆Y) as the linear 
combination of all polynomial basis functions: 
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where {βk; k = 0,1,...,K} are the model coefficients. Since the 
polynomials {gk(∆Y); k = 1,2,...,K} are normalized and orthogonal 
as shown in (7)-(8), we can solve all coefficients {βk; k = 0,1,...,K} 
by moment matching: 
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Intuitively, STAR calculates the correlation between f and ∆yn 
(or gk). If there is a strong positive (or negative) correlation 
between f and ∆yn (or gk), the corresponding model coefficient is 
large and positive (or negative). Because STAR fundamentally 
changes the modeling algorithm, many traditional limitations for 
response surface modeling are not applicable to STAR. For 
example, it is no longer required that the number of sampling 
points is equal to or greater than the number of model coefficients. 
In contrast, STAR can estimate a large number of (e.g., 103~105) 
model coefficients from a small set of (e.g., 102~103) sampling 
points without over-fitting. This is one of the most attractive 
features of STAR, especially when a high-dimensional modeling 

problem is considered. 
The proposed STAR algorithm is related to the Pearson 

correlation method that was developed by the statistical learning 
community for feature selection [9], [13]. However, such a 
moment matching idea was not successfully applied to response 
surface modeling in the past, mainly because it is not trivial to 
accurately estimate the moment values in (5)-(6) and (11)-(12) to 
determine the model coefficients. In Section 4, we will develop a 
novel recursive estimator to address this moment estimation 
problem so that STAR is made of practical interest and utility. 

To simplify the notation, we will use linear statistical 
regression as an example to further discuss the detailed properties 
and implementations of STAR in the following sections. It should 
be noted, however, that many results reported in this paper can 
also be extended to nonlinear statistical regression. 
 
3.2 Proof of Optimality 

While STAR determines all model coefficients by moment 
matching, the following theorem proves that it implicitly utilizes 
the same optimal criterion as the traditional response surface 
modeling. Namely, the weighted modeling error is implicitly 
minimized by moment matching. 

Theorem 1: Given the linear performance model f(∆Y) in (3), the 
model coefficients determined by moment matching in (5)-(6) 
minimize the weighted fitting error: 
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where pdf(∆Y) is the joint probability density function of ∆Y. 

Proof: The error function in (13) is quadratic and positive-semi-
definite. Therefore, the function Error(α0,α1,...,αN) is convex. The 
optimal coefficients for minimal Error(α0,α1,...,αN) are determined 
by the conditions [15]: 
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Substituting (13) into (14) yields: 
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Note that Eqn. (15)-(16) are exactly identical to Eqn. (5)-(6) that 
determine the model coefficients by moment matching.  ■ 

Theorem 1 creates a theoretical link between the proposed 
statistical regression and the traditional response surface 
modeling. It demonstrates an important property that if the 
moment values are accurately estimated, the model coefficients 
extracted by STAR are as optimal as those solved from over-
determined linear equations. 
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4. IMPLEMENTATION OF STAR 

An important operation required by STAR is to estimate the 
moment values. In this section, we first show the traditional 
moment estimator used in statistics and study its estimation 
accuracy. Next, we develop a novel recursive estimator that can 
significantly improve accuracy and, therefore, make STAR of 
practical interest and utility. 
 
4.1 Direct Estimator 

Unlike the traditional response surface modeling that 
deterministically locates all sampling points by design of 
experiments (DOE) [16], STAR randomly draws sampling points 
to statistically estimate moment values. Given M random 
sampling points: 
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E(f) and {E(f⋅∆yn); n = 1,2,...,N} can be estimated by [11]: 
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where {αñ; n = 0,1,...,N} denote the estimated values for the 
model coefficients {αn; n = 0,1,...,N}. Eqn. (18)-(19) have been 
widely used in statistics [11] and they are referred to as the direct 
estimators in this paper. 

If the performance function f(∆Y) is approximated by the 
linear model in (3), it can be shown that the standard deviations of 
the estimators {α̃n; n = 0,1,...,N} are equal to [11]: 
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Eqn. (20)-(21) define the theoretical measure of the estimation 
accuracy. For example, if {σ(α̃n); n = 0,1,...,N} are large, the 
estimators {α̃n; n = 0,1,...,N} have substantial variations, meaning 
that the estimation error is large. 

As shown in (20)-(21), the estimation accuracy depends on 
the total number of sampling points M. If M increases, {σ(αñ); n = 
0,1,...,N} decrease and the estimation accuracy is improved. 
Intuitively, more sampling points provide more information about 
the statistical distribution and, hence, offer more accurate moment 
estimation. 

In addition to the parameter M, the model coefficients {αn; n = 
0,1,...,N} also have a significant impact on the estimation 
accuracy. When the estimator {α̃n; n = 1,2,...,N} is calculated, all 
coefficients {αn; n = 0,1,...,N} add up to {σ(αñ); n = 1,2,...,N} and 
contribute as estimation noise. In practice, the error incurred by 
the direct estimators is typically too large to accurately predict the 
model coefficients. As will be demonstrated by the numerical 
examples in Section 5, 40%~50% approximation error is observed 
if the direct estimators are used. It, in turn, motivates us to 
propose a novel recursive estimator that can predict the moment 
values more accurately. 
 

4.2 Recursive Estimator 
The direct estimators in (18)-(19) predict all moments 

separately and no connection is exploited between the estimators. 
Namely, {α̃n; n = 0,1,...,N} in (18)-(19) are directly represented as 
functions of the sampling points {∆Y(m), f(m); m = 1,2,...,M}. For 
our proposed statistical regression, however, the moments E(f) 
and {E(f⋅∆yn); n = 1,2,...,N} are related to the same performance 
function f(∆Y). Therefore, instead of considering the estimators 
{αñ; n = 0,1,...,N} as independent operations, it is possible to 
identify the interaction between these estimators and utilize it to 
improve accuracy. 

Our proposed recursive estimator is motivated by studying the 
standard deviation equations in (20)-(21). For the direct 
estimators, all coefficients {αn; n = 0,1,...,N} add up to the 
estimation noise. This is one of the key reasons why the direct 
estimators yield large error. If we estimate the coefficient αn and 
subtract the component αn⋅∆yn from the performance function 
f(∆Y) before calculating αñ+1, then αn⋅∆yn will not impact the 
estimator α̃n+1 any more. As a result, αn will no longer contribute 
to σ(αñ+1), thereby decreasing the standard deviation σ(αñ+1) and 
improving the estimation accuracy. This observation motivates us 
to iteratively calculate the coefficient αn and then use the result α̃n 
to improve the estimation accuracy of αn+1 in the next iteration 
step. In addition, we should first extract the most dominant 
coefficient αd, i.e., |αd| ≥ |αi| (i ≠ d), such that the error reduction is 
maximized by removing αd⋅∆yd. 

Algorithm 1: Recursive moment estimation 
1. Start from a set of sampling points {∆Y (m), f(m); m = 1,2,...,M}. 

Let the set S = {0,1,...,N} and the iteration index p = 1. 
2. Apply the direct estimators in (18)-(19) to calculate the 

coefficients αĩ (i ∈ S). 
3. Find the most dominant coefficient αd̃, where |α̃d| ≥ |α̃i| (i ∈ S). 
4. If |αd| ≤ ε where ε is a pre-defined threshold, go to Step 9. 
5. Update the sampling points: 
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6. Scale the coefficient αd̃ to make the estimator unbiased: 
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where p is the iteration index and M is the total number of 
sampling points. 

7. Remove the index d from the set S, i.e., S = S−{d}. 
8. p = p+1 and return Step 2. 
9. Set αĩ = 0 (i ∈ S) and the approximated performance model is: 
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Algorithm 1 shows the simplified flow of the proposed 
recursive moment estimation where the model coefficients are 
repeatedly extracted. In each iteration, the dominant coefficient α̃d 
is identified and it is used to update the performance function 
f(∆Y) so that the estimation accuracy for the next step can be 
improved. The recursive iteration stops, if all dominant 
coefficients are extracted and the non-dominant coefficients are 
smaller than the pre-defined threshold ε. From this point of view, 
the proposed recursive moment estimation implicitly provides a 
screening capability. Namely, it identifies a subset of the critical 
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random variables that significantly impact the performance of 
interest. 

The scaling factor in (23) makes the estimator unbiased, i.e., 
E(α̃d) = αd. This property can be formally stated by the following 
theorem. The detailed proof of Theorem 2 is not included in this 
paper due to the limited number of available pages. 

Theorem 2: Given the linear performance model f(∆Y) in (3), the 
recursive estimators {αñ; n = 0,1,...,N} defined in Algorithm 1 are 
unbiased, i.e.: 
25 ( ) ( )NnaaE nn ,,1,0~ == . (25) 

The recursive estimators defined in Algorithm 1 are mutually 
coupled, since the estimator α̃i extracted at the p-th step is used to 
update the performance function f(∆Y) and, therefore, it directly 
impacts the estimator α̃j extracted at the (p+1)-th step. This 
coupling nature makes the proposed recursive estimators 
completely different from the direct estimators in (18)-(19). 

It is worth mentioning that the performance function f(∆Y) is 
updated in (22) using the estimated coefficient αd̃. Therefore, the 
component αd (d = 0) or αd⋅∆yd (d ≥ 1) may not be exactly 
removed from f(∆Y), depending on the accuracy of the estimator 
α̃d. However, such a performance update still significantly 
improves the estimation accuracy for most practical applications, 
as will be demonstrated by the numerical examples in Section 5. 
 
5. NUMERICAL EXAMPLES 

In this section we demonstrate the efficacy of STAR using 
several examples. All numerical experiments are performed on a 
2.8GHz Linux server. 
 
5.1 Simple Mathematical Example 

We first consider a simple example of the linear model: 
26 ( ) 25664164 321 +∆⋅+∆⋅+∆⋅=∆ yyyYf . (26) 
To make a full comparison between the direct estimators and the 
proposed recursive estimators, we repeatedly estimate the model 
coefficients by using different random sampling sets with 
different sizes. In addition, given a fixed number of sampling 
points, we independently draw the random samples and estimate 
the coefficients for 100 times so that the standard deviations of the 
estimators can be checked. If the standard deviations are large, it 
implies that the estimators are not sufficiently accurate. 

  
                            (a)                                                 (b) 

Fig 2.  Estimated model coefficients by STAR. (a) Direct 
estimators. (b) Recursive estimators. 

Fig 2 shows the simulation results for both estimators. Note 
that, in order to provide an accurate estimation for the smallest 
coefficient, the direct estimators require about 106 sampling 
points. The proposed recursive estimators, however, accurately 
capture all coefficients, even if the number of sampling points is 
as small as 100. In this example, given the same error tolerance, 
the proposed recursive estimators reduce the required number of 

sampling points by 104x over the traditional direct estimators. 
 
5.2 Low Noise Amplifier 

Fig 3 shows the simplified circuit schematic of a low noise 
amplifier (LNA) designed in a commercial 0.25µm CMOS 
process. In this example, we attempt to model the variations of the 
S parameters. The inter-die and intra-die variations of both 
active/passive devices and layout parasitics are considered. After 
PCA based on foundry data, 6,418 independent random variables 
are extracted to model these variations. 

 
Fig 3.  Simplified circuit schematic of a low noise amplifier. 

Table 1 compares the linear response surface modeling 
accuracy for four different techniques. The traditional approach 
creates a set of sampling points using a simplex-based DOE [16] 
and then solves all model coefficients from linear equations. 
STAR (Direct) and STAR (Recursive) apply the proposed 
statistical regression using the direct estimators and the recursive 
estimators, respectively. STAR (Screening) first fits a linear 
model using STAR (Recursive) and identifies a small subset of 
the critical variables. Next, the model coefficients of these critical 
variables are solved from a set of over-determined linear 
equations. The modeling errors in Table 1 are measured from 
1000 random samples that are independently collected for testing 
and comparison purpose. 

Table 1.  Linear response surface modeling error for LNA 

 Traditi
onal 

STAR 
(Direct) 

STAR 
(Recursive) 

STAR 
(Screening) 

S11 0.87% 42.37% 1.84% 1.06% 
S12 0.64% 25.55% 0.62% 0.45% 
S21 0.60% 26.36% 1.17% 0.62% 
S22 1.04% 49.69% 2.11% 1.38% 

Table 2.  Linear response surface modeling cost for LNA 

 Traditi
onal 

STAR 
(Direct) 

STAR 
(Recursive) 

STAR 
(Screening) 

# of Samples 6419 500 500 500 
Spectre (Sec.) 102639 7995 7995 7995 
Fitting (Sec.) 6.36 0.04 4.66 4.78 
Total (Sec.) 102646 7995 8000 8000 

 
As shown in Table 1, compared with STAR (Direct), STAR 

(Recursive) reduces the modeling errors by more than 20x. STAR 
(Screening) further improves the accuracy and makes the 
modeling error as small as that of the traditional approach. In this 
example, the modeling cost is dominated by the Spectre 
simulation time, as shown in Table 2. While the traditional 
response surface modeling takes more than one day to finish, 
STAR reduces the computational time to 2.2 hours (12x faster) by 
using a much smaller set of sampling points. 
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5.3 Simplified SRAM Read Path 
Shown in Fig 4 is the simplified circuit schematic of an 

SRAM read path designed in a commercial 65nm CMOS process. 
The simplified read path contains memory array, replica path for 
self-timing and sense amplifier. In this example, the performance 
of interest is the delay from the word line (WL) to the sense 
amplifier output (Out). Both inter-die and intra-die variations are 
considered. After PCA based on foundry data, 20,276 independent 
random variables are extracted to model these variations. 

 
Fig 4.  Simplified circuit schematic of an SRAM read path. 

The response surface model of the delay variation is extracted 
by three different techniques: the traditional approach using a 
simplex-based DOE [16], STAR (Direct) using the direct 
estimators and STAR (Recursive) using the recursive estimators. 
Fig 5 shows the magnitude of the estimated linear model 
coefficients. Note that the recursive estimators result in much 
smaller estimation noise than the direct estimators. In this 
example, STAR (Recursive) achieves more than 23x error 
reduction over STAR (Direct), as shown in Table 3. Compared 
with the traditional approach, STAR reduces the computational 
time from 6.4 days to 7.6 hours, yielding more than 20x runtime 
speedup. 

  
                            (a)                                                (b) 

Fig 5.  Magnitude of the estimated linear model coefficients. (a) 
Direct estimators. (b) Recursive estimators. 

Table 3.  Linear response surface modeling error and cost for 
SRAM read path 

 Traditional STAR 
(Direct) 

STAR 
(Recursive) 

Modeling Error 0.84% 44.38% 1.89% 
# of Samples 20277 1000 1000 
Spectre (Sec.) 552751 27260 27260 
Fitting (Sec.) 23.57 0.08 7.65 
Total (Sec.) 552774 27260 27268 

 
6. CONCLUSIONS 

In this paper we propose a novel statistical regression (STAR) 
approach to efficiently extract high-dimensional linear/nonlinear 
response surface models. STAR utilizes a new recursive estimator 
to accurately determine model coefficients by moment matching. 

The proposed recursive estimator is facilitated by exploiting the 
interaction between different moment estimators. It offers more 
than 20x error reduction over the direct estimator and, therefore, 
makes STAR of practical interest and utility. Our numerical 
examples demonstrate that compared with the traditional response 
surface modeling, STAR achieves more than 20x runtime speedup 
without substantially increasing modeling error. STAR can be 
further incorporated into a statistical analysis/optimization 
environment for accurate and efficient parametric yield 
analysis/optimization. 
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