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ABSTRACT 
In this paper we propose a novel parameterized macromodeling 
technique for analog circuits. Unlike traditional macromodels that 
are only extracted for a small variation space, our proposed 
approach captures a significantly larger analog design space to 
facilitate system-level design exploration. Combining a novel 
piece-wise approximation algorithm and a new multi-point model-
order-reduction approach, the proposed method generates compact 
macromodels covering the entire feasible design space. Our 
experiments demonstrate that using such models can achieve more 
than 60× speed-up while incurring less than 4% overall error when 
varying design parameters by an order of magnitude. 

Categories and Subject Descriptors: 
B.7.2 [Integrated Circuits]: Design Aids – simulation 

General Terms: Algorithms, Design 

Keywords: Analog macromodeling, parameterized macromodel 

1. INTRODUCTION 
As the complexity of on-chip analog systems continues to increase, 
designing and optimizing these large-size systems become 
increasingly challenging. One major difficulty of analog system 
optimization stems from the expensive performance evaluation, 
which requires SPICE simulation of large transistor-level netlists 
and is impractical to be included into an optimization loop. 
In order to make analog optimization computationally feasible, 
various modeling techniques have been proposed. One well-
known approach is to approximate the block-level performance 
(e.g., amplifier gain) as a function of design variables [1–3]. 
However, a complete analog system (e.g., ADC, PLL) consists of 
dozens, or even hundreds of building blocks. Directly building the 
performance model for the entire system is too expensive, since it 
requires thousands or even millions of simulation samples [3]. 
Conversely, using block-level performance models to evaluate 
system-level performance is not easy, since the relation between 
block-level and system-level performances is typically unknown. 
In this paper, we propose to systematically create block-level 
parameterized macromodels that are suitable for analog system-
level optimization. Our proposed macromodel attempts to 

approximate the input-output relationship of an analog block by a 
set of simplified differential algebraic equations. These block-level 
macromodels can be interconnected to facilitate fast system-level 
simulation. In addition, unlike traditional analog macromodels that 
have been mostly applied for bottom-up verification [1], the 
proposed macromodel is parameterized as a function of design 
variables such that it can facilitate top-down design exploration. 
To create such parameterized macromodels, the challenging 
problem is how to accurately capture a large design space where 
the design variables can vary by orders of magnitude. The author 
of [4] demonstrated that for most analog circuits, a number of 
implicit sizing rules must be enforced to guarantee circuit 
functionality. Therefore macromodels should be created over this 
constrained design space, or feasible region only. As we will 
demonstrate in this paper, a low-dimensional projection space can 
be found for parameterized order reduction, if and only if the 
analog circuit stays within its feasible region.  
The proposed analog macromodeling algorithm consists of two 
steps. Firstly, a novel algorithm is applied to automatically and 
recursively partition the large design space into small portions. 
The partitioning is formulated as a convex programming problem 
such that it can be solved both efficiently and robustly. Thereby a 
unified global macromodel is constructed as an accurate piece-
wise approximation over the entire feasible region. Such a piece-
wise approximation is necessary in our application, since most 
analog circuit equations are strongly nonlinear in feasible region 
and cannot be easily approximated by low-order polynomials.  
Next, parameterized order reduction is applied to create a simple, 
yet accurate macromodel. We extend the single-point multi-
parameter moment matching proposed in [5–6] to multiple-point 
cases such that creating a unified macromodel over the large 
design space becomes feasible. 

2. BACKGROUND 
2.1 Feasible Region 
For analog design, after the circuit topology is decided, the 
designer will try to improve the performance of interest by 
optimizing several design variables, such as transistor sizes. In 
this paper, we assume that there are in total k design 
variables 1
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The space spanned by the design variables is referred to as the 
design space. In practice, a set of constraints must be applied to 
the design variables, which can be derived from physical 
requirements such as the minimal transistor size, or from 
functional requirements such as the bias condition for keeping a 
transistor in saturation [4]. These constraints generally can be 
approximated by posynomial functions in the form of [2]: 
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where ci is real non-negative and 1
21 ],,,[ ×∈= kT
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A design satisfying all the constraints is considered functional. 
The design space defined by those constraints is referred to as the 
feasible region [4], denoted as }1 ,1)(|{ KjpfpP j L=≤= . 

2.2 Parameterized Macromodel 
For simplicity we limit our discussion in this paper to linear time-
invariant (LTI) macromodeling. However, it should be noted that 
the proposed methodology can be extended to weakly nonlinear 
and/or time-variant macromodeling with minor modification. 
In general, the LTI behavior of an analog circuit can be modeled 
by a set of linearized equations at the DC bias point: 
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where 1×∈ mRu , 1×∈ lRy , 1×∈ NRx ; C, G, B and LT are 
matrices with appropriate dimensions. For a particular design, 
equation (2) can be obtained by using the small-signal device 
models and the modified nodal analysis (MNA) method. The 
resulting system matrices have deterministic values. 
In design exploration, the values of the matrices C and G are 
defined as functions of the design variables (i.e., C(p) and G(p)) 
and they should be optimized to improve circuit performance. The 
matrices B and LT are uniquely determined by the circuit topology 
and therefore remain constant. 
One common method to build parameterized macromodel is to 
approximate matrices C and G by polynomials [5–7]. For example, 
the first-order Taylor expansion of both matrices yields: 
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where C0, Ci, G0 and Gi are coefficient matrices. 

2.3 Parameterized Order Reduction 
To speed-up the simulation of large-scale circuits, model order 
reduction (MOR) is widely employed. The purpose of MOR is to 
generate a simplified system that approximates the original system, 
such that the evaluation cost can be reduced. Among various order 
reduction techniques, projection based methods are commonly 
used, such as PRIMA [8] or PMTBR [9]. In such methods, the 
original system (2) is projected onto a low-dimensional subspace 
to form the reduced system:  
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where 1ˆ ×∈ nRx  (n<N). 
Similarly, several order-reduction techniques have been developed 
recently to model large-scale parameterized systems [5–7]. For 
example, the CORE algorithm [5] uses a two-step scheme to 
match the multi-parameter moments. In the first step, an 
augmented system is formulated to explicitly match the moments 
of the parameters. Then in the second step, projection based 
method is applied to construct the reduced model. 

3. PARAMETERIZED MACROMODEL 
GENERATION 
Our proposed macromodeling technique is facilitated by two novel 

techniques: 1) a recursive partitioning algorithm for piece-wise 
linear (or polynomial) approximation, and 2) a multi-point 
moment matching algorithm for parameterized model order 
reduction. In the following subsections we describe the details of 
these algorithms. 

3.1 Design Space Partitioning and Model Fitting 
The polynomial models (3) for matrices C and G were originally 
developed for interconnect analysis under process variations, 
where the parameters normally vary by 10~20% [5]. The situation, 
however, is quite different in analog macromodeling, where design 
variables can vary by 10× or more within the feasible region. In 
this case, the system response may exhibit strong nonlinearity with 
respect to the design variables, which cannot be approximated as a 
low-order polynomial. High order polynomial can be employed to 
improve the accuracy; however, it can be extremely expensive and 
computationally infeasible. To resolve this issue, we propose a 
novel piece-wise approximation technique to adaptively partition 
the large design space into multiple small spaces where the system 
response is weakly nonlinear and can be effectively approximated 
by the model template (3). 
The partition process consists of three steps. Firstly we 
approximate the posynomial constraints in (1) by a set of linear 
constraints, resulting in a polytope in the design space. This 
enables us to formulate the partitioning problem as a convex 
optimization which can be solved efficiently and robustly. Such a 
convex partition is applied recursively until the predefined error 
tolerance is satisfied. Finally, when the partitioning is completed, 
we use a piecewise template to fit a global, parameterized model. 
1) Constraint approximation 
Assuming that all the design variables are positive (if not, simple 
shifting can be applied), we can convert the posynomial constraint 
(1) into a logarithmic space as: 
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where )log(ppL =  and )log( ii c=β  (both are element-wise). The 
author of [10] shows an algorithm to approximate an inequality in 
the form of (5) by a set of linear inequalities with controllable 
error bound. By such method, we can convert the constraints 
defining the feasible region into a set of linear constraints as: 
 jL

T
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which actually define a polytope. The tilde superscripts are used 
since some auxiliary variables are introduced in the approximation. 
2) Adaptive partitioning 
Intuitively, the partition process can be described as the following 
steps. (a) Firstly the inscribed ellipsoid of the polytope is found, 
which roughly approximates the shape of the polytope. (b) Next, 
we choose a hyperplane passing the center of the ellipsoid and 
divide the polytope into two pieces of similar volumes. (c) This 
procedure is recursively applied to each piece until the predefined 
error tolerance is satisfied. The process is illustrated in Fig. 1 

Assume that the ellipsoid is represented as { }1  
2
≤+=Φ vdEv  

where d is its center. For the polytope defined in (6), the problem 
of finding the inscribed ellipsoid is equivalent to maximizing the 
volume of Φ while constraining it inside the polytope, which can 
be formulated as the following optimization problem: 
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This is a convex optimization problem and can be effectively 
solved by the interior-point or other algorithms [11]. 
When the inscribed ellipsoid is available, we can decide a 
direction τ and divide the ellipsoid (and the polytope) by the 
hyperplane orthogonal to τ. The direction should be chosen as in 
which the system response exhibit large nonlinearity. We use the 
fitting error to decide such a direction. First, we choose the k

~
2  

end-points of the axes and the center of current ellipsoid as 
sampling points. Based on these 1

~
2 +k  samples, a simple linear 

model is fitted using the template in (3). Then, this local model is 
evaluated at the sampling points; and we pick the axis with the 
largest error εmax as the partition direction. 

The hyperplane is then defined as 0~ =L
T pτ . We can obtain two 

new polytopes by inserting constraints 0~ ≤L
T pτ  and 0~ ≥L

T pτ  
into the current constraint set respectively. Then the above 
procedures are recursively applied to each new polytope until the 
predefined error tolerance is satisfied. 
3) Global model fitting 
We assume that we have in total q small partitions. The center of 
the ellipsoid associated with each local space will be used as one 
expansion point for fitting the matrices C and G. We replace the 
template in (3) with the following multi-point version: 
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where w(t) is the weighting function. (G-related equation is defined 
in the same pattern as C and is henceforth ignored.) Note that the 
bracketed superscript or subscript indicates the corresponding 
expansion point. The weighting function is defined as [12]: 
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where λ is a constant for shape-tuning. By this weighting function, 
the global model is represented as the weighted sum of all the 
local models. It is obvious that when evaluating the model at a 
certain point, the local models at nearby spaces will be assigned a 
large weight. This is based on the understanding that the matrices 
will share high similarities for systems in close range. 
In the fitting process, we can reuse the sampling points used for 
local fitting and evaluation in the partition process. This will save 
the total cost for building the macromodel. 

3.2 Multi-point Order Reduction 
Next, we will demonstrate our proposed macromodeling technique 

using a modified CORE algorithm. However, it should be noted 
that other parameterized MOR algorithms (e.g., variational 
PMTBR [6]) can also be utilized in our proposed flow. 
Similar to the system matrices, state variable x is now expanded as: 
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In the step of explicit moment matching, the augmented system is 
constructed to match the moments of design variables at every 
expansion points, i.e., )(

0
tx  and )(t

ix  for every t and i. The 
augmented system is formulated as: 
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following notations have been used for simplicity: )( )()( t
L
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For the derivative term MCi, the close-form expression can be 
obtained from (9) and (10) and is neglected here. Similar to the 
original version, the first equation of (11) is not parameterized. 
Therefore we can use any conventional method in the second-step 
moment matching such as PRIMA [8] or PMTBR [9]. 
For a large, nonlinear analog design space, we can always divide it 
into small slices using the adaptive partitioning algorithm such 
that the error of the global piece-wise model will stay in the same 
level as in the small local spaces. This feature makes the 
macromodeling methodology applicable to the large design space 
in the system-level design exploration. Furthermore, by the multi-
point reduction scheme, a low-order reduced system can be 
constructed to accurately capture the dominant circuit response. 
The obtained macromodel can greatly reduce the evaluation cost, 
while simultaneously providing sufficient accuracy. 

4. NUMERICAL EXAMPLES 
In this section, we demonstrate the efficacy of the proposed 
macromodeling approach using two examples, a two-stage op-amp 
and a transconductor, as shown in Fig. 2. Both examples are 
implemented in the IBM 0.25μm BiCMOS process. 

4.1 Two-stage Op-amp 
For this design, we recognize 7 design variables. And the expected 
ranges of some of these design variables are as much as 10×. To 
identify the feasible region, 21 constraints are included, which 

 
Figure 1     Design space partitioning. 
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guarantee the following requirements: (a) all the transistors are in 
saturation region; (b) a minimum overdrive voltage is provided for 
each transistor; (c) systematic offset voltage is minimized. 
Macromodels are built by different methodologies. To evaluate 
each macromodel, a Monte Carlo (MC) simulation with 1000 
randomly selected designs is performed. The simulation error is 
then calculated against HSPICE simulation results.  
We first fit the linear model for the entire feasible region. As 
shown in Table 1, this single-partition (SP) model yields 
significant errors. Next, we apply the proposed macromodeling 
flow to the op-amp circuit and generate the multi-partition (MP) 
model. The feasible region is adaptively divided into 25 partitions 
and a uniform model is created. The parameterized order reduction 
method is then applied to reduce the model order from 51 to 16. 
As summarized in Table 1, the MP fitting template is much more 
effective in characterizing such a large design space. The proposed 
macromodeling flow is able to simultaneously provide model 
accuracy and compactness over the entire feasible design space. 
In addition, for the MC simulation with 1000 sample designs, 
HSPICE requires 1160.0 seconds. Meanwhile, using the MP model 
needs only 15.3 seconds, which provides over 60× improvement in 
runtime. This indicates that by utilizing the parameterized 
macromodel in the system-level design exploration, the design 
process can be significantly accelerated. 

Table 1     Macromodeling results 
Circuit op-amp transconductor 
Model SP MP SP MP 
# of partitions 1 25 1 16 
Fitting error > 50% 0.86% > 50% 1.37%Fitting 
Model order 51 51 73 73 

2nd step ––– PRIMA ––– PMTBR
Final order ––– 16 ––– 16 MOR 
MOR error ––– 1.78% ––– 3.60%

Overall error ––– 1.74% ––– 3.86%

4.2 Transconductor 
Our second example is the transconductor circuit [13] with 8 
design variables and 24 constraints. Again, some design 
parameters can range more than one order of magnitude. 
Similarly, we build the MP model using the proposed approach. A 
SP model is constructed for comparison. 1000 designs randomly 
selected in the feasible region are employed to evaluate the model 
accuracy against the HSPICE transistor-level simulations. The 
results are summarized in Table 1 as well. 

5. CONCLUSIONS 
In this paper we proposed a novel technique to systematically 
build parameterized macromodels for analog circuit blocks. Unlike 
traditional macromodels that are extracted only for a fixed design 
for bottom-up verification, our macromodel is parameterized as a 
function of design variables to facilitate system-level trade-off 
analysis and optimization. In the macromodeling process, the 
feasible design space is first identified and recursively partitioned 
into smaller slices. A unified piece-wise model is then built such 
that the error will not scale up with the size of design space. More 
importantly, the high-dimensional design space partition problem 
is formulated as a convex optimization which can be reliably 
solved to find the optimal partitioning. After the partition process, 
a two-step parameterized order reduction technique is applied to 
effectively compress the obtained model while retaining good 
accuracy. It follows that the resulting macromodel can provide 
accurate system-level simulation results at a substantially lower 
evaluation cost. 
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Figure 2     Schematics of (a) a two-stage op-amp,  
and (b) a transconductor. 
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