
 1

Efficient Parametric Yield Extraction for Multiple Correlated Non-
Normal Performance Distributions of Analog/RF Circuits

Xin Li and Lawrence T. Pileggi 
Department of ECE, Carnegie Mellon University 

5000 Forbes Avenue, Pittsburgh, PA 15213, USA 
{xinli, pileggi}@ece.cmu.edu 

 
ABSTRACT 
In this paper we propose an efficient numerical algorithm to 
estimate the parametric yield of analog/RF circuits with 
consideration of large-scale process variations. Unlike many 
traditional approaches that assume Normal performance 
distributions, the proposed approach is especially developed to 
handle multiple correlated non-Normal performance distributions, 
thereby providing better accuracy than other traditional 
techniques. Starting from a set of quadratic performance models, 
the proposed parametric yield extraction conceptually maps 
multiple correlated performance constraints to a single auxiliary 
constraint using a MAX(•) operator. As such, the parametric yield 
is uniquely determined by the probability distribution of the 
auxiliary constraint and, therefore, can be easily computed. In 
addition, a novel second-order statistical Taylor expansion is 
proposed for an analytical MAX(•) approximation, facilitating fast 
yield estimation. Our numerical examples in a commercial 
BiCMOS process demonstrate that the proposed algorithm 
provides 2~3x error reduction compared with a Normal-
distribution-based method, while achieving orders of magnitude 
more efficiency than the Monte Carlo analysis with 104 samples. 
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Algorithms 
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1. INTRODUCTION 

The continuous scaling of IC feature size has resulted in 
relatively large process variations [1]. For analog/RF circuits 
designed in sub-90nm technology nodes, parametric yield loss due 
to random variations becomes a significant or even dominant 
portion of the total yield loss. Therefore, accurately predicting 
parametric yield with consideration of large-scale process 
variations becomes an important task in today’s robust analog/RF 
design flow. 

During the past decade, various techniques have been 
proposed for statistical analysis of analog/RF circuits [2]-[8]. 
Most of these works [2]-[7] apply response surface modeling to 
approximate the performances of interest (e.g., gain, bandwidth, 
etc.) as polynomial (e.g., linear or quadratic) functions of process 

parameters (e.g., VTH, TOX, etc.). These response surface models 
are then utilized to estimate the parametric yield of a given circuit 
design. 

Many previous response surface modeling techniques (e.g., 
[3]-[4]) rely on linear approximation, which is efficient and 
accurate when process variations are sufficiently small. Given the 
increasingly larger variations in nanoscale technologies, however, 
such a linear approximation can yield inaccurate results, 
especially because many analog/RF performances can be strongly 
nonlinear in the presence of large-scale variations. As will be 
demonstrated in Section 4, a 10% absolute error is observed for 
parametric yield estimation by using the linear approximation for 
a commercial 0.25µm BiCMOS process. It should be noted that 
such an error is expected to dramatically increase as the feature 
size further scales to 65nm and below. 

To achieve higher accuracy, quadratic response surface 
modeling [5]-[7] can be used, but it makes parametric yield 
estimation much more difficult. While linear response surface 
models easily map a set of performance constraints to a well-
defined polyhedron (called feasible space) in the process 
parameter space, such a mapping becomes nonlinear for quadratic 
models. In general, when quadratic response surface modeling is 
applied, the feasible space can be non-convex or even non-
continuous. Therefore, the parametric yield, which equals the 
integral of the probability density function over the feasible space, 
becomes much more difficult to compute [8]. 

The authors of [5]-[6] apply Monte Carlo analysis to estimate 
the parametric yield defined by a set of quadratic constraints. 
Traditionally, the quadratic response surface modeling cost 
dominates the overall computational cost, since it requires running 
expensive transistor-level simulations to generate a number of 
sampling points. In such cases, the Monte Carlo analysis cost is 
negligible. However, the recent advances in analog performance 
macromodeling and statistical circuit optimization suggest a need 
to revisit this assumption. 

Firstly, today’s analog modeling techniques make it possible 
to accurately extract unified performance macromodels over a 
large design space [9]-[10]. These performance macromodels are 
extracted only once and then used repeatedly for a given circuit 
topology. As such, the sampling points required by response 
surface modeling can be created using the pre-extracted 
performance macromodels rather than expensive transistor-level 
simulations, resulting in significant reduction of the response 
surface modeling cost. 

Most importantly, for statistical circuit optimization, response 
surface models are extracted only once in a local design space and 
then used to estimate the parametric yield values at different 
design points [4], [7]. In this case, the yield estimation takes a 
large portion of the total computational cost, since it is repeatedly 
performed inside the optimization loop. For example, today’s 
commercial analog sizing tool requires visiting up to 105 design 
points for one synthesis run [9]. In this case, even if one Monte 
Carlo analysis only takes 5 seconds, it will take 5.8 days to 
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evaluate the parametric yield for all 105 design points! 
The authors of [11] propose an asymptotic probability 

extraction algorithm (APEX) to estimate the performance 
distribution of a given quadratic response surface model. The 
APEX approach, however, can only be applied to a single 
performance metric, while the parametric yield values of most 
analog/RF circuits are defined by multiple performance 
constraints. The challenging problem here is how to 
simultaneously consider multiple and correlated performance 
metrics whose probability distributions are all non-Normal. 

In this paper we propose a novel algorithm for efficient 
parametric yield estimation of multiple correlated non-Normal 
performance distributions. The proposed algorithm conceptually 
maps multiple performance constraints to a single auxiliary 
constraint using a MAX(•) operator. The auxiliary constraint is 
analytically approximated as a quadratic function of process 
parameters. As such, the parametric yield is uniquely determined 
by a single quadratic constraint and, therefore, can be easily 
estimated using the APEX algorithm [11] that is based on high-
order moment matching. 

An important contribution of this paper is to propose a 
second-order statistical Taylor expansion for the MAX(•) 
approximation. The proposed technique is derived from the 
statistical sensitivity concept proposed for timing analysis [12] 
and is especially tuned for analog/RF applications. Unlike most 
statistical timing analysis algorithms where the MAX(•) operator 
is approximated linearly [13]-[16], we approximate MAX(•) as a 
quadratic function to capture the nonlinearities that are observed 
in most analog/RF performance variations. In addition, the 
proposed MAX(•) approximation has an analytical formulation 
and, therefore, is much more efficient than Monte Carlo analysis. 
As will be demonstrated by numerical examples in Section 4, the 
proposed yield estimation algorithm can achieve up to 200x 
speed-up over the Monte Carlo analysis with 104 random samples. 

The remainder of this paper is organized as follows. In 
Section 2 we review the background materials and then propose 
our parametric yield estimation algorithm in Section 3. The 
efficacy of the proposed algorithm is demonstrated by numerical 
examples in Section 4. Finally, we conclude in Section 5. 
 
2. BACKGROUND 
2.1 Response Surface Modeling 

Given a circuit topology, the circuit performance (e.g. gain, 
bandwidth, etc.) is a function of both design parameters (e.g. bias 
current, transistor sizes, etc.) and process parameters (e.g., VTH, 
TOX, etc.). The design parameters are optimized and fixed during 
the design phase; however, the process parameters must be 
modeled as random variables to account for any uncertain 
manufacturing fluctuations. Given a set of fixed design 
parameters, the circuit performance f can be approximated by a 
linear response surface model [3]-[4]: 
 ( ) CBf T +⋅= εε  (1) 
where ε = [ε1, ε2, ..., εN]T denotes N random variables to model 
process variations, and B ∈ RN and C ∈ R are the model 
coefficients. The process variations in (1), i.e. ε, are often 
modeled as zero-mean Normal distributions. 

The linear response surface model in (1) is accurate when 
process variations are small. However, the large-scale variations 
that are expected for nanoscale technologies suggest that applying 
quadratic response surface models is required to provide sufficient 
accuracy [5]-[7]: 

 ( ) CBAf TT +⋅+⋅⋅= εεεε  (2) 
where A ∈ RN×N, B ∈ RN and C ∈ R are the model coefficients. 
 
2.2 Linear MAX(•) Approximation 

The linear MAX(•) approximation has been extensively 
studied for statistical timing analysis [13]-[16]. Given two random 
variables x and y, the linear MAX(•) approximation attempts to 
approximate MAX(x, y) as a linear function of x and y, i.e.: 
 ( ) γβα +⋅+⋅= yxyxMAX ,  (3) 
where α and β are determined by the following probabilities: 

 
( )
( )xyPROB

yxPROB
≥=
≥=

β
α

 (4) 

and the constant term γ is determined by matching the mean 
value: 
 ( )[ ] [ ] [ ]yExEyxMAXE ⋅−⋅−= βαγ , . (5) 
In (4)-(5), PROB(•) represents the probability and E(•) stands for 
the expected value. 

The authors in [12] further prove that the probabilities in (4) 
are equal to the first-order statistical sensitivities: 

 

( ) ( )[ ]{ }
[ ]{ }

( ) ( )[ ]{ }
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Although the MAX(•) operator is not analytical (i.e., does not have 
continuous derivatives), it can be statistically approximated as the 
form of Eqn. (3)-(6) that is similar to the traditional Taylor 
expansion. We refer to (3) as the first-order statistical Taylor 
expansion in this paper. 

The first-order statistical Taylor expansion has been widely 
applied to statistical timing analysis where digital delay variations 
can be accurately captured by linear approximation. Most 
analog/RF performance variations, however, are strongly 
nonlinear in the presence of large-scale process variations and 
cannot be accurately approximated by such linear models. This, in 
turn, motivates us to propose a novel second-order (i.e., quadratic) 
statistical Taylor expansion in this paper for analog/RF 
applications. 
 
3. PARAMETRIC YIELD EXTRACTION 

The proposed parametric yield extraction is facilitated by two 
key techniques, including (1) an auxiliary constraint formulation 
using a MAX(•) operator; and (2) a second-order statistical Taylor 
expansion for the MAX(•) approximation. In this section we 
describe the details of these algorithms and highlight their 
novelty. 
 
3.1 Parametric Yield Formulation 

The first step of our parametric yield extraction is to 
approximate all analog/RF performance metrics as quadratic 
response surface models. Such response surface modeling requires 
a number of sampling points and then solves the unknown model 
coefficients from a list of linear equations [5]-[7]. Based on these 
extracted response surface models, all analog/RF performance 
constraints can be expressed as the following standard form: 
 ( ) ( )Kkfk ,,2,10 =≤ε  (7) 
where fk(ε) represents the response surface model of the k-th 
performance metric, and K is the total number of performance 
constraints. The standard form in (7) is ready to handle several 
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extensions. For example, fk(ε) ≤ C and fk(ε) ≥ C can be expressed 
as fk(ε) – C ≤ 0 and –fk(ε) + C ≤ 0, respectively. 

The parametric yield is equal to the probability that all 
performance constraints are satisfied, i.e.: 
 ( ) ( ) ( )[ ]0&0&0 21 ≤≤≤= εεε KfffPROBYield . (8) 
We define an additional auxiliary performance constraint: 
 ( ) ( ) ( ) ( )[ ]εεεε Kaux fffMAXf  , , , 21= . (9) 
Eqn. (9) maps multiple performance metrics to a single auxiliary 
performance metric using a MAX(•) operator. It is straightforward 
to verify that the parametric yield defined in (8) can be uniquely 
determined by the auxiliary constraint, i.e.: 
 ( )[ ]0≤= εauxfPROBYield . (10) 
If the auxiliary performance faux is approximated as a quadratic 
function of ε, the probability distribution of faux(ε) and, 
consequently, the parametric yield can be easily estimated by 
using the APEX algorithm proposed in [11]. Next, we propose a 
novel second-order statistical Taylor expansion to efficiently 
approximate the MAX(•) operator in (9). 
 
3.2 Quadratic MAX(•) Approximation 

In this sub-section we focus on the MAX(•) approximation of 
two random variables, i.e., MAX(x, y), since a multi-variable 
operation can be easily broken down into multiple two-variable 
cases. Such a two-variable MAX(•) operator can be further 
transformed to a single-variable one: 
 ( ) ( )zMAXxyxMAX ,0, +=  (11) 
where: 
 xyz −= . (12) 
The reminder of this sub-section will derive the second-order 
statistical Taylor expansion for the single-variable operator 
MAX(0, z). 

Extending the statistical Taylor expansion in (3)-(6) to second 
order and expanding MAX(0, z) at the expansion point E[z] yield: 
 ( ) [ ]{ } [ ]{ } 01

2
25.0,0 λλλ +−⋅+−⋅⋅= zEzzEzzMAX  (13) 

where the linear and quadratic coefficients λ1 and λ2 are 
determined by the statistical derivatives: 

 ( )[ ]{ }
[ ]{ }zEd

zMAXEd ,0
1 =λ  (14) 

 ( )[ ]{ }
[ ]{ } [ ]{ }zEd

d

zEd

zMAXEd 1
2

2

2
,0 λλ ==  (15) 

and the constant term λ0 is determined by matching the mean 
value: 

 ( )[ ] [ ]{ }[ ]2
20 5.0,0 zEzEzMAXE −⋅⋅−= λλ . (16) 

Next, we show how to compute the coefficients λ0, λ1 and λ2 in 
(14)-(16) efficiently. 

A. Linear Coefficient λ1 
As summarized in Section 2.2, the first-order derivative in 

(14) is equal to the probability: 

 ( )[ ]{ }
[ ]{ }

( ) ( )010,0
1 zCDFzPROB

zEd

zMAXEd −=≥==λ  (17) 

where CDFz(•) stands for the cumulative distribution function of 
the random variable z. Since z is equal to y – x in (12), where x 
and y are two performance metrics approximated as quadratic 
models, z is also a quadratic function of the random variations ε, 
i.e.: 

 ( ) z
T
zz

T CBAz +⋅+⋅⋅= εεεε  (18) 
where Az, Bz and Cz are the model coefficients. Given (18), the 
cumulative distribution function of z can be extracted using the 
APEX algorithm [11]. 

B. Quadratic Coefficient λ2 
Substituting (17) into (15) yields: 

 
( )[ ]

[ ]{ }zEd

CDFd z 01
2

−
=λ . (19) 

To calculate the derivative value in (19), we re-write z as: 
 δµ +=z  (20) 
where µ is the mean value of z and δ = z – µ is a random variable 
with zero mean. Substituting (20) into (19) yields: 

 

( )[ ] ( )[ ]

( ) ( ) ( )00

101
2

zPDFPDFPDF
d

CDFd

d

CDFd

==−=

−−
=

−
=

+

+

δµδ

δδµ

µ
µ

µ
µ

λ
 (21) 

where PDFz(•) stands for the probability density function of the 
random variable z. Again, the probability distribution of z can be 
extracted by APEX [11] to calculate λ2 in (21). 

Importantly, the quadratic coefficient λ2 in (21) has two 
interesting properties: 

• λ2 = PDFz(0) is non-negative. Intuitively, as shown in Fig. 1, 
the function MAX(0, z) is convex and, therefore, the quadratic 
model coefficient should be non-negative [17]. 

0 z

MAX(0, z)

 
Fig. 1. The single variable function MAX(0, z). 

• λ2 indicates the nonlinearity. Considering the first two cases in 
Fig. 2, MAX(0, z) can be accurately approximated as linear 
models, i.e., MAX(0, z) ≈ 0 and MAX(0, z) ≈ z respectively. 
This is consistent with the fact that PDFz(0) ≈ 0 in both cases. 
In the third case of Fig. 2, however, MAX(0, z) is strongly 
nonlinear, corresponding to a non-zero PDFz(0). 

MAX(0, z) is 
almost linear

0 z

PDF(z)

0 z

PDF(z)

0 z

PDF(z)
MAX(0, z) is 

strongly nonlinear

Case 1

Case 2

Case 3

 
Fig. 2. Three different cases for the MAX(0, z) approximation. 

C. Constant Term λ0 
After λ1 and λ2 are extracted, computing the constant term λ0 
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in (16) requires further knowing E[MAX(0, z)] and E[{z – E[z]}2]. 
E[MAX(0, z)] can be calculated using the following one-
dimensional numerical integration: 

 ( )[ ] ( )∫
+∞

⋅⋅=
0

,0 τττ dPDFzMAXE z  (22) 

Since z is a quadratic function of ε shown in (18), its second-
order central moment can be determined by the following 
analytical equation [16]: 

 [ ]{ }[ ] ( )zzz
T
z AΣAΣTRACEBΣBzzE ⋅⋅⋅⋅+⋅⋅=− 22  (23) 

where TRACE(•) represents the trace of a matrix (the sum of all 
diagonal elements), and Σ stands for the correlation matrix of the 
random process variations ε. Substituting (21) and (22)-(23) into 
(16) yields the constant term λ0. 
 

After the coefficients λ0, λ1 and λ2 are known, MAX(0, z) in 
(13) can be approximated as a quadratic function of the random 
variations ε by substituting (18) into (13) and ignoring all high-
order terms. 
 
3.3 Summary 

1. Start from a set of quadratic response surface models {fk(ε), k 
= 1, 2, ..., K}. 

2. Represent all analog/RF performance constraints as the 
standard form in (7). 

3. Set faux(ε) = f1(ε). 
 For k = 2, 3, ..., K 
4.  Represent z(ε) = faux(ε) – fk(ε) as the form of (18). 
5.  Compute the random distribution of z using APEX [11]. 
6.  Compute the coefficients λ0, λ1 and λ2 using (14)-(23). 
7.  Compute MAX(0, z) by substituting (18) into (13). 
8.  Compute faux(ε) = fk(ε) + MAX(0, z). 
 End For 
9. Compute the random distribution of faux(ε) using APEX [11]. 
10. Compute the parametric yield defined in (10). 

Fig. 3. A simplified flow of the proposed parametric yield 
extraction. 

A simplified flow of the proposed parametric yield extraction 
is summarized in Fig. 3. Our proposed algorithm only involves 
APEX [11], one-dimensional numerical integration in (22) and 
other simple analytical operations and, therefore, is 
computationally efficient. As will be demonstrated by the 
numerical examples in Section 4, the proposed parametric yield 
extraction can achieve up to 200x speed-up over the Monte Carlo 
analysis with 104 random samples. 
 
4. NUMERICAL EXAMPLES 

In this section, we demonstrate the efficacy of the proposed 
algorithm using several analog/RF circuits. All circuits are 
implemented in a commercial 0.25µm BiCMOS process. The 
numerical experiments in this section are performed on a LINUX 
2.8 GHz server. 
 
4.1 A Simple Example 

We first consider a simple example to approximate MAX(x, y) 
where x ~ N(0, 1/3) and y ~ N(0, 1) are independent Normal 
distributions. Fig. 4 shows the probability density functions of the 
random variables x and y. In this example, MAX(x, y) is strongly 
nonlinear, because the probability density functions of x and y are 

significantly overlapped. It, in turn, allows us to test the efficacy 
of the proposed MAX(•) approximation and compare it with other 
traditional techniques. 

Three different approaches, namely, the linear approximation, 
the proposed second-order statistical Taylor expansion and the 
Monte Carlo analysis with 104 random samples, are applied to 
estimate the probability distribution of MAX(x, y). Fig. 5 shows 
the probability density functions estimated by these techniques. In 
this example, the MAX(x, y) distribution is not symmetric due to 
the nonlinearity. The traditional linear approximation cannot 
capture such a non-zero skewness and, therefore, results in large 
approximation error, especially at both tails of the probability 
density function. The proposed quadratic approximation, 
however, accurately models the non-zero skewness by including 
the second-order terms. 
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Fig. 4. The probability density functions of x and y. 
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Fig. 5. The estimated probability density functions of MAX(x, y). 

 
4.2 Low Noise Amplifier 

A. Response Surface Modeling 

 
Fig. 6. The circuit schematic of a low noise amplifier. 

Shown in Fig. 6 is a low noise amplifier designed in a 
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commercial BiCMOS 0.25µm process. In this example, the 
variations on both MOS transistors and passive components (i.e., 
resistors, capacitors and inductors) are considered. The probability 
distribution and correlation of these variations are provided in the 
process design kit. After PCA analysis, 8 principal factors are 
identified to model the critical process variations. 

The performance of the LNA is characterized by 8 
specifications. Given a fixed circuit design, each circuit 
performance is a function of process variations. We approximate 
these performance functions by linear and quadratic response 
surface models respectively. Table 1 shows the response surface 
modeling error for all these 8 performance metrics. In this 
example, the quadratic modeling error is 3.5x smaller than the 
linear modeling error on average. 

Table 1. The response surface modeling error for LNA 
Performance Linear Quadratic 

F0 1.76% 0.32% 
S11 6.40% 1.60% 
S12 3.44% 0.80% 
S21 2.94% 1.16% 
S22 5.56% 3.67% 
NF 2.38% 1.46% 
IIP3 4.49% 1.64% 

Power 3.79% 0.66% 
 

It is worth mentioning that while the linear modeling error in 
this example is not extremely large, as IC technologies are scaled 
to 65nm and below, process variations will become relatively 
larger, thereby making the nonlinear terms in the quadratic model 
even more important. 

B. Parametric Yield Extraction 
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Fig. 7. The absolute yield estimation error for LNA. 

Table 2. The yield estimation cost for LNA 
Computational Time 

Algorithm One Design 
Point 

One Synthesis Run (Visit 
105 Design Points) 

Linear 0.002 Seconds 3.33 Minutes 
Quadratic 0.021 Seconds 35.0 Minutes 

Monte Carlo w/ 
104 Samples 4.537 Seconds 5.25 Days 

 
For testing and comparison purpose, we randomly select 100 

different design specifications and the parametric yield is 
estimated for each of these specifications. Fig. 7 compares the 
yield estimation accuracy for two different approaches: the 
traditional linear approximation and the proposed quadratic 

approximation. The parametric yield values estimated by both 
techniques are compared with the Monte Carlo analysis results 
with 104 random samples. Their absolute difference is used as a 
measure of the estimation error for accuracy comparison. 

As shown in Fig. 7, the traditional linear approximation 
cannot accurately capture the parametric yield of the LNA and the 
maximal absolute yield estimation error reaches 11%. The 
proposed quadratic approximation achieves much better accuracy 
and it reduces the maximal error to 5%. On average, the proposed 
quadratic approximation is 3x more accurate than the traditional 
linear approximation in this example. 

Table 2 compares the computational cost of the parametric 
yield estimation for different approaches. The traditional linear 
approximation has the lowest computational cost; however, it 
cannot provide sufficient estimation accuracy. In this example, the 
proposed quadratic approximation achieves more than 200x 
speed-up over the Monte Carlo analysis with 104 random samples. 
As shown in Table 2, assuming that one complete synthesis run 
requires visiting 105 design points [9], the total yield estimation 
cost can be reduced from 5.25 days (by the Monte Carlo analysis 
with 104 random samples) to 35 minutes (by the proposed 
quadratic approximation)! 
 
4.3 Operational Amplifier 

A. Response Surface Modeling 

 
Fig. 8. The circuit schematic of an operational amplifier. 

Table 3. The response surface modeling error for OpAmp 
Performance Linear Quadratic 

Gain 5.33% 0.98% 
Offset 0.29% 0.07% 
UGF 0.86% 0.17% 

Gain Margin 0.65% 0.18% 
Phase Margin 0.90% 0.15% 
Slew Rate (+) 0.60% 0.44% 
Slew Rate (−) 1.01% 0.25% 

Power 0.48% 0.25% 
 

Fig. 8 shows a two-stage folded-cascode operational amplifier 
designed in a commercial BiCMOS 0.25µm process. In this 
example, 49 principal factors are extracted by PCA to model the 
critical process variations, including both inter-die variations and 
device mismatches. It is important to note that modeling 
mismatches is extremely important for this operational amplifier, 
since they significantly impact several circuit performances, e.g., 
input offset voltage. The probability distribution and correlation 
of all random variations are provided in the process design kit. 

The performance of the OpAmp is characterized by 8 
specifications. Given a fixed circuit design, each circuit 
performance is a function of process variations. We approximate 
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these performance functions by linear and quadratic response 
surface models respectively. Table 3 shows the response surface 
modeling error for all these 8 performance metrics. In this 
example, the quadratic modeling error is 4x smaller than the linear 
modeling error on average. 

B. Parametric Yield Extraction 
Similar to the LNA example, we randomly select 100 

different OpAmp design specifications and the parametric yield is 
estimated for each of them. Fig. 7 compares the yield estimation 
accuracy for two different approaches: the traditional linear 
approximation and the proposed quadratic approximation. The 
parametric yield values estimated by both techniques are 
compared with the Monte Carlo analysis results with 104 random 
samples. Their absolute difference is used as a measure of the 
estimation error for accuracy comparison. 

As shown in Fig. 9, the traditional linear approximation 
results in a maximal error of 9%. The proposed quadratic 
approximation is much more accurate and it reduces the maximal 
error to 5%. On average, the proposed quadratic approximation is 
2x more accurate than the traditional linear approximation in this 
example. In addition, the proposed quadratic approximation 
achieves more than 150x speed-up over the Monte Carlo analysis 
with 104 random samples, as shown in Table 4. 
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Fig. 9. The absolute yield estimation error for OpAmp. 

Table 4. The yield estimation cost for OpAmp 
Computational Time 

Algorithm One Design 
Point 

One Synthesis Run (Visit 
105 Design Points) 

Linear 0.003 Seconds 5.00 Minutes 
Quadratic 0.031 Seconds 51.7 Minutes 

Monte Carlo w/ 
104 Samples 5.343 Seconds 6.18 Days 

 
5. CONCLUSIONS 

We have proposed an efficient parametric yield extraction 
algorithm for multiple correlated non-Normal analog/RF 
performance distributions that are expected in nanoscale 
technologies. The proposed algorithm is facilitated by two key 
techniques, including (1) an auxiliary constraint formulation using 
a MAX(•) operator; and (2) a second-order statistical Taylor 
expansion for the MAX(•) approximation. Our numerical 
examples in a commercial 0.25µm BiCMOS process demonstrate 
that, compared with the traditional Normal-distribution-based 
method, the proposed parametric yield extraction reduces the 
estimation error by 2~3x, while simultaneously achieving up to 
200x speed-up over the Monte Carlo analysis with 104 samples. 

In addition, the second-order statistical Taylor expansion 

proposed in this paper is not limited to the parametric yield 
estimation for analog/RF circuits only. The same idea can be 
widely applied to many other applications that require the MAX(•) 
operation, e.g., statistical timing analysis for digital circuits. 
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