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ABSTRACT 
In this paper we propose a novel projection-based algorithm to 
estimate the full-chip leakage power with consideration of both 
inter-die and intra-die process variations. Unlike many traditional 
approaches that rely on log-Normal approximations, the proposed 
algorithm applies a novel projection method to extract a low-rank 
quadratic model of the logarithm of the full-chip leakage current 
and, therefore, is not limited to log-Normal distributions. By 
exploring the underlying sparse structure of the problem, an 
efficient algorithm is developed to extract the non-log-Normal 
leakage distribution with linear computational complexity in 
circuit size. In addition, an incremental analysis algorithm is 
proposed to quickly update the leakage distribution after changes 
to a circuit are made. Our numerical examples in a commercial 
90nm CMOS process demonstrate that the proposed algorithm 
provides 4x error reduction compared with the previously 
proposed log-Normal approximations, while achieving orders of 
magnitude more efficiency than a Monte Carlo analysis with 104 
samples. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Verification 

General Terms: Algorithms 

Keywords: Statistical Analysis, Leakage Power 
 
1. INTRODUCTION 

As IC technologies move to nanoscale feature sizes, leakage 
power becomes increasingly large and significantly impacts the 
total chip power consumption. The predicted leakage power is 
expected to reach 50% of the total chip power within the next few 
technology generations [1]. Therefore, accurately modeling and 
analyzing leakage power has been identified as one of the top 
priorities for today’s IC design problems. 

The most important leakage components in nanoscale CMOS 
technologies include sub-threshold leakage and gate tunneling 
leakage [2]. The sub-threshold leakage models the weak inversion 
conduction when gate voltage is below the threshold voltage. At 
the same time, the reduction of gate oxide thickness facilitates 
tunneling of electrons through gate oxide, creating the gate 
leakage. Both of these leakage components are significant for sub-
100nm technologies and must be considered for leakage analysis. 

Unlike many other performances (e.g., delay), leakage power 
varies substantially due to process variations, which increases the 

difficulty of leakage estimation. As demonstrated in [3], leakage 
variations can reach 20x, while delays only vary about 30%. It has 
also been observed that leakage power is sensitive to both inter-
die and intra-die variations. Intra-die variations model the 
individual, but spatially correlated, local variations within the 
same die. These intra-die variations must be modeled by many 
additional random variables, thereby significantly increasing the 
problem size of leakage analysis. For example, the total number of 
random variables can reach 103~106 to model the full-chip 
variations for a practical industry design. 

Many works have been developed to capture the leakage 
variations [4]-[10]. Most of these approaches approximate the 
leakage variation as a log-Normal distribution. For that purpose, a 
first-order (i.e., linear) Taylor expansion is used to approximate 
the logarithm of the leakage current. Given the increasingly larger 
variations in nanoscale technologies, such a linear approximation 
can result in inaccurate results, especially because the leakage 
current has a strongly nonlinear dependency on process variations. 
As will be demonstrated by the numerical examples in Section 4, 
a 20% estimation error is observed by using the linear 
approximation for a commercial 90nm CMOS process. 

To achieve higher accuracy, a quadratic approximation can be 
used, which, however, significantly increases the computational 
cost. For example, if the total number of random variables reaches 
106, a quadratic approximation will result in a 106x106 quadratic 
coefficient matrix including 1012 coefficients! 

The authors of [11] propose a projection-based approach 
(PROBE) to reduce the quadratic modeling cost. Instead of 
finding a full-rank quadratic model, PROBE attempts to find an 
optimal low-rank model by minimizing the approximation error. 
However, one major difference between leakage analysis and that 
addressed in [11] is the problem size. The PROBE algorithm is 
efficient for handling 101~102 random variables, while the full-
chip leakage analysis involves 103~106 variables. The challenging 
problem here is how to make the quadratic modeling feasible for 
such a large problem size. 

In this paper, we propose a novel projection-based algorithm 
to extract the optimal low-rank quadratic model for statistical 
leakage analysis. The proposed algorithm is facilitated by 
exploring the underlying sparse structure of the problem. Namely, 
the large number of intra-die variations only locally impact the 
leakage power in their neighborhood, as is demonstrated by many 
previous works, e.g., [10]. Considering this sparse property, we 
formulate the statistical leakage analysis problem into a special 
form that can be efficiently solved by the Arnoldi algorithm and 
the orthogonal iteration borrowed from matrix computations. As 
such, an accurate low-rank quadratic model can be extracted with 
linear computational complexity in circuit size. 

Another important contribution of this paper is to propose a 
quadratic model compaction algorithm that converts a low-rank, 
high-dimensional quadratic leakage model to a full-rank, low-
dimensional one without changing the probability distribution of 
the leakage. The probability density function (PDF) and the 
cumulative distribution function (CDF) of the low-dimensional 
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model is much easier to estimate using either Monte Carlo 
analysis or APEX [12]. 

The third contribution of this paper is to offer an incremental 
analysis capability to quickly update the leakage distribution after 
changes to a circuit are made. The proposed incremental analysis 
locally updates the leakage distribution and, therefore, achieves 
significant speedup over the full leakage analysis. 

The remainder of this paper is organized as follows. In 
Section 2 we review the background materials and then propose 
our projection-based leakage analysis algorithm in Section 3. The 
efficacy of the proposed algorithm is demonstrated by numerical 
examples in Section 4. Finally, we conclude in Section 5. 
 
2. BACKGROUND 
2.1 Modeling Process Variations 

Process variations are typically characterized into two broad 
categories: inter-die variations and intra-die variations. Inter-die 
variations represent the common/average variations across the die 
and can be modeled by using common random variables for all 
components in a chip. Intra-die variations represent the individual, 
but spatially correlated, local variations within the same die. A 
typical approach for modeling intra-die variations is to partition 
the entire die into a number of grids [10], as shown in Fig. 1. The 
intra-die variations in the same grid are fully correlated, while 
those in close (far-away) grids are strongly (weakly) correlated. 

ε1

Cell1

 
Fig. 1. Grid model for intra-die variations. 

The process variations, both the inter-die and intra-die 
variations, are typically modeled as Normal distributions. 
Principal component analysis (PCA) [13] can be applied to 
decompose correlated Normal distributions into independent ones. 
After PCA, the process variations (e.g., ΔVTH, ΔTOX and ΔL) of 
each logic cell can be modeled as: 
 EVX CelliCelli =Δ . (1) 
ΔXCelli = [ΔxCelli1, ΔxCelli2,...]T denotes the parameter variations of 
the i-th logic cell. E = [ε1,ε2,...,εN]T stands for the random 
variables for modeling both inter-die and intra-die variations of 
the entire die. {ε1,ε2,...,εN} are extracted by PCA. They are 
mutually independent and satisfy the standard Normal distribution 
(i.e., zero mean and unit standard deviation). N is the total number 
of these random variables, and it is typically large (e.g., 103~106) 
for practical industry designs. VCelli captures the correlations 
among the random variables. 

The size of VCelli can be extremely large if there are a great 
number of random variables for modeling intra-die variations. 
However, ΔXCelli only depends on the intra-die variations in its 
neighborhood; therefore, VCelli is quite sparse. For example, 
referring to the grid in Fig. 1, ε1 has little impact on Cell1, since 
they are far away. In Section 3, we will show how this sparse 
property is utilized in our proposed leakage analysis algorithm to 
reduce the computational cost. 
 
2.2 Statistical Leakage Analysis 

Statistical leakage analysis typically starts from the leakage 
modeling for logic cells. Most previous works approximate the 
logarithm of the cell leakage current by a linear model: 
 ( ) Celli

T
CelliCelli CEBI +=log  (2) 

where ICelli denotes the total leakage current (including both sub-
threshold leakage and gate tunneling leakage) of the i-th cell, BCelli 
∈ RN and CCelli ∈ R are the linear model coefficients. Since the 
random variables {ε1,ε2,...,εN} satisfy Normal distributions, 
log(ICelli) is the linear combination of multiple Normal 
distributions and, therefore, is also a Normal distribution [14]. It 
follows that ICelli is a log-Normal distribution [14]. 

Given the leakage models of all individual cells, the full-chip 
leakage current is the sum of all cell leakage currents: 
 CellMCellCellChip IIII +++= L21  (3) 
where M is the total number of logic cells in a chip. 

Eq. (3) implies that the full-chip leakage current is the sum of 
many log-Normal distributions. It can be approximated as a log-
Normal distribution [10]. This is equivalent to approximating the 
logarithm of the full-chip leakage current by a linear model: 
 ( ) Chip

T
ChipChip CEBI +=log  (4) 

where BChip ∈ RN and CChip ∈ R are the model coefficients. 
It is well-known that leakage current depends on input vector 

state. The cell and chip leakages in (2)-(4) can be the leakage 
currents for a fixed input state or the average leakage currents 
over all input states. In this paper, we will not distinguish these 
two cases. 

The linear models in (2) and (4) are not sufficiently accurate 
for modeling the large-scale process variations that are expected 
for nanoscale technologies. This, in turn, suggests that applying 
quadratic models might be required to improve the accuracy: 
 ( ) Celli

T
CelliCelli

T
Celli CEBEAEI ++=log  (5) 

 ( ) Chip
T
ChipChip

T
Chip CEBEAEI ++=log  (6) 

where ACelli, AChip ∈ RN×N, BCelli, BChip ∈ RN and CCelli, CChip ∈ R 
are the model coefficients. In (5)-(6), the quadratic coefficient 
matrices ACelli and AChip can be extremely large for capturing intra-
die variations. This makes the quadratic modeling problem 
extremely challenging in practical applications. 
 
2.3 Projection-based Modeling 

The authors in [11] proposed a projection-based approach 
(PROBE) to reduce the quadratic modeling cost. The key 
difficulty of quadratic modeling is the need to compute all 
elements of the quadratic coefficient matrix, e.g., AChip in (6). This 
matrix is often rank-deficient in practical applications. Therefore, 
instead of finding the full-rank matrix AChip, PROBE approximates 
AChip by another low-rank matrix ÃChip such that their difference 
||AChip–ÃChip||F is minimized. Here, ||•||F denotes the Frobenius 
norm, which is the square root of the sum of the squares of all 
matrix elements. The authors of [11] prove that the optimal rank-
R approximation is: 

 ∑
=

=
R

r

T
ChiprChiprChiprChip PPA

1

~
λ  (7) 

where λChipr ∈ R and PCellr ∈ RN are the r-th dominant eigenvalue 
and eigenvector of the matrix AChip respectively. 

The PROBE algorithm proposed in [11] is efficient to handle 
101~102 random variables, while the full-chip leakage analysis 
involves 103~106 variables. The challenging problem here is how 
to extract the dominant eigenvalues and eigenvectors for a 
106x106 matrix. 
 
3. PROJECTION-BASED ANALYSIS 

We propose a projection-based analysis algorithm that is 
facilitated by exploring the underlying sparse structure of the 
leakage analysis problem. Specifically, we propose the following 
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methodology, which includes: 1) a two-step iterative algorithm for 
quadratic leakage modeling; 2) a quadratic model compaction 
algorithm for leakage distribution estimation; and 3) an 
incremental analysis algorithm for locally updating the leakage 
distribution. 
 
3.1 Standard Cell Library Characterization 

Our statistical leakage analysis starts from the standard cell 
library characterization where the objective is to approximate the 
leakage current of each logic cell by a regression model. 
Typically, there are only a few (e.g., 5~10) random variables for 
modeling the variations in one cell. Therefore, we can run SPICE 
simulations (or utilize measurement models if available) and 
apply PROBE [11] to fit the rank-K model for each cell: 

( ) ( ) CelliCelli
T
Celli

K

k
Celli

T
CellikCellikCelli CXBXPI +Δ⋅+Δ⋅⋅=∑

=

~~log
1

2
λ  (8) 

where ΔXCelli is defined in (1), and λCellik, P̃Cellik, B̃Celli and CCelli are 
the model coefficients. Substituting (1) into (8) yields: 

 ( ) ( ) Celli
T
Celli

K

k

T
CellikCellikCelli CEBEPI ++⋅=∑

=1

2
log λ  (9) 

 Celli
T

CelliCelliCellik
T

CelliCellik BVBPVP ~~
==  (10) 

where PCellik ∈ RN, BCelli ∈ RN, and N is the total number of 
random variables for the entire die. The sizes of PCellik and BCelli in 
(9) are much larger than the sizes of P̃Cellik and B̃Celli in (8). 
However, as discussed in Section 2.1, VCelli is sparse. Therefore, 
both PCellik and BCelli are sparse and contain many zeros. 

For simplifying the notation, we define the following symbols 
to represent all cell leakage models in a matrix form: 

 

( ) ( ) ( ) ( )[ ]
[ ]
[ ]
[ ]
[ ]TCellMCellCellCell

CellMCellCellCell

CellMkkCellkCellCellk

T
CellMkkCellkCellCellk

T
CellMCellCellCell

CCCC

BBBB
PPPP

Λ

IIII

L

L

L

L

L

21

21

21

21

21 loglogloglog

=

=
=

=

=

λλλ
. (11) 

Comparing (11) with (9), it is easy to verify that: 

 ( ) ( ) ( ) Cell
T
Cell

K

k

T
Cellk

T
CellkCellkCell CEBEPEPΛI ++⊗⊗=∑

=1

log  (12) 

where ⊗ stands for the point-wise multiplication, i.e., [a1,a2,...]T ⊗ 
[b1,b2,...]T = [a1b1,a2b2,...]T. 
 
3.2 Full-Chip Leakage Modeling 

We next develop the algorithm to efficiently extract the low-
rank quadratic model of the full-chip leakage current. As shown in 
(3), the full-chip leakage current is the sum of all cell leakage 
currents. Applying the log transform to both sides of (3) yields: 

 ( ) ( ) ( ) ( )[ ]CellMCellCell III
Chip eeeI logloglog 21loglog +++= L . (13) 

Substituting (12) into (13) and applying a second order Taylor 
expansion, after some mathematical manipulations we obtain a 
quadratic model in the form of (6), where the model coefficients 
are given by: 

 ⎟
⎠
⎞

⎜
⎝
⎛=
α
1logChipC  (14) 

 ΦBB CellChip ⋅⋅= α  (15) 

 
( )

( ) T
Cell

T
Cell

T
CellCell

K

k

T
CellkCellkCellkChip

BΦΦBBΦB

PΛΦPA

⋅⋅⋅−⋅⋅⋅+

⋅⊗⋅⋅= ∑
=

2
diag

2

diag

2
1

αα

α
. (16) 

In (14)-(16), diag([a1,a2,...]T) stands for the diagonal matrix with 
the elements {a1,a2,...} and: 

 
CellMCellCell CCC eee +++

=
L21

1α  (17) 

 [ ]TCCC CellMCellCell eeeΦ L21= . (18) 
The values of α and Φ in (17)-(18) can be computed with 

linear computational complexity. After α and Φ are known, the 
model coefficients CChip and BChip can be evaluated from (14)-
(15). Because the matrix BCell in (15) is sparse, computing the 
matrix-vector product BCellΦ has linear computational complexity. 
Therefore, both CChip in (14) and BChip in (15) can be extracted 
with linear complexity. 

The major difficulty, however, stems from the non-sparse 
quadratic coefficient matrix AChip in (16). This non-sparse feature 
can be understood from the last term at the right-hand side of (16). 
The vector Φ is dense and, therefore, ΦΦT is a dense matrix. It 
follows that BCellΦΦTBCell

T is dense, although BCell is sparse. For 
this reason, it would be extremely expensive to explicitly 
construct the quadratic coefficient matrix AChip based on (16). 

To overcome this problem, we propose a novel iterative 
algorithm that consists of two steps: Krylov subspace generation 
and orthogonal iteration. Instead of finding the full matrix AChip, 
the proposed algorithm attempts to find the optimal low-rank 
approximation of AChip. 

A. Krylov Subspace Generation 
As shown in (7), the optimal rank-R approximation of AChip is 

determined by the dominant eigenvalues {λChip1,λChip2,...,λChipR} 
and eigenvectors {PChip1,PChip2,...,PChipR}. The subspace generated 
by all linear combinations of these dominant eigenvectors is 
called the dominant invariant subspace [15] and is denoted as: 
 { }ChipRChipChip PPPspan ,,, 21 L . (19) 
It is well-known that the dominant invariant subspace in (19) can 
be approximated by the following Krylov subspace [15]: 

 { }0
1

0
2

00 ,,,, QAQAQAQspan R
ChipChipChip
−L  (20) 

where Q0 ∈ RN is a non-zero vector that is not orthogonal to any 
dominant eigenvectors. We first develop the algorithm to extract 
the Krylov subspace which gives a good approximation of the 
dominant invariant subspace. The extracted Krylov subspace is 
then used as a starting point for the orthogonal iteration in Section 
3.2.B such that the orthogonal iteration could converge to the 
dominant invariant subspace within a few iteration steps. 

We adapt the Arnoldi algorithm from matrix computations 
[15] to generate the Krylov subspace. The Arnoldi algorithm has 
been applied to large-scale numerical problems and its numerical 
stability has been well-demonstrated for many applications, most 
notably, IC interconnect order reduction [16]. Fig. 2 summarizes a 
simplified implementation of the Arnoldi algorithm. 

Step 3 in Fig. 2 is the key step of the Arnoldi algorithm. It 
computes the matrix-vector product Qr = AChipQr-1. Since the 
matrix AChip is large and dense, Eq. (21) does not construct the 
matrix AChip explicitly. Instead, it computes AChipQr-1 implicitly, 
i.e., multiplying all terms in (16) by Qr-1 separately and then 
adding them together. It is easy to verify that AChip in (16) is the 
sum of the products of many sparse or low-rank matrices. 
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Therefore, the implicit matrix-vector product in (21) can be 
computed with linear computational complexity. Taking the last 
term in (21) as an example, there are four steps to compute 
BCellΦΦTBCell

TQr-1, including: 1) S1 = BCell
TQr-1 (sparse matrix 

multiplied by a vector); 2) S2 = ΦTS1 (dot product of two vectors); 
3) S3 = ΦS2 (vector multiplied by a scalar); and 4) S4 = BCellS3 
(sparse matrix multiplied by a vector). All these four steps have 
linear computational complexity. 

1. Randomly select an initial vector Q0 ∈ RN. 
2. Q1 = Q0 / ||Q0||F. 
 For r = 2,3,...,R 

3.  

( )

( )

1

2

1

1
1

2

diag
2

diag

−

−

=
−

⋅⋅⋅⋅−

⋅⋅⋅⋅+

⋅⋅⊗⋅⋅= ∑

r
T
Cell

T
Cell

r
T
CellCell

K

k
r

T
CellkCellkCellkr

QBΦΦB

QBΦB

QPΛΦPQ

α

α

α

. (21) 

4.  Orthogonalize Qr to all Qi (i = 1,2,...,r-1). 
5.  Qr = Qr / ||Qr||F. 
 End For 
6.  [ ]12 QQQQ R L= . (22) 

Fig. 2. Simplified Arnoldi algorithm. 

B. Orthogonal Iteration 

1. Start from the matrix Q ∈ RN×R in (22). 
2. Q(1) = Q, where the superscript stands for the iteration index. 
 For i = 2,3,... 

3.  

( )

( )

)1(
2

)1(

1

)1()(

2

diag
2

diag

−

−

=

−

⋅⋅⋅⋅−

⋅⋅⋅⋅+

⋅⋅⊗⋅⋅= ∑

iT
Cell

T
Cell

iT
CellCell

K

k

iT
CellkCellkCellk

i

QBΦΦB

QBΦB

QPΛΦPZ

α

α

α

. (23) 

4.  Q(i)U(i) = Z(i) (QR factorization). 
 End For 

5.  ( ) ( )i
Chip

i
Chip UUQQ == . (24) 

Fig. 3. Simplified orthogonal iteration algorithm. 

The Krylov subspace computed from Fig. 2 is not exactly 
equal to the dominant invariant subspace. Starting from the matrix 
Q in (22), we further apply an orthogonal iteration [15] which 
exactly converges to the dominant invariant subspace. 
Theoretically, the orthogonal iteration can start from any matrix. 
However, since the Krylov subspace Q gives a good 
approximation of the dominant invariant subspace, using Q as the 
starting point helps the orthogonal iteration to reach convergence 
within a few iteration steps. 

Fig. 3 shows a simplified implementation of the orthogonal 
iteration algorithm. In (23), Q(i-1) ∈ RN×R is a matrix containing 
only a few columns, because R is typically small (e.g., around 10) 
in most applications. Therefore, similar to (21), Z(i) in (23) can be 
computed with linear complexity. For the same reason, the QR 
factorization in Step 4 of Fig. 3 also has linear computational 
complexity, since Z(i) ∈ RN×R contains only a few columns. 

The orthogonal iteration in Fig. 3 is provably convergent if the 
columns in the initial matrix Q are not orthogonal to the dominant 
invariance subspace [15]. After the orthogonal iteration 

converges, the optimal rank-R approximation of AChip is 
determined by QChip and UChip in (24) [15]: 

 T
ChipChipChipChip QUQA =

~
. (25) 

Combining (25) with (6) yields: 
 ( ) ( ) Chip

T
Chip

T
ChipChipChip

T
Chip CEBEQUQEI ++⋅⋅=log  (26) 

where CChip and BChip are given in (14)-(15). 
The algorithms in Fig. 2 and Fig. 3 assume a given 

approximation rank R. In practice, the value of R can be 
iteratively determined based on the approximation error. For 
example, starting from a low-rank approximation, R should be 
iteratively increased if the modeling error remains large. In most 
cases, we find that selecting R in the range of 5~15 provides 
sufficient accuracy. 

In summary, we developed a two-step iterative algorithm to 
extract the low-rank quadratic model of the full-chip leakage 
current. The proposed algorithm only involves simple vector 
operations and sparse matrix-vector multiplications; therefore, its 
computational complexity is linear in circuit size. In addition, it is 
not necessary to explicitly construct the matrix ÃChip in (25). In the 
next subsection we will develop an algorithm that efficiently 
estimates the leakage current distribution. 
 
3.3 Leakage Distribution Estimation 

The quadratic function in (26) is N-dimensional, where N is 
typically large. It is not easy to estimate the leakage distribution 
directly from (26). Next we propose a quadratic model 
compaction algorithm that converts the high-dimensional model 
to a low-dimensional one, while keeping the leakage distribution 
unchanged. 

1. Start from the quadratic model in (26). 
2. QComp[UComp BComp] = [QChip BChip]  (QR factorization). 
3.  EQΩ T

Comp= . (27) 

4. ( ) ( ) Chip
T
Comp

T
CompChipComp

T
Chip CΩBΩUUUΩI ++⋅⋅=log . (28) 

Fig. 4. Quadratic model compaction algorithm. 

Fig. 4 summarizes the proposed quadratic model compaction 
algorithm. The following two theorems prove that the quadratic 
models in (26) and (28) are equivalent and the random variables Ω 
defined in (27) are independent and satisfy the standard Normal 
distribution. 

Theorem 1: The quadratic models in (26) and (28) are equivalent. 
Proof: The QR factorization in Step 2 of Fig. 4 results in: 
 CompCompChipCompCompChip BQBUQQ == . (29) 
Substituting (29) and (27) into (26) yields: 

 

( )

( ) Chip
T
Comp

T
CompChipComp

T

Chip
T
Comp

T
Comp

T
Comp

T
CompChipCompComp

T
Chip

CΩBΩUUUΩ

CEQB

EQUUUQEI

++⋅⋅=

++

=log

. (30) 

Eq. (30) proves Theorem 1.         ■ 

Theorem 2: Given a set of independent random variables E that 
satisfy the standard Normal distribution, the random variables Ω 
defined in (27) are independent and satisfy the standard Normal 
distribution. 
Proof: Since the random variables Ω are the linear combinations 
of zero-mean Normal distributions, they are also zero-mean 
Normal distributions. The correlation matrix for Ω is given by: 

 Comp
TT

CompComp
TT

Comp
T QEEQQEEQΩΩ ⋅⋅==⋅  (31) 
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where a  stands for the expected value of the random variable a. 
Remember that the random variables E are independent with the 
standard Normal distribution, i.e.: 

 IEET =  (32) 
where I is the identity matrix. In addition, the matrix QComp is 
constructed from QR factorization and, therefore, is orthogonal: 
 IQQ Comp

T
Comp = . (33) 

Substituting (32)-(33) into (31) yields: 

 IQIQΩΩ Comp
T
Comp

T =⋅⋅=⋅ . (34) 
Eq. (34) implies that the random variables Ω are uncorrelated. 
Uncorrelated Normal distributions are also independent [14].  ■ 

The quadratic function in (28) has a dimension of R+1 which 
is much smaller than N. Based on (28), the PDF/CDF of log(IChip) 
can be extracted, for example, using either Monte Carlo analysis 
or APEX [12]. After that, the PDF/CDF of IChip can be easily 
computed by a simple nonlinear transform [14]. 
 
3.4 Incremental Leakage Analysis 

Incremental leakage analysis facilitates a quick update on the 
leakage distribution after local changes to a circuit are made. For 
simplicity, we only detailedly discuss the case where one logic 
cell is changed. However, it should be noted that the proposed 
algorithm can be directly extended to handle the simultaneous 
change of multiple cells. 

Assume that the i-th logic cell is changed (e.g., a low VTH cell 
is replaced by a high VTH cell to reduce leakage), resulting in: 
 New

Celli
Old
Celli

Old
Chip

New
Chip IIII +−=  (35) 

where IChip
Old (IChip

New) and ICelli
Old (ICelli

New) respectively denote 
the leakage currents of the entire chip and the i-th cell before 
(after) the change. 

Given the low-rank quadratic models of log(IChip
Old), 

log(ICelli
Old) and log(ICelli

New), the objective of incremental leakage 
analysis is to quickly generate the low-rank model for 
log(IChip

New). Compared with (3), Eq. (35) is much simpler and 
only contains a few terms. Therefore, updating the leakage 
distribution using (35) is much cheaper than the full leakage 
analysis from (3). The aforementioned iterative algorithm and 
compaction algorithm can be directly applied to (35). More details 
on the incremental analysis are not included in this paper due to 
the limited number of available pages. 
 
4. NUMERICAL EXAMPLES 

We demonstrate the efficacy of the proposed algorithm using 
ISCAS’85 benchmark circuits. All circuits are implemented in a 
commercial 90nm CMOS process. The numerical experiments in 
this section are performed on a SUN ― 1GHz server. 
 
4.1 Standard Cell Library Characterization 

SPICE simulations were used to construct an approximate 
model of the logarithm of the cell leakage current as a function of 
the parameter variations: ΔVTHP, ΔVTHN, ΔTOX , ΔW and ΔL. The 
distributions and correlations of these parameter variations are 
provided in the CMOS process design kit. Both linear and 
quadratic regression models are created for accuracy comparison. 
The low-rank quadratic models are extracted using the PROBE 
algorithm in [11]. 

Fig. 5 shows the approximation errors for three different logic 
cells. As the quadratic model is used, the approximation error is 
significantly reduced, e.g., dropping from 14% to 2% for NOR2. 
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Fig. 5. Regression modeling error for cell leakage current. 

In addition, a rank-2 quadratic model, instead of the full-rank 
model with rank 5, is sufficiently accurate in this example. It is 
also worth mentioning that similar error patterns are observed for 
other logic cells, although only three of them are shown in Fig. 5. 
 
4.2 Statistical Leakage Analysis 

Both inter-die and intra-die variations are considered for 
statistical leakage analysis. The grid model discussed in Section 
2.1 (Fig. 1) is used to capture intra-die variations. We partition the 
circuit into extremely fine grids and one grid only contains one 
logic cell, thereby significantly increasing the problem size. Such 
a large problem size helps us to verify the efficiency and 
robustness of the proposed projection-based algorithm. Table 1 
shows the number of random variables (i.e., the size of the vector 
E in (1)) for each benchmark circuit. Note that the problem size is 
greater than 17K for C7552. 

Table 1. Number of random variables for ISCAS’85 circuits 
Name RV # Name RV # Name RV # 
C17 35 C1355 2735 C5315 11540 

C432 805 C1908 4405 C6288 12085 
C499 1015 C2670 5970 C7552 17565 
C880 1920 C3540 8350  
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        (a)        (b) 
Fig. 6. Leakage analysis results for C432. (a) Probability density 

function. (b) Eigenvalue distribution. 

A. Probability Density Function 
Taking the circuit C432 as an example, Fig. 6(a) shows the 

leakage distributions extracted by three different approaches: the 
linear approximation, the rank-10 quadratic approximation and the 
Monte Carlo analysis with 104 samples. As shown in Fig. 6(a), the 
linear approximation yields large errors, especially at both tails of 
the PDF which are often the points of greatest concern. 

B. Eigenvalue Distribution 
For testing and comparison, we extract the full-rank quadratic 

leakage model for C432. Fig. 6(b) shows the magnitude of the 
eigenvalues of the quadratic coefficient matrix. Note that there are 
only a few dominant eigenvalues. Fig. 6(b) explains why the low-
rank quadratic approximation is efficient in this example. 
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C. Accuracy and Speed 
Table 2 and Table 3 compare the leakage analysis accuracy 

and cost for different modeling approaches. The worst-case 
leakage is measured at the 99% point on CDF. The error values in 
Table 2 are calculated against the Monte Carlo simulation with 
104 samples. As shown in Table 2, the proposed low-rank 
quadratic approximation significantly reduces the maximal error 
from 21.01% to 5.37%. Using the full-rank quadratic 
approximation can modestly reduce the error further, however 
resulting in extremely expensive cost, as shown in Table 3. The 
proposed low-rank approximation achieves up to 105x speedup 
over the full-rank approximation and up to 103x speedup over the 
Monte Carlo analysis with 104 samples. 

Table 2. Estimation error for worst-case leakage 

Name Linear Proposed 
(Rank-10) 

Full 
Quadratic 

C17 12.74% 0.83% 0.26% 
C432 14.93% 4.18% 3.17% 
C499 20.64% 5.37% 4.29% 
C880 15.23% 4.59% 3.57% 
C1355 9.24% 1.33% 0.45% 
C1908 8.91% 1.04% ― 
C2670 10.85% 2.16% ― 
C3540 11.44% 2.51% ― 
C5315 11.85% 2.85% ― 
C6288 21.01% 3.18% ― 
C7552 11.13% 2.40% ― 

Table 3. Computational cost for leakage analysis (Sec.) 

Name Proposed 
(Rank-10) 

Full 
Quadratic 

Monte Carlo 
(104 Samples) 

C17 0.05 0.11 12.56 
C432 0.07 1112.17 106.22 
C499 0.08 3241.52 132.80 
C880 0.11 17619.80 277.10 
C1355 0.15 72026.90 413.49 
C1908 0.22 ― 756.65 
C2670 0.33 ― 1136.66 
C3540 0.47 ― 1890.86 
C5315 0.67 ― 2922.90 
C6288 0.73 ― 3128.96 
C7552 1.14 ― 6030.64 

D. Incremental Analysis 
For comparison, we change one gate in each benchmark 

circuit and apply the proposed incremental analysis algorithm to 
locally update the leakage value. Table 4 shows the computational 
cost of the incremental analysis. Compared with the second 
column in Table 3, the incremental analysis achieves up to 10x 
speedup. We expect that as the problem size increases further, the 
incremental analysis could achieve more speedup over the full 
leakage analysis. 

Table 4. Incremental leakage analysis cost (Sec.) 
Name Time Name Time Name Time 
C17 0.06 C1355 0.07 C5315 0.09 
C432 0.06 C1908 0.08 C6288 0.09 
C499 0.07 C2670 0.08 C7552 0.13 
C880 0.07 C3540 0.09  

 

5. CONCLUSIONS 
We have proposed a projection-based algorithm to capture the 

non-log-Normal leakage distributions that are expected in 
nanoscale technologies. The proposed algorithm has linear 
computational complexity in circuit size, which is facilitated by 
several novel algorithms, including: 1) a two-step iterative 
quadratic modeling algorithm; 2) a quadratic model compaction 
algorithm; and 3) an incremental analysis algorithm. Our 
numerical examples in a commercial 90nm CMOS process 
demonstrate that, compared with the popular log-Normal 
approximation, the proposed leakage analysis reduces the error 
from 21.01% to 5.37%, while achieving up to 103x speedup over 
the Monte Carlo analysis with 104 samples. 
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