
Architecture-Aware FPGA Placement using Metric
Embedding

Padmini Gopalakrishnan, Xin Li, Lawrence Pileggi
Electrical & Computer Engineering, Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213, USA
padmini@cmu.edu, xinli@ece.cmu.edu, pileggi@ece.cmu.edu

ABSTRACT
Since performance on FPGAs is dominated by the routing
architecture rather than wirelength, we propose a new ar-
chitecture-aware approach to initial FPGA placement that
models the relationship between performance and the rout-
ing grid, using concepts from graph embedding and metric
geometry. Our approach, CAPRI, can be viewed as an em-
bedding of a graph representing the netlist into a metric
space that is representative of the FPGA. First, we develop
an analytic metric of distance that models delays along the
FPGA routing grid. We then embed a netlist into the de-
fined metric space using matrix projections and online bipar-
tite matching. Experimental comparisons with the popular
FPGA tool, VPR, show that with CAPRI’s initial solution,
the resulting placements show median improvements of 10%
in critical path delays for the larger MCNC benchmarks.
Total placement runtime is also improved by 2x on average.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Design, Performance

Keywords
FPGAs, Placement, Metric Embedding

1. INTRODUCTION
Delays on modern Field Programmable Gate Arrays (FP-

GAs) are heavily influenced by their routing architectures,
which typically are complex and heterogeneous [23,25]. Stud-
ies [10,17,21,26] have shown that the delay of a route on an
FPGA is dominated by the number of switches required to
program it. Given the rapidly improving performance of
these ICs, this dependence of delays on the routing architec-
ture must be modeled during physical design [22].

We present a new, analytical, and architecture-aware ap-
proach to FPGA placement called CAPRI (Convex Assigned
Placement for Regular ICs) that captures this relationship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

Underlying our approach is the idea that any placement al-
gorithm, whether for ASICs or FPGAs, can be viewed as an
embedding of a graph representing the netlist into a chosen
metric space. For FPGA placement in particular, we define
an analytic metric of “distance” in terms of the total delay
through switches on the FPGA routing architecture, and use
it to construct a metric space that captures FPGA perfor-
mance accurately. We then embed the netlist graph into this
metric space with a heuristic technique based on matrix pro-
jections and online bipartite graph matching. The resulting
solution is a legal initial placement, which tries to minimize
delays on driver-sink connections and is thus “good” from a
global timing perspective. Subsequently we apply local opti-
mization using any existing move-based placement technique
to improve specific critical paths and routability.

CAPRI is analogous to analytical wirelength minimiza-
tion in ASICs, which produces a good initial placement by
reducing the geometric length (and therefore the delay) of
connections. The crucial difference in our work is the use of
a metric space that accurately captures delays on the FPGA,
rather than a Euclidean or Manhattan space. Fig. 1 illus-
trates the motivation for our approach. The contour lines
in Fig. 1 join points on the chip surface that are equidistant
from the origin using geometric metrics such as (a) Euclid-
ean and (b) Manhattan distances, as well as delays measured
in terms of the number of routing switches on two differ-
ent FPGA routing architectures ((c) and (d)). These plots
demonstrate that to model delays accurately in FPGA place-
ment, we need a metric that captures the delay contours of
the FPGA routing architecture, rather than the Euclidean
or Manhattan metrics used in ASIC placement.

Prior work on timing-driven FPGA placement models the
dependence of delay on the routing architecture using ei-
ther look-up tables [11], detailed timing models [13, 18], or
empirical models [15,21,26]. These models are used in move-
based algorithms such as simulated annealing [11] or parti-
tioning [14,15]. The novelty of CAPRI lies in the analytical
framework for modeling the impact of routing architectures
on delay during placement. Importantly, this framework en-
ables global, rather than local, optimization. Furthermore,
our placement strategy is computationally efficient, and can
be used to quickly find an initial solution.

We evaluate our approach via a placement methodology
that uses CAPRI to produce an initial legal placement, fol-
lowed by local optimization using low-temperature simu-
lated annealing in the popular FPGA tool VPR [11]. When
compared with running VPR alone, the placements we ob-
tain show an improvement of 10.08% (median) and 11.13%
(mean) in the post-routing delay of top critical paths. Total
placement runtime is improved by 2.05x; CAPRI itself takes
just 4.8% of this total runtime.

30.1

460

(a) (b) (c) (d)

Figure 1: Contour plots showing points of equal distance (i.e., delay) from the origin using the following metrics: (a) Euclidean Distance, (b)
Manhattan Distance, (c) Delays along an FPGA routing grid with two different kinds of route segments, and (d) Delays along an FPGA routing
grid that mimics the commercial Xilinx Virtex FPGA.

2. BACKGROUND AND RELATED WORK
A distance metric on a set of points Γ, is a map φ : Γ ×

Γ → <+, such that the following hold for all x, y, z ∈ Γ:
(1) φ(x, x) = 0, (2) φ(x, y) = φ(y, x), and (3) φ(x, z) ≤
φ(x, y) + φ(y, z) i.e., the triangle inequality.

A metric space is defined by the pair (Γ, φ). When Γ is a
finite set of points, (Γ, φ) is called a finite metric space. A
metric embedding of (Γ, φ) into a space (Γ′, φ′) is given by a
map f : Γ → Γ′. If distances are preserved, i.e., if φ(x, y) =
φ′(f(x), f(y)) for all (x, y) ∈ Γ × Γ, then the embedding
is said to be isometric. In general, however, embeddings
incur distortion, meaning that distances are expanded or
contracted in the new metric space. A detailed discussion of
metric embeddings is available in [12].

Any undirected graph G has a natural distance metric on
its vertices, with the distance between any pair of vertices
given by the shortest path between them in G. Graph em-
bedding maps the vertices of G into a chosen metric space,
typically to preserve certain properties such as edge lengths
(i.e., distances) by minimizing distortion. Thus, IC place-
ment has a natural correspondence with graph embedding
into a chosen two-dimensional metric space representing the
chip surface. For ASICs, Euclidean or Manhattan metrics
correlate well with delays of connections and average con-
gestion. However, as Fig. 1 illustrates, FPGA placement
requires a very different metric to model delays accurately.

FPGAs typically consist of a heterogeneous array of pro-
grammable logic blocks (PLBs), with routing segments of
different lengths that can be used to make fast direct connec-
tions between specific, but not necessarily adjacent, elements
in the array [23, 25]. It is advantageous to use these direct
connections where possible, to minimize use of the relatively
slow SRAM-based switches that program the routes.

Timing-driven FPGA placement tools typically use move-
based algorithms such as recursive partitioning [13,15], clus-
tering [6], simulated annealing [5, 6, 11, 18], or graph-based
search [26]. Efficient look-up tables [11], empirical mod-
els [15, 21], or detailed delay models [18, 26] capture the de-
pendence of delay on the routing architecture. Critical paths
are targetted using timing analysis and net-weighting [6,11,
13], or incremental or adaptive delay estimation schemes [13,
18]. Some commercial tools use analytical wirelength mini-
mization methods(e.g., [3]) for global placement along with
net-weights from timing analysis; however delays on the rout-
ing grid are not modeled directly in the objective.

CAPRI complements these existing approaches by pro-
ducing an initial legal placement via an analytical frame-
work that models the delay contours of the FPGA rout-
ing grid during global optimization. Furthermore, use of
graph distance matrices and their largest singular vectors
(rather than Laplacian matrices and their smallest eigen-

(a) Overall CAPRI placement methodology

(b) Conceptual Overview of CAPRI (Phase 1)

Figure 2: Overview of CAPRI

vectors) makes CAPRI fundamentally different from earlier
spectral (eigenvalue-based) discrete placement methods such
as [2, 4], as well as computationally more efficient.

3. PLACEMENT STRATEGY OVERVIEW
Our overall placement methodology is a two-phase ap-

proach, as shown in Fig. 2(a). CAPRI is used in Phase
1 with the goal of producing a good initial placement from
a timing perspective. Intuitively, our objective is to reduce
delays on driver-sink connections, in a global sense. Phase 2
is a local optimization step to improve specific critical paths
and routability, performed using any existing move-based
technique, such as low-temperature simulated annealing. A
conceptual overview of CAPRI (i.e., Phase 1) is shown in
Fig. 2(b). We abstract both the design netlist and the rout-
ing architecture as graphs, build a metric space correspond-
ing to the architecture, and then embed the netlist graph
into that metric space to minimize distortion.

Our problem formulation is in the form of an assignment
problem; a crucial component is a graph-drawing technique [9]
using distance matrices, which is used to build the appropri-
ate metric space to model delays on the FPGA grid. While
this formulation has a convex quadratic objective function,
the underlying solution space is discrete (i.e., non-convex),
and convex optimization techniques cannot be directly ap-
plied. Therefore, a key component of CAPRI is a fast and
effective heuristic to minimize the above objective using two
steps: (1) a fast analytical step to minimize distortion using
low-rank approximations of the distance matrices, produc-
ing a concurrent illegal placement of all nodes in the netlist,
and (2) a legalization step using online bipartite matching to
find a legal assignment. This format of a fast analytical step
followed by legalization is typical of most analytical placers.

461

In CAPRI, we do not presently model routing congestion
explicitly in the objective function. Instead congestion is
implicitly controlled via a hybrid net-model which allows
segments of the same net to share routing switches and im-
prove routability. Doing so also helps performance, since
meandering nets could incur delay penalties by requiring a
large number of switches on the FPGA.

The analytical framework in CAPRI is easy to generalize.
It accommodates a wide variety of architectures with hetero-
geneity in both the routing grid and the logic array, models
physical constraints that occur in practice, and can be ap-
plied hierarchically to scale to large problem sizes. Further-
more, since CAPRI is architecture-aware, it could also be
used to evaluate early architectural decisions for an FPGA.

4. PLACEMENT BY ASSIGNMENT
We construct an undirected graph called the Architecture

Graph to represent the FPGA (e.g., Fig. 3). Vertices in this
graph (called locations for short) correspond to the fixed lo-
cations of logic elements on the FPGA. Edges represent fast
direct routing connections between locations. Edges repre-
senting the fastest type of connection (typically between ad-
jacent locations) are given unit weights; edges representing
longer connections are assigned appropriate positive weights
to account for their delays relative to edges of unit weight.
We also transform the design netlist into an undirected graph
called the Design Graph; each vertex is called a logic-node.
Edges in the Design Graph connnect the driver of each net
with its sinks, and are given unit weights.

We assume, for ease of exposition, that (a) a logic-node
in the Design Graph can be assigned to any location in the
Architecture Graph, and (b) the number of logic-nodes, n,
is equal to the number of locations. Our formulation eas-
ily accommodates a more general scenario, as shown later
in Sections 4.2 and 5.4. A unique ID between 1 and n is
assigned to each location in the Architecture Graph, and
to each logic-node in the Design Graph. In our placement
formulation, we seek to embed the Design Graph into the
metric space of the Architecture Graph, i.e., to find a good
assignment of a location ID to each logic-node ID. We mea-
sure the quality of the assignment by the total distortion of
the embedding.

Our rationale for this choice of objective is as follows. Sup-
pose that logic-nodes could be assigned to locations such
that each edge in the Design Graph (with weight of 1) could
be connected with a best-case delay (i.e., total weight) of 1
along the edges in the Architecture Graph. Essentially such
a solution would have no distortion of the edges in the Design
Graph, and would produce the best possible performance on
the FPGA. Note that such an assignment is feasible only in
the special case when the Design Graph and the Architec-
ture Graph are isomorphic, which is almost never the case
in practice. Thus, some distortion of edges is inevitable in
realistic settings. By minimizing the extent by which edges
in the Design Graph are stretched or distorted when em-
bedded into the Architecture Graph, we tend to reduce the
delay of driver-sink connections (or edges) and obtain a bet-
ter global placement from a timing perspective. Just like
wirelength reduction for ASICs minimizes delays of connec-
tions by minimizing their geometric length, our approach
minimizes delays of connections by minimizing distortion in
a metric space that captures FPGA delays.

4.1 Formulation of Objective
We represent the metric-space of a graph using its shortest-

path distance matrix, which is defined as follows. Let G

Figure 3: An Arch. Graph (edge weights 1) and distance matrix

be a graph with n vertices. Let each vertex be assigned a
unique ID between 1 and n. Let dij represent the length
of the shortest path between vertices with IDs i and j in
G. The distance matrix DG, is an n × n matrix, where
DG(i, j) = dij . Note that dij satisfies the definition of a
distance metric given in Section 2, and thus DG is a metric
space that represents G. We compute dij efficiently using
breadth-first search for unweighted graphs, or Dijkstra’s al-
gorithm for weighted graphs, respectively [20].

We construct the n × n distance matrix DA correspond-
ing to the Architecture Graph (e.g., Fig. 3). The underlying
geometric intuition is that each row of DA represents the
delays with respect to a single location on the FPGA, sim-
ilar to the contours in Fig. 1. Thus DA encapsulates delay
contours for the entire Architecture Graph, representing the
metric space of the FPGA. Similarly, we construct the n×n
distance matrix DD, corresponding to the Design Graph.

As noted earlier, the placement problem is equivalent to
determining the optimal assignment of a location ID to each
logic-node ID. This assignment is represented mathemati-
cally by an n × n permutation matrix P [7]. The column
indices in P represent the node IDs and the row indices the
location IDs. If P (k, i) = 1, then logic-node i is assigned
to location k. Thus only one element in each row and each
column of P can be 1; all others must be 0. The action of P
on the Design Graph is represented by P T DDP .

To minimize distortion, P is chosen to minimize the dif-
ference between (a) the permuted distance matrix P T DDP
due to the assignment, and (b) the distance matrix DA

representing the metric space of the Architecture Graph.
We express this mathematically by the objective fobj =

‖P T DDP − DA‖2F . The operator ‖X‖F =
qP

i,j X(i, j)2,

i.e., the Frobenius norm of the matrix X. P is orthogonal
(PP T = I), so we simplify fobj to a convex quadratic func-
tion [1]: fobj = ‖P · (P T DDP −DA)‖2F = ‖DDP −PDA‖2F .

Our objective is to find P to minimize fobj , subject to
linear and integer constraints, as shown in Eqn. 1.

min fobj = ‖DDP − PDA‖2F
nX

i=1

P (i, j) = 1,∀j = 1, 2, . . . , n

nX
j=1

P (i, j) = 1,∀i = 1, 2, . . . , n

P (i, j) ∈ {0, 1} (1)

These contraints express the fact that P is a permutation
matrix, where exactly one element in each row and each col-
umn is 1, and all other elements are 0. Note that despite
the convex objective fobj , the {0, 1} constraints on the ele-
ments of P restrict the solution space to a non-convex set.
Thus, convex optimization techniques such as gradient de-
scent cannot be directly applied to solve this problem [1].
In fact, a formulation of the type shown in Eqn. 1, termed
a Binary Quadratic Assignment Problem, is known to be
NP-hard [19]. The approach we take in CAPRI is to ap-
proximate fobj such that assignments for the n logic-nodes
can be found without first solving an optimization problem
in n2 variables. Furthermore, these approximations also en-

462

Figure 4: Overview of CAPRI Implementation

able us to effectively overcome the difficulties associated with
the large, dense matrices present in our formulation. We de-
scribe our approach in detail in Section 5.

4.2 Features and Practical Considerations
Our placement formulation has several features of prac-

tical importance. In particular, linear constraints on the
permutation matrix P are used to accommodate restrictions
that might fix or confine certain logic blocks in the design to
certain locations on the FPGA. For example, if k is an illegal
location for logic-node i, we set variable P (k, i) = 0. Simi-
larly P (k, i) = 1 if logic-node i is fixed at location k. Thus,
only legal locations for mobile logic-nodes are unknown vari-
ables in the optimization. These constraints ensure that the
assignment is resource aware when the FPGA has slices of
different resources (e.g., control and datapath), large macros,
and pre-placed or constrained I/Os.

In CAPRI, I/Os are placed simultaneously with other logic-
nodes in the design, thereby providing additional flexibility
during optimization. No fixed objects are required to seed
the placement. At the same time, we accommodate I/Os
that are constrained or fixed in a top-down flow. Further-
more, a logic-node in the Design Graph and a location in
the Architecture Graph can represent either the most fine-
grained logic elements on the fabric or larger clusters of these
elements. Thus CAPRI can be applied at any level of gran-
ularity, enabling a hierarchical methodology.

5. IMPLEMENTATION ISSUES
We now present key insights and approximations that are

used to find a good solution to the NP-hard assignment prob-
lem formulated in Section 4.1. First we describe a truncated
formulation of Eqn. 1, which can be constructed efficiently.
Next we present our placement heuristic, which comprises
two steps — a fast analytical illegal placement step to mini-
mize distortion, followed by legalization. An overview of our
implementation of CAPRI is shown in Fig. 4.

5.1 Truncated Formulation
We use the truncated formulation described below to com-

pute the distance matrices from Eqn. 1 efficiently in log-
linear time in the size of the graph, rather than log-quadratic
time. Note that we only need to compute DD. DA can be
computed offline and stored for a given routing architecture.

Using Dijkstra’s shortest path algorithm with Fibonacci
heaps, we can construct a distance matrix in O(n(n log n +
|E|)) time, where n is the number of vertices in the graph,
and |E| the number of edges [20]. We simplify this expression
to O(n2 log n) since the graphs corresponding to typical de-
signs and FPGA architectures are sparse. For more efficient
matrix construction we use a small subset of vertices, called
pivots, to approximate a graph’s distance matrix. Thus, this
truncated distance matrix would now just include distances

between all vertex-pivot pairs, rather than those between all
pairs of vertices. This approximation was proposed in [9],
where it is shown that a small and practically constant num-
ber of pivots can effectively capture the topology of very
large graphs, especially if these pivots are chosen to be well
spread out through the graph, such as with Gonzalez’s k-
center selection algorithm [8]. Mathematically, pivot selec-
tion amounts to picking a small number of dominant rows
(say m) to approximate the complete n×n distance matrix.
The complexity of building the truncated m×n distance ma-
trix reduces to O(m(n log n + |E|)), or O(n log n) for sparse
graphs and constant m. Constant values of 50 < m < 100
are used for graphs with millions of vertices in [9]; we found
that m = 50 works well.

Assume that we pick m pivot-nodes in the Design Graph,
and m pivot-locations in the Architecture Graph1 Let the
corresponding m × n truncated distance matrices be repre-

sented by D̂D and D̂A. The assignment is now represented
by two permutation matrices P1 (mapping pivot-nodes to
pivot-locations) and P2 (mapping all nodes to locations).

Eqn. 2 gives the corresponding objective function ˆfobj . The
derivation is similar to that of Eqn. 1 from Section 4; the
constraints on P1 and P2 are similar to those on P .

ˆfobj = ‖P1(P
T
1 D̂DP2 − D̂A)‖2F = ‖D̂DP2 − P1D̂A‖2F (2)

In practice, the choice of pivots has significant impact on
the quality of the solution. In CAPRI, we use Gonzalez’s k-
center algorithm [8] to pick m vertices that are well spread
out through the graph. During the course of this selection,
we also give priority to choosing those vertices which lie on
critical paths, are I/Os, or have large degree.

5.2 Fast Analytical Illegal Placement Step
The first step of our placement heuristic is a low-rank ap-

proximation [7] of the truncated distance matrices. As ex-
plained below, this approximation expresses the dense rec-

tangular matrices D̂A and D̂D as the product of significantly
smaller (and therefore more tractable) matrices; it can also
be computed efficiently.

A rank-k approximation of an m × n matrix D is given
by D̄ = UΣV T ; Σ is a diagonal k × k matrix containing
the k dominant (i.e., largest) singular values of D, U is an
orthonormal m × k matrix containing the corresponding k
dominant left singular vectors of D, and V is an orthonormal
n× k matrix containing the corresponding k dominant right
singular vectors of D. When k � rank(D), D̄ is called a low-
rank approximation of D. Essentially, it is a least-squared
approximation of D as a product of the significantly smaller
matrices U , Σ, and V . For a rank-k approximation to be
effective, the k largest singular values must dominate, i.e.,
the remaining (rank(D)−k) singular values must be signifi-
cantly smaller and decay quickly to 0. A detailed discussion
of low-rank approximations is given in [7].

Geometrically, a rank-k approximation of a distance ma-
trix D for a set of points Γ, represents a projection of the
points in Γ onto that k-dimensional hyperplane which will
best preserve the distances in D in a least-squared sense in
k dimensions. Eqn. 3 and Eqn. 4 describe the low-rank ap-

proximations of D̂D and D̂A, respectively, using the notation
from the previous paragraph. The resulting approximation

of the objective ˆfobj to ¯fobj is given in Eqn. 5.

D̂D ≈ D̄D = UDΣDV T
D = UD

√
ΣD

√
ΣDV T

D (3)

1
For ease of exposition, we assume here that the number of pivot-

nodes, m, is equal to the number of pivot-locations. However this con-
straint is not required in our minimization strategy (see Section 5.4).

463

D̂A ≈ D̄A = UAΣAV T
A = UA

√
ΣA

√
ΣAV T

A (4)

¯fobj = ‖UD

√
ΣD

√
ΣDV T

D P2 − P1UA

√
ΣA

√
ΣAV T

A ‖2F (5)

The columns of the matrix
√

ΣAV T
A correspond to points in

k-dimensional space — essentially a projection of the met-
ric space of the Architecture Graph into k dimensions, as
shown by the examples in Fig. 5. Likewise, the columns
of
√

ΣDV T
D essentially represent our k-dimensional concur-

rent illegal placement of the logic-nodes in the Design Graph
(e.g., Fig. 6(a)). This placement is illegal in the sense that
it is on a k-dimensional hyperplane rather than the two-
dimensional chip surface, and also contains overlaps between
logic-nodes. Similarly the rows of UD

√
ΣD correspond to a

k-dimensional placement of the pivot-nodes alone, and the
rows of UA

√
ΣA to a k-dimensional projection of the metric

space corresponding to the pivot-locations alone.

The dominant singular values of the matrices D̂D and D̂A

for typical designs decay very sharply (e.g., Fig. 6(b)). Thus,
small values of 2 ≤ k ≤ 6 yield good approximations. In ad-
dition, given the spread in singular values for these typical
matrices, we use Orthogonal Iterations to efficiently com-
pute the rank-k approximation [7], making this placement
step fast. We find that the Orthogonal Iterations method
converges in a small number of iterations (typically less than
30), each iteration taking O(kn) time [7].

In our current version of CAPRI, we find that k = 2
works well, therefore, our fast analytical placement step is
equivalent to projecting the Design and Architecture Graphs
onto planes. To understand why this placement step is
architecture-aware, recall that the plane chosen via the rank-
2 approximation is one that best preserves distances in the
distance matrix, and that these distances in turn correspond
to delays of connections along the FPGA routing grid.

5.3 Legalization Step
Having obtained an abstract k-dimensional coordinate for

each logic-node in the Design Graph and each location in the
Architecture Graph, the next step is legalization, where each
logic-node is assigned to a legal location corresponding to a
logic element on the two-dimensional FPGA surface. Essen-
tially we map the points in k-dimensional space representing
the logic-nodes, to the points in k-dimensional space repre-
senting the metric space of the Architecture Graph. (Recall
that the latter points correspond to legal locations on the
FPGA.) As shown in Fig. 4, we construct a bipartite graph
B with the two partite sets representing the logic-nodes and
locations, respectively. Edges in B connect each logic-node
to potential legal locations; each edge is given a positive
weight (referred to as cost) to reflect the cost of assigning
the logic-node to the corresponding location.

From the structure of the decomposition in Eqn. 5, a
heuristic for minimizing ¯fobj is to assign logic-nodes to loca-
tions to minimize the k-dimensional distance between them
in the projection from Section 5.2. Thus, one component of
the cost on the edges of B is the k-dimensional distance be-
tween the corresponding logic-node and location; this com-
ponent minimizes distortion in the embedding. A second
component reflects the bounding-box wirelength of the nets
connecting a logic-node to its previously placed neighbors.
It models the fact that sharing routing segments improves
routability, thereby controlling congestion. Costs are weig-
hted by each logic-node’s timing criticality.

We determine a good assignment via a minimum weighted
matching on the bipartite graph B [20]; however the follow-
ing critical issues must be considered. First, B could po-
tentially have a quadratic number of edges (e.g., in the case

(a) 2-D grid. (b) Virtex-like grid.

Figure 5: Rank-2 approximation (k = 2) of metric space correspond-
ing to two architecture graphs. Note the clusters of locations in the
metric space of a Virtex-like architecture, due to its complex hierarchy
of direct routes.

(a) Illegal placement of de-
sign des with k = 2.

(b) Largest 15 singular val-
ues for a typical matrix.

Figure 6: Low-rank approximation

when every logic-node could be assigned to every location),
making it expensive to build. Second, the cost assignments
to edges in B are not static — for example, if a given node η
has been assigned to some location, we would like this assign-
ment to be reflected in the costs of assigning any neighbors of
η to their potential locations. We overcome these difficulties
by using a dynamic rather than a static bipartite graph, and
an online (i.e., dynamic) heuristic to find a matching. In this
online matching scheme, we maintain the set of locations in
a quad-tree [16], and consider the logic-nodes in order, from
most critical to least critical. Rather than construct all edges
upfront, as a given logic-node η is considered, we dynamically
construct the edges corresponding to potential locations for
η, and then greedily determine the location corresponding
to the edge with best cost. Importantly, we prune the set
of potential edges to first consider the legal available loca-
tions which are close to η’s k-dimensional coordinate in the
quad-tree, and expand the search outwards only when nec-
essary. Pruning edges results in substantial runtime savings.
Note also that by considering logic-nodes in order of their
criticality, we ensure that logic-nodes on critical paths are
placed in locations that are best for timing, while less critical
logic-nodes “negotiate” for the remaining locations.

5.4 General Comments
Note that our implementation strategy does not impose

strict constraints on the relative sizes of D̂A and D̂D, since
we find the low rank approximation of these matrices sepa-
rately, and the corresponding k-dimensional points form the
individual partite sets in the bipartite graph B. Thus, we do
accommodate different sizes of the Design and Architecture
Graphs, and different number of pivot-nodes and locations.

Recall that we use a star-model for nets (edges connect the
driver with each sink) when building distance matrices; this
captures best-case timing on a net and is used to compute
the k-dimensional coordinates. We also use a bounding-box
model during the legalization step to model sharing of route
segments, implicitly controlling congestion. Currently, we
do not have a global analytical model for FPGA congestion
(a challenging problem in its own right). However this is one
focus of our ongoing work on modeling routing resources via
the adjacency matrix of the graph.

The local optimization step (Phase 2 in Fig. 2(a)) can be
performed using any existing move-based FPGA placement

464

technique. For simplicity, and to enable comparison with
VPR, we currently use low-temperature simulated annealing
in the VPR framework. Alternatively, one could use faster
methods such as [6, 15] in this phase.

6. EXPERIMENTAL HIGHLIGHTS
We present highlights of experiments performed on 12

of the largest MCNC FPGA benchmarks [24]; each bench-
mark is a netlist of 4-input lookup tables (4-LUTs). The
FPGA array in each case consists of a homogeneous array
of PLBs, each containing one 4-LUT. All routing switches
are buffered. For each benchmark, the placement area cho-
sen is the smallest square array that accomodates all logic-
nodes and I/O pads. All experiments were conducted on a
1GHz Sun Ultra-sparc processor. We compare the following
methodologies to place both I/Os and PLBs concurrently:

(a) CAPRI: We use a C++ implementation of CAPRI
to produce an initial solution, followed by a cool anneal in
VPR for local optimization (c.f., Fig. 2(a)). The initial an-
neal temperature for the cool anneal is set to approximately
10−4 times the normal initial temperature in VPR, and the
timing-weight parameter in VPR is set to 0.8. For a fair
evaluation of CAPRI’s initial placement, we made no other
changes to tune the annealer or annealing schedule in VPR.

(b) VPR: This is the standard timing driven placement
flow in VPR by simulated annealing with the timing-weight
parameter set to 0.8.

We use VPR to route the placements in both flows. Fig. 7
shows the improvement with CAPRI in the delay of the
worst 20 critical paths after detailed routing for two archi-
tectures: (a) a heterogeneous architecture with routes span-
ning 1 PLB and 4 PLBs, and (b) a complex heterogeneous
architecture which mimics the Xilinx Virtex FPGA [25]. Im-
provements in the single-most critical path are similar, but
are not shown here due to lack of space.

These comparisons are obtained at routing channel widths
close to the minimum width, at which placements from both
the CAPRI and VPR flows can be routed. The CAPRI flow
does better in most designs with an improvement in criti-
cal path delays of 10.08% in the median, and 11.13% in the
mean. The CAPRI flow does worse on the design elliptic

at these small routing widths primarily because the design is
heavily congested. By adding a few more routing tracks to
alleviate congestion for this particular design, we obtained
improvements of 5.9% and 6.7% with CAPRI’s initial place-
ment on the architectures in (a) and (b) above, respectively.
We believe that our ongoing work of incorporating routing
congestion more directly in CAPRI’s objective function will
improve results for such designs.

When CAPRI is used to produce an initial solution, we
also obtain an average speedup of 2.05x in total placement
runtime as shown in Fig. 8. The time to run CAPRI alone
is only 4.8% of this total runtime on average.

7. CONCLUSION
In summary, we present CAPRI, a new analytical frame-

work that uses graph-embedding concepts to accurately mo-
del routing architectures during FPGA placement. CAPRI
is used as a global optimization step to produce a good ini-
tial placement, and preliminary experimental results look
very promising. In extensions to this work, we are currently
looking at similar analytical models for routing congestion, a
hierarchical methodology, and different options for the local
optimization phase. We also plan to look into using CAPRI
for FPGA architecture exploration.

Figure 7: CAPRI vs. VPR : Percentage improvement in the delay
after detailed routing of top 20 critical paths using CAPRI’s initial
placement on two FPGA routing architectures : (a) With routes span-
ning 1 PLB and 4 PLBs, and (b) Virtex-like.

Figure 8: CAPRI vs. VPR : Runtime comparison

Acknowledgements: We thank Prof. R. Rutenbar, A. Ran-
jan, B. Taylor, and the reviewers for their feedback.

8. REFERENCES
[1] D. P. Bertsekas. Nonlinear Programming. Athena, 1999.
[2] J. P. Blanks. Near-optimal placement using a quadratic

objective function. In DAC, 1985.
[3] H. Eisenmann and F. M. Johannes. Generic global placement

and floorplanning. In DAC, 1998.
[4] J. Frankle and R. M. Karp. Circuit placements and cost bounds

by eigenvector decomposition. In ICCAD, 1986.
[5] G. Parthasarathy, et al. Interconnect complexity-aware FPGA

placement using Rent’s rule. In SLIP, 2001.
[6] G.Chen and J.Cong. Simultaneous Timing Driven Clustering

and Placement for FPGAs. In FPL, 2004.
[7] G.H.Golub and C. Loan. Matrix Computations. JHU, 1983.
[8] T. F. Gonzalez. Clustering to minimize the maximum

intercluster distance. Theoretical Comp. Sci., 38, 1985.
[9] D. Harel and Y. Koren. Graph Drawing by High Dimensional

Embedding. In Graph Drawing, 2002.
[10] M. Khellah, S.Brown, and Z.Vranesic. Modeling routing delays

in SRAM-based FPGAs. In Canadian Conf. on VLSI, 1993.
[11] A. Marquardt, V. Betz, and J. Rose. Timing-Driven Placement

for FPGAs. In FPGA, 2000.
[12] J. Matousek. Lectures in Discrete Geometry. Springer, 2002.
[13] M.Hutton, et al. Timing Driven Placement for Hierarchical

Programmable Logic Devices. In FPGA, 2001.
[14] N.Selvakkumaran, et al. Partitioning Algorithms for FPGAs

with Heterogeneous Resources. In FPGA, 2004.
[15] P.Maidee, et al. Fast Timing-driven Partitioning-based

Placement for Island-style FPGAs. In DAC, 2003.
[16] R.A.Finkel and J.L.Bentley. Quad Trees: A Data Structure for

Retrieval of Composite Keys. Acta Informatica, 4(1), 1974.
[17] R.Jayaraman. Physical Design for FPGAs. In ISPD, 2001.
[18] S.K.Nag and R.Rutenbar. Performance-driven Simultaneous

Placement and Routing for FPGAs. IEEE TCAD, 17(6), 1998.
[19] S.Sahni and T.Gonzalez. P-complete approximation problems.

Journal of ACM, 23, 1976.
[20] T.H.Cormen, C.E.Leiserson, and R.L.Rivest. Introduction to

Algorithms. MIT Press, 1995.
[21] T.Karnik and S-M.Kang. An Empirical Model for Estimation of

Routing Delays in FPGAs. In ICCAD, 1995.
[22] T.Taghavi, S.Ghiasi, A.Ranjan, S.Raje, and M.Sarrafzadeh.

Innovate or Perish: FPGA Physical Design. In ISPD, 2004.
[23] www.altera.com.
[24] www.eecg.toronto.edu/

e

vaughn/challenge/challenge.html.
[25] www.xilinx.com.
[26] Y.Chang, et al. An architecture-driven metric for simultaneous

placement and global routing for FPGAs. In DAC, 2000.

465

