

Performance-Centering Optimization for System-Level Analog Design Exploration
Xin Li1, Jian Wang1, Lawrence T. Pileggi1, Tun-Shih Chen2 and Wanju Chiang2

1Dept. of ECE
Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.
{xinli, jianw, pileggi}@ece.cmu.edu

2SoC Technology Center, Industrial Technology Research Institute
Rm. 382, Bldg. 11, 195 Sec. 4, Chung Hsing Road

Chutung, Hsinchu, Taiwan 310, R.O.C.
{tschen, wjchiang}@itri.org.tw

Abstract

In this paper we propose a novel analog design optimization
methodology to address two key aspects of top-down system-level
design: (1) how to optimally compare and select analog system
architectures in the early phases of design; and (2) how to
hierarchically propagate performance specifications from system
level to circuit level to enable independent circuit block design.
Importantly, due to the inaccuracy of early-stage system-level
models, and the increasing magnitude of process and
environmental variations, the system-level exploration must leave
sufficient design margin to ensure a successful late-stage
implementation. Therefore, instead of minimizing a design
objective function, and thereby converging on a constraint
boundary, we apply a novel performance centering optimization.
Our proposed methodology centers the analog design in the
performance space, and maximizes the distance to all constraint
boundaries. We demonstrate that this early-stage design margin,
which is measured by the volume of the inscribed ellipsoid lying
inside the performance constraints, provides an excellent quality
measure for comparing different system architectures. The
efficacy of our performance centering approach is shown for
analog design examples, including a complete clock data recovery
system design and implementation.

1. Introduction

The challenges associated with large-scale analog system-
level design exploration, which include topology selection and
early-stage trade-off analysis, often create the bottleneck for
mixed-signal system design. Various design automation
approaches have been proposed for analog design space
exploration [1]-[4] that are based on extracting the performance
trade-off curve (called the Pareto optimal front) for each circuit
block (e.g. Op Amp, LNA, etc.). Such trade-off curves represent
the optimal (i.e. the best) performance values that each circuit
topology can achieve with a given manufacturing process.
Combining the performance trade-off curves of all circuit blocks
and propagating them to system level, analog designers can
quickly analyze the system-level design trade-offs and compare
system architectures.

Most of the algorithms for calculating the Pareto optimal front
can be classified into two categories: equation-based evaluations
[1] and simulation-based evaluations [2]-[4]. The equation-based
evaluations utilize analytic performance models, where each
circuit-level performance (e.g. gain, bandwidth, etc.) is
approximated by a close-form expression of the design variables
(e.g. transistor sizes, bias current, etc.). The equation-based
evaluations are extremely fast, but the accuracy is limited since it
is often difficult to accurately capture all analog performance
metrics by analytic equations. In contrast, the simulation-based
approaches run numerical simulations to construct the circuit
performance models; however, many modeling and/or simulation
errors can still be introduced, such as those due to device
modeling errors, layout parasitics, process variations, etc.

While simulation-based approaches are generally more

accurate at the expense of efficiency, it should be noted that there
is a limit to the attainable accuracy at the system-level exploration
stage due to the modeling, layout and process uncertainties.
Moreover, simplifications and approximations are required at the
system level to make the full system analysis and optimization
feasible, yet they further increase the lack of predictability.

In this paper we propose a new analog system-level design
methodology based on a novel performance centering
optimization, which considers the lack of predictability for the
existing performance trade-off models as a basic premise. Unlike
most other analog circuit optimization formulations that minimize
a cost function by pushing many performance constraints to their
boundaries, we borrow the idea from traditional design centering
for yield optimization [5]-[7] to derive a performance centering
optimization approach for analog system-level design exploration.
Our proposed methodology attempts to center the design within
the performance space and maximize the inscribed ellipsoid lying
inside the performance constraints. Importantly, our approach is
simultaneously maximizing the design margin for all performance
constraints, such that the resulting ellipsoidal volume represents a
quality measure for the system-level architecture. For example,
since the models are known to be imprecise, a small ellipsoidal
volume indicates that the performance specifications will
probably not be achievable at the circuit level or in the silicon
implementation. We therefore propose how this ellipsoidal
volume can be used as a quality metric for the assembly and
exploration of the interconnected system-level components.

The essence of our performance centering approach is
analogous to leaving sufficient design margin for all performance
metrics. Such over-design strategies are manually applied by
analog designers routinely. The novelty of our performance
centering method, however, is to provide a systematic and optimal
way to address the problem of preserving design margin for top-
down design. The question we address in this paper is the how to
mathematically formulate the system-level exploration problem so
that we can optimally compare system architectures and
hierarchically propagate the performance specifications from
system level down to circuit/block level. After the circuit-level
specifications are determined, each circuit block can be separately
optimized by the circuit-level synthesis tools [11]-[14].

The remainder of the paper is organized as follows. In Section
2, we review the background on existent design space exploration
techniques. Then we propose our performance centering approach
in Section 3. The efficacy of the proposed performance centering
method is demonstrated by several circuit examples in Section 4,
followed by our conclusions in Section 5.

2. Background
2.1 Equation-Based Performance Space Models

The equation-based evaluation [1] starts from a set of analytic
performance models:
 () ()MmXpm ,,2,1 L= (1)
where X = [x1,x2,...,xN]T represents the N design variables and {pm,
m = 1,2,...,M} corresponds to the M circuit-level performances.

0-7803-9254-X/05/$20.00 ©2005 IEEE. 422

The closed-form equations in (1) are derived to approximate the
relations between all circuit-level performances and design
variables. In [1], the author constrains each performance model to
be in the form of a posynomial function g to facilitate convex
optimization [8]:
 () ∑=

i
Ni

Niii xxxcxg ααα L21
21 (2)

where there are N real and positive variables X = [x1,x2,...,xN]T
with nonnegative coefficients ci ∈ R+ and real exponents αij ∈ R.

Considering a feasible set S for the design variables X, i.e. X ∈
S, the feasible performance space P = [p1,p2,...,pM]T can be
represented in the implicit form:
 (){ }SXXPP ∈| (3)
We refer to (3) as the implicit form because the feasible
performance space is implicitly specified in the design variables
X. The feasible performance space in (3) can be propagated to
system level and optimized with all circuit-level design variables.
Such an optimization problem is huge; however, it is
computationally feasible if the performance models are in the
posynomial form. An optimization with posynomial cost function
and constraints can be formulated as a geometric programming
problem [1], [8], [9]:

()
() ()

()Nnx
KkXgtosubject

Xgminimize

n

k

,,2,10
,,2,11

0

L

L

=>
=≤ (4)

where all functions {gi, k = 0,1,...,K} are posynomials. The
geometric programming problem can be converted into a convex
optimization and solved efficiently. For example, the state-of-the-
art geometric programming solver can optimize thousands of
variables in a few minutes [9]. The resulting values of all design
variables can be then used as a starting point for a more fine-
grained post-tuning as required in later design stages.

The feasible performance space can also be represented in the
explicit form:
 (){ }0| ≤PFP (5)
where F(P) = [f1(P),f2(P),...,fL(P)]T is a nonlinear vector function
containing L nonlinear scalar functions. The explicit form in (5)
does not include any circuit-level design variables. After equation
(5) is propagated to system level, the system-level optimization
problem only has the circuit-level performances as the unknown
variables. Such a problem is much smaller than that using the
implicit representation in (3). However, after the optimization is
solved, the circuit-level design variables are still unknown and
further steps are required to determine their values.

The primary disadvantage of the equation-based approach is
that various simplifications are generally applied and various
second-order effects must be ignored when creating the closed-
form performance models. It follows that the estimated
performance trade-offs might have large errors in some cases.

2.2 Simulation-Based Performance Space Models

To address the accuracy concerns, simulation-based
evaluation approaches [2]-[4] run detailed simulations to derive
the circuit-level performances, extract the feasible performance
space, and represent it in the form of (5) with significantly
improved accuracy. However, regardless of the accuracy of the
simulator, the lack of predictability at the system level will limit
the resulting performance model precision. This lack of
predictability can be traced to the system-level abstractions, as
well as the inability to abstract modeling information from the

circuit and device levels due to the design uncertainty. Therefore,
all of the following combine to increase the lack of predictability:

• Device level: e.g. device modeling errors and the uncertainties
due to process variations.

• Circuit level: e.g. layout parasitics that cannot be accurately
captured by running a schematic-level simulation.

• System level: e.g. the inaccuracy of the macromodels that are
used to approximate the behaviors of circuit blocks. Without
the macromodels, a numerical simulator might not be capable
of analyzing the entire large-size system.

The key distinction between equation-based evaluation and
simulation-based evaluation is the trade-off between accuracy and
efficiency. It should be noted that due to the need to abstract the
models (macromodels) to the system level to evaluate the
interactions among components, there is a limit to the modeling
accuracy which can be obtained in practice. For example, it is too
expensive, if not impossible, to use a layout-in-the-loop approach
to accurately capture the parasitic effect during the system-level
optimization.

While many prior works have focused on generating the
circuit-level performance trade-off curves, the problem of how to
effectively use these trade-offs in system-level design has not
been as thoroughly studied. More specifically, how to formulate
the system-level optimization problem and make it insensitive to
performance modeling errors is still an open question. For
example, most traditional constrained optimizations typically
minimize one cost function by pushing many performance
constraints to their boundaries. As a result, the optimized design
can easily fail the specifications even if a small modeling error
exists. In this paper, we propose a novel performance centering
methodology to improve the robustness of the system-level design
exploration.

3. Performance Centering

Our performance centering methodology attempts to address
two key problems in analog top-down design: (1) how to
optimally compare different system architectures and select the
best one for detailed implementation; and (2) how to
hierarchically propagate the performance specifications from
system level down to circuit level so that each circuit block can be
designed separately. We develop two optimization formulations to
address these two problems respectively.

3.1 Comparing System Architectures

Feasible Region

Centered Design

x1

x2

Fig. 1. Illustration of the traditional design centering with two

design variables x1 and x2 in design space.

For explanation purposes, we define the system architecture as
the circuit-level topologies and the interconnections among them.

423

Our performance centering approach is based on an adaptation of
the traditional design centering method (for yield optimization)
[5]-[7] to provide a criterion for comparing and contrasting
system architectures. The basic idea of design centering is to
make the design tolerant to uncertainties by maximizing the
inscribed ellipsoid lying inside the feasible region in the design
space. This is accomplished by simultaneously maximizing the
distance to all constraint boundaries of the feasible design space,
as shown in Fig. 1. Following optimization, the resulting
ellipsoidal volume is an indicator of the design yield. For
example, a larger ellipsoidal volume represents a higher
probability that the design can meet the required specifications in
silicon, and is less vulnerable to the various uncertainties outlined
in Section 2.2.

Therefore, we propose a process of architecture selection
whereby we compare different system designs in terms of the
probability of achieving a successful implementation in later
design stages. We propose to select the architecture based on the
performance values and the indicated vulnerability to the various
uncertainties.

Most importantly, it is not meaningful to simply compare two
system architectures in terms of their maximized ellipsoidal
volumes in the design space. The architecture selection problem is
substantially different from design centering, since different
system architectures consist of different circuit blocks and,
therefore, have different design space structures. For example, the
dimensions of the design spaces can be different for two
architectures since they have different numbers of design
variables, and it is not meaningful to compare their maximized
ellipsoidal volumes. What is comparable is the performance
space. All architecture candidates are toward implementing the
same system function with a set of given system-level
specifications. This observation motives us to center the design in
the performance space, maximize the distance to all performance
boundaries, and use the maximized volume of the inscribed
ellipsoid as a criterion to compare system architectures. Such a
performance centering idea is illustrated by the example in Fig. 2.

q2

q1

q2 ≤ Spec2

q1 ≤ Spec1

ε2
ε1

Trade-off Curve

Fig. 2. Illustration of the performance centering with two

performance specifications q1 and q2 in performance space.

We mathematically formulate and solve the performance
centering problem as follows. We formulate two optimization
problems that use the implicit performance space models in (3)
and the explicit performance space models in (5), respectively.

A. Using Implicit Performance Space Models

For simplicity, we focus on the system design with three
hierarchal levels, as shown in Fig. 3. We should note, however,
that nothing precludes us from extending our methodology to
more complex, multi-level system structures.

System-Level Performances
Q = [q1,q2,...,qK]T

Circuit-Level Performances
P = [p1,p2,...,pM]T

Circuit-Level Design Variables
X = [x1,x2,...,xN]T

Fig. 3. System design with three hierarchal levels.

We assume that the relations between the system-level
performances {qk, k = 1,2,...,K} and the circuit-level performances
{pm, m = 1,2,...,M} are available. These relations {qk(P), k =
1,2,...,K} can be derived by hand analysis [1] or approximated by
regression modeling [4]. Combining {qk(P), k = 1,2,...,K} and the
circuit-level performance models {pm(X), m = 1,2,...,M} yields the
system-level performance equations {qk(X), k = 1,2,...,K}. In
addition, we assume that these system-level performances can be
approximated as posynomials. This posynomial assumption might
not be true for all analog designs; however, it is valid for many
analog circuits. It has been demonstrated that many analog circuit
specifications can be cast into posynomial functions [1], [8], [9].
The posynomial property guarantees that the system-level
optimization problem is convex and can be solved efficiently.
Otherwise, the explicit performance space models in (5) must be
used to eliminate all circuit-level design variables and render a
small-size, affordable system-level optimization problem.

Without loss of generality, we normalize all system-level
performance specifications to the standard form:
 () ()KkXqk ,,2,11 L=≤ (6)
where all {qk(X), k = 1,2,...,K} are posynomials and K is the total
number of the system-level performance metrics. The standard
form in (6) has been utilized by the authors in [1], [8], [9] to
formulate the analog sizing as a geometric programming problem.
A performance specification f(X) ≥ 1 can be written as 1/f(X) ≤ 1
in order to fit into the standard form in (6) [8].

Based on (6), the performance centering problem can be
formulated as:

() ()

()
()Nnx

Kk
KkXqtosubject

maximize

n

k

kk

K

,,2,10
,,2,10
,,2,11

21

L

L

L

L

=>
=>
=−=

⋅⋅⋅

ε
ε

εεε

 (7)

where {εk, k = 1,2,...,K} is a set of variables that represent the
lengths of the ellipsoidal axes (see Fig. 2). The optimization in (7)
solves for the optimal values of {εk, k = 1,2,...,K} and {xn, n =
1,2,...,N} such that the ellipsoidal volume ε1·ε2·...·εK is maximized.
Such an optimization can also be generalized to use other cost
functions to measure the ellipsoidal size, e.g. ε1

2 + ε2
2 +...+ εK

2.
The optimization problem in (7) does not match the geometric

programming form in (4), since it maximizes a posynomial cost
function and includes the posynomial equality constraints.
However, equation (7) can be equivalently converted to:

() ()

()
()Nnx

Kk
KkXqtosubject

minimize

n

k

kk

K

,,2,10
,,2,10
,,2,11

11
2

1
1

L

L

L

L

=>
=>
=≤+

⋅⋅⋅ −−−

ε
ε

εεε

 (8)

Comparing (7) and (8), we note that maximizing the cost

424

function ε1·ε2·...·εK in (7) is equivalent to minimizing the cost
function ε1

–1·ε2
–1·...·εK

–1 in (8). In addition, maximizing ε1·ε2·...·εK
will push all {εk, k = 1,2,...,K} to their maximal values. It follows
that the inequality constraints {qk(X)+εk ≤ 1, k = 1,2,...,K} in (8)
always become active, i.e. reach {qk(X)+εk = 1, k = 1,2,...,K}, after
the optimization. According to these observations, we have the
following theorem:

Theorem 1: The optimization problem in (8) is equivalent to the
original problem in (7).

Theorem 1 can be formally proved by using the Karush-Kuhn-
Tucker optimality condition [10]. Due to the space limitation, the
detailed proof is not included here.

The optimization in (8) is a geometric programming problem
and, therefore, can be solved efficiently. In addition, the
optimization formulation in (8) has two interesting properties.

• Scaling-independent: both the optimized design variables {xn,
n = 1,2,...,N} and the architecture selection result are
independent on the performance scaling. For example, instead
of normalizing the performance specifications as (6), we can
scale the specifications by any pre-defined factors {βk > 0, k =
1,2,...,K}, e.g. {βk·qk(X) ≤ βk, k = 1,2,...,K}, and change the
optimization problem (8) to:

() ()

()
()Nnx

Kk
KkXqtosubject

minimize

n

k

kkkk

K

,,2,10
,,2,10
,,2,1

11
2

1
1

L

L

L

L

=>
=>
=≤+⋅

⋅⋅⋅ −−−

ε
βεβ

εεε

 (9)

The optimization of (9) yields the same optimal values of the
design variables {xn, n = 1,2,...,N} as that in (8). The maximal
ellipsoidal volumes (i.e. ε1·ε2·...·εK) computed from (8) and (9)
differ by a scaling factor β1·β2·...·βK. However, these
ellipsoidal volumes are only used for comparing system
architectures. As long as the same normalization scheme is
used for all architecture candidates, the resulting ellipsoidal
volumes are scaled identically and their relative relation is
unchanged. It follows that the architecture selection result is
also independent on the performance scaling. The scaling
independent property allows us to use the normalized
specifications in (6) to formulate the performance centering
problem.

• Knowledge-compatible: analog designers can easily add their
design knowledge into the optimization formulation (8). For
example, if a designer wants to leave the margin εi for the i-th
performance as two times the margin εj for the j-th
performance, he/she can explicitly add the constraint εi = 2εj
into the optimization. Such an equality constraint can be split
into two posynomial inequality constraints 0.5εi·εj

–1 ≤ 1 and
2εi

–1εj ≤ 1 so that the optimization is still a geometric
programming problem. Geometrically, adding such a
constraint will adjust the ellipsoidal shape during the
optimization. This is similar to defining the correlation among
uncertainty parameters in traditional design centering [7].
However, the uncertainty correlation in performance centering
is much more difficult to estimate than that in design
centering. Since the knowledge of a given system architecture
is limited at the early design stages, the correlation
information can only be estimated based on the design
experience.

B. Using Explicit Performance Space Models

If the posynomial assumption in the previous sub-section fails,
the system-level optimization becomes a general nonlinear
programming problem that must be solved by comprehensive
algorithms, e.g. simulated annealing or genetic programming. In
such cases, including all circuit-level design variables {xn, n =
1,2,...,N} into the system-level optimization is infeasible, since it
yields a huge problem and is too computationally expensive. The
explicit performance space models in (5) should be utilized to
eliminate all circuit-level design variables to make the system-
level optimization tractable.

We focus on the three-level system structure in Fig. 3 and
assume that the relations {qk(P), k = 1,2,...,K} are known. After
normalizing all system-level performance specifications to the
standard form (6), the performance centering problem can be
formulated as:

() ()
() ()

()Kk
LlPf
KkPqtosubject

minimize

k

l

kk

K

,,2,10
,,2,10
,,2,11

11
2

1
1

L

L

L

L

=>
=≤
=≤+

⋅⋅⋅ −−−

ε

ε
εεε

 (10)

where {fl(P), l = 1,2,...,L} stands for the L nonlinear scalar
functions that specify the feasible performance space (see (5)).
The optimization in (10) solves for the optimal values of {εk, k =
1,2,...,K} and {pm, m = 1,2,...,M} such that the ellipsoidal volume
ε1·ε2·...·εK is maximized. Similar to (8), the scaling-independent
and knowledge-compatible properties are also valid for the
optimization in (10).

In summary, the optimization formulations in (8) and (10) are
developed to center the system-level design in the performance
space by maximizing the inscribed ellipsoid lying inside the
specification boundaries. The resulting ellipsoidal volume is used
as a criterion to compare system architectures. A larger ellipsoidal
volume implies a higher probability to achieve a successful
implementation in later design stages.

The proposed architecture comparison can be directly applied
to analog design based on component library, where basic analog
blocks are pre-characterized with performance models. In this
case, the performance centering approach can be used to run
optimizations for all architecture candidates in the library and then
automatically pick up the best one for detailed implementation.

It should be noted, however, that the quality of the
architecture comparisons significantly depends on the quality (i.e.
accuracy) of the performance models. If the performance models
are extremely inaccurate and two system architectures are
extremely close, the performance centering approach might not be
able to distinguish these two architectures because the
performance modeling errors are larger than the architecture
difference. In such cases, more accurate performance models must
be utilized to achieve an accurate architecture comparison.

3.2 Propagating Performance Specifications

After the system architecture is selected, the equally important
step is to propagate the performance specifications from system
level down to circuit level and, hence, assign the performance
specifications for all circuit blocks so that they can be designed
separately. The specification propagation is a key step to enable
the top-down design flow.

There are two challenging problems that one must consider
when propagating performance specifications. Firstly, at the

425

circuit level, sufficient margin should be reserved for each circuit-
level performance metric. Otherwise, if the circuit-level
specifications are too tight, they will become infeasible at the
detailed modeling and implementation stages.

Secondly, sufficiently large margins for system-level
specifications are also required, since the relation between the
system-level and circuit-level performances are not exactly known
in the early design stages. Without these system-level
performance margins, even if all circuit-level performance
specifications are met, the system-level specifications will
probably fail in the bottom-up verification.

Following these two observations, most traditional
constrained optimizations seem ill-equipped to solve the
specification propagation problem since they typically minimize
one cost function by pushing many performance constraints to
their boundaries. Instead, we are proposing to simultaneously
maximize the design margins for all system-level and circuit-level
performance metrics, as shown in Fig. 4.

System

q2

q1

ε2 ε1

System

q2

q1

ε2 ε1

Block 1

p2

p1

δ2 δ1

Block 2

p4

p3

δ4 δ3

Block 1

p2

p1

δ2 δ1

Block 1

p2

p1

δ2 δ1

p2

p1

δ2 δ1

Block 2

p4

p3

δ4 δ3

Block 2

p4

p3

δ4 δ3

p4

p3

δ4 δ3

Fig. 4. Illustration of the specification propagation with two
system-level specifications (q1 and q2) and four circuit-level

specifications (p1, p2, p3 and p4). The performance centering is to
maximize the overall design margin ε1·ε2·δ1·δ2·δ3·δ4.

The following is the mathematic formulation for optimally
solving such a specification propagation problem. Two
optimization formulations are developed to use the implicit
performance space models in (3) and the explicit performance
space models in (5), respectively.

A. Using Implicit Performance Space Models

Considering the three-level system structure in Fig. 3, where
we represent the circuit-level performance specifications as {p̃m,
m = 1,2,...,M}, i.e.:
 () ()MmpXp mm ,,2,1~ L=≤ (11)
and approximate {pm(X), m = 1,2,...,M} by posynomials. These
performance specifications {p̃m, m = 1,2,...,M} are the problem
unknowns that will be determined during specification
propagation. Similar to (6), equation (11) is the standard form to
define the performance specifications. A specification f(X) ≥ f̃ can
be written as 1/f(X) ≤ 1/f ̃ in order to fit into the standard form in
(11) [8].

In addition, we assume that the system-level performances can
be approximated as posynomial functions of the circuit-level
specifications, i.e. {qk(P ̃), k = 1,2,...,K}, where P ̃ = [p̃1,p̃2,...,p̃M]T.

Similar to (6), we normalize the system-level performance
specifications as:
 () ()KkPqk ,,2,11~

L=≤ (12)
Combining (11) and (12), the specification propagation

problem can be mathematically formulated as:

() ()
() ()

()
()
()Nnx

Mm
Kk
MmpXp
KkPqtosubject

minimize

n

m

k

mmm

kk

MK

,,2,10
,,2,10
,,2,10
,,2,1~
,,2,11~

11
2

1
1

11
2

1
1

L

L

L

L

L

LL

=>
=>
=>
=≤+
=≤+

−−−−−−

δ
ε

δ
ε

δδδεεε

 (13)

where {εk, k = 1,2,...,K} denotes the design margins for the
system-level performances and {δm, m = 1,2,...,M} stands for the
design margins for the circuit-level performances. It is
straightforward to verify that the optimization in (13) is a
geometric programming problem. It maximizes the ellipsoid
defined by both system-level and circuit-level performance
specifications. In other words, it simultaneously maximizes the
design margins for all system-level and circuit-level performance
metrics. After the optimization problem is solved, the circuit-level
performance specifications {p̃m, m = 1,2,...,M} are known and
they can be used to design each individual circuit block separately
in later design stages.

Compared with (13), the optimization in (8) does not leave
any margin for circuit-level specifications. In the application of
topology selection, different system architectures consist of
different circuit blocks. Therefore, it is not meaningful to compare
ellipsoidal volume at the circuit level, and only the system-level
ellipsoid is maximized and compared to select the best system
architecture. In contrast, for the problem of specification
propagation, we need to distribute the design margins from system
level down to circuit level. In such cases, the ellipsoid should be
maximized at both levels, as shown in (13).

It is worth noting that the scaling-independent and
knowledge-compatible properties that are described in Section
3.1.A are also valid for the optimization in (13). For example,
based on one’s design experience, it is possible to modify the cost
function and constraints in (13) to make a different tradeoff
between the system-level and circuit-level design margins.

B. Using Explicit Performance Space Models

The optimization formulation in (13) can be easily extended to
use the explicit performance space models in (5):

() ()
()

() ()
()
()Mm

Kk
LlPf
Mmpp
KkPqtosubject

minimize

m

k

l

mmm

kk

MK

,,2,10
,,2,10
,,2,10
,,2,1~
,,2,11~

11
2

1
1

11
2

1
1

L

L

L

L

L

LL

=>
=>
=≤
=≤+
=≤+

−−−−−−

δ
ε

δ
ε

δδδεεε

 (14)

where {fl(P), l = 1,2,...,L} stands for the L nonlinear scalar
functions that specify the feasible performance space (see (5)). If
the constraints in (14) are arbitrary functions, the optimization
should be solved by comprehensive algorithms, e.g. simulated
annealing or genetic programming.

In summary, the optimization formulations in (13) and (14)
are developed to maximize the design margins for both system-
level and circuit-level performance metrics. As such, the system-

426

level specifications are distributed to the circuit level so that each
circuit block can be optimized individually by the circuit-level
synthesis tools [11]-[14].

It must be noted, however, that our performance centering
methodology does not guarantee a feasible system-level design –
but rather it finds the design that is most capable of achieving the
required specifications. Moreover, the quality of the performance
centering results significantly depends on the quality (i.e.
accuracy) of the performance models. If the performance models
are extremely inaccurate and the design constraints are extremely
tight, the performance centering approach might fail because the
performance modeling errors are larger than the maximal design
margins that are available. Therefore, as the design constraints
become tighter, we must rely on more accurate performance
models. Similar requirements have been noted for traditional
design centering for yield enhancement [5]-[7]. When the process
variations are too large to achieve a high product yield, better
process control is required to reduce the manufacturing
uncertainties and improve the yield.

4. Numerical Examples

In this section, we demonstrate the efficacy of the proposed
performance centering approach using two design examples: an
operational amplifier and a clock and data recovery circuit. All
numerical experiments are run on a SUN ― 1 GHz server.

4.1 Operational Amplifier

Fig. 5. Circuit schematic of a simple two-stage Op Amp.

Fig. 6. Circuit schematic of a folded-cascode two-stage Op Amp.

Table 1. Design specifications and results for Op Amp
Performance Spec Result

VDD (V) = 2.5 ―
Gain (dB) ≥ 100 102

UGF (MHz) ≥ 10 10.9
Offset (mV) ≤ 1.0 0.01

Phase Margin (degree) ≥ 60 63.2
Slew Rate (V/µs) ≥ 20 20.5

Swing (V) ≥ 0.5 1.00
Power (mW) ≤ 20 0.79

Fig. 5 and Fig. 6 show the circuit schematics of a simple two-
stage Op Amp and a folded-cascode two-stage Op Amp,
respectively. The purpose of this design example is to select a best
Op Amp topology from Fig. 5 and Fig. 6 to meet the performance
specifications in Table 1. The Op Amp circuits are based on these
topologies as implemented in the IBM 0.25 µm BiCMOS process.

A. Topology Selection

We construct the implicit performance space models using
posynomial design equations, and formulate the performance
centering problem as (8). The details of the Op Amp design
equations can be found in [8]. In this example, since the
performance models are approximated as posynomials, the
performance centering problem in (8) can be efficiently solved
using geometric programming algorithm, taking 1~2 seconds for
this Op Amp example.

20 30 40 50 60 70 80 90 100 110
10

-6

10
-5

10
-4

10
-3

10
-2

Gain (dB)

P
er

fo
rm

an
ce

 E
lli

ps
oi

da
l V

ol
um

e

Op Amp in Fig. 5
Op Amp in Fig. 6

VDD = 2.5 V

VDD = 2.0 V

Fig. 7. Maximized ellipsoidal volume in performance space when

applying different gain and VDD specifications for Op Amp.

Fig. 7 shows a comparison between the Op Amp topologies in
terms of the maximized ellipsoidal volume in the performance
space. As we would expect, the two-stage folded-cascode
topology is better than the simple two-stage one when the power
supply voltage is sufficiently high to provide the necessary
voltage headroom. In this example, we find that a sufficient
voltage is 2.5 V, whereas, the folded-cascode topology appears to
be inferior to the simple two-stage one once the supply voltage is
dropped to 2.0 V. Perhaps less obvious, however, we find that for
extremely high gain specification, the quality measure (i.e. the
ellipsoidal volume) for the simple Op Amp once again falls below
that for the folded-cascode Op Amp, even at a 2.0 V supply. This
indicates that the folded-cascode configuration would provide a
better topology for detailed implementation even at VDD = 2.0 V if
the gain requirement is high enough. Given the performance
specifications in Table 1, the folded-cascode Op Amp topology in
Fig. 6 provides larger design margin (i.e. larger ellipsoidal
volume) and, therefore, represents our preferred topology for
these design specifications in the IBM 0.25 µm technology.

It is important to consider that as IC technologies continue to
scale, many traditional analog circuit topologies will begin to
break down owing to reduced power supply voltages and/or
device nonidealities such as excessive leakage current. It is
essential to understand the limitation of each topology during the
system-level design. The proposed performance centering
approach offers a systematic way to quickly identify these
ineffective topologies within the early design stages.

427

B. Detailed Sizing

Once the circuit topology is determined (Fig. 6), various
circuit-level optimization tools (e.g. [11]-[14]) can be utilized to
carefully optimize the device sizes using accurate transistor-level
simulation. Table 1 shows the Spectre simulation results
following detailed sizing. The final circuit performance in Table 1
meets all of the design requirements.

For testing and comparison, we apply the same detailed sizing
to the topology in Fig. 5. As we would expect, the circuit-level
optimization cannot produce a feasible design that meets the
specifications in Table 1. The main difficulty is that the simple
two-stage Op Amp in Fig. 5 cannot achieve an extremely high
gain of 100 dB.

4.2 Clock and Data Recovery Circuit

Next, we consider the application of our methodology to the
analog system design shown in Fig. 8, which is the block diagram
of a clock and data recovery (CDR) circuit for a 2.5 Gbps
synchronous optical network communication channel (OC-48)
[15]. The CDR system in Fig. 8 is implemented in the TSMC 0.25
µm process and consists of three major circuit blocks: the phase
and frequency detector (PFD), the charge pump (CP as shown in
Fig. 9) and the voltage controlled oscillator (VCO as shown in
Fig. 10). In this example, the PFD is pre-determined, since it is a
pure digital circuit and is of less interest to our analog
optimization. Our objective is to apply the proposed performance
centering approach to systematically design the CP and VCO so
that the overall CDR meets the specifications of the OC-48
standard. Such a large-scale design problem is accomplished via
three individual steps: system-level design, circuit-level sizing and
system-level verification.

PFD

CP

VCO
Input Data

Retimed Data

BB Control

CP Control

Fig. 8. Block diagram of a clock and data recovery circuit.

VB3

VB2

VB1

Out+ Out–

UP– UP+ DN+ DN–

Fig. 9. Circuit schematic of the charge pump.

Load

Delay Delay Delay Delay

Load

CP Control

BB Control
(a)

CP+ CP–

In+ In–

Out– Out+

(b)

VB

UP– UP+ DN+ DN–

LD+ LD–

(c)

Fig. 10. Circuit schematic of the voltage controlled oscillator. (a)
Block diagram of the VCO. (b) Circuit schematic of the delay

block. (c) Circuit schematic of the load block.

Table 2. System-level specifications and results for CDR
Performance Spec Result

Data Rate (Gbps) = 2.5 ―
Power (mW) ≤ 60 43.98

Peak-to-Peak (UI) ≤ 0.1 0.026 Jitter
Generation RMS (UI) ≤ 0.01 0.007

Bandwidth (MHz) ≤ 2.0 0.79 Jitter
Transfer Peaking (dB) ≤ 0.1 0.00

10
1

10
2

10
3

10
4

10
5

10
6

10
-2

10
0

10
2

10
4

10
6

10
8

Frequency (Hz)

In
pu

t J
itt

er
 (U

I)

Acceptable Region

Fig. 11. Jitter tolerance specifications and results for CDR.

A. System-Level Design

The purpose of the system-level design is to systematically
propagate the OC-48 specifications down to the circuit level, i.e.
determine the circuit-level specifications for the CP and VCO.
The system-level CDR specifications consist of several
requirements on jitter and power, as shown in Table 2 and Fig. 11.

We construct the CDR performance models using posynomial
design equations, resulting in a geometric programming problem
for the performance centering formulation in (13). The details of
the CDR performance equations can be found in [15]. In this
example, the optimization includes 58 variables and 83
constraints. It takes a few seconds to solve such a geometric
programming problem. Table 3 shows the optimized circuit-level

428

specifications for both the CP and the VCO.

Table 3. Circuit-level specifications and results for CDR
Block Performance Spec Result
PFD Power (mW) ― 36.46

ICP/CCP (A/F) ≤ 16.62 14.45 CP
Power (mW) ≤ 2.08 0.34

F0 (GHz) = 1.25 1.22
CP KVCO (GHz/V) ≤ 3.08 1.29

≥ 1.92 BB Tune Range (MHz)
≤ 3.10

2.73

PNoise @ 1MHz (dBc) ≤ -76 -84

VCO

Power (mW) ≤ 8.11 7.19

B. Circuit-Level Sizing

After the performance specifications for the CP and VCO are
determined, circuit-level synthesis tools [11]-[14] are applied to
optimize each circuit block separately. Table 3 shows the circuit-
level performances after detailed sizing. Note that the circuit-level
sizing is successful for both the CP and the VCO, i.e. all
performance specifications in Table 3 are satisfied. This
demonstrates that the circuit-level specifications optimized by our
performance centering approach are feasible for both circuits.

C. System-Level Verification

As the final step in the design flow, we connect the PFD, CP
and VCO together and run the Spectre simulation for the entire
CDR. Table 2 and Fig. 11 show the transistor-level Spectre
simulation results for the jitter and power performances. In this
example, all system-level CDR performances satisfy the OC-48
requirements, as expected from our system-level optimization.

5. Conclusions

A new performance centering methodology has been proposed
for robust (i.e. error-tolerant) analog system-level design
exploration. By centering the design in the performance space, our
proposed performance centering approach provides a quality
measure of comparing system-level architectures and a systematic
way of propagating the performance specifications from system
level down to circuit level. As is demonstrated by numerical
examples, the proposed performance centering approach provides
successful system-level designs even using simple performance
models.

6. Acknowledgements

This work has been supported by the MARCO Focus Center
for Circuit & System Solutions (C2S2, www.c2s2.org) under
contract 2003-CT-888 and the Industry Technology Research
Institute, Taiwan (ITRI, www.itri.org.tw).

7. References
[1] M. Hershenson, “Efficient description of the design space of

analog circuits,” IEEE/ACM DAC, pp. 970-973, 2003.
[2] B. Smedt and G. Gielen, “WATSON: design space

boundary exploration and model generation for analog and
RF IC design,” IEEE Trans. CAD, vol. 22, no. 2, pp. 213-
224, Feb. 2003.

[3] G. Stehr, H. Graeb and K. Antreich, “Performance trade-off
analysis of analog circuits by normal-boundary
intersection,” IEEE/ACM DAC, pp. 958-963, 2003.

[4] G. Stehr, H. Graeb and K. Antreich, “Analog performance
space exploration by Fourier-Motzkin elimination with
application to hierarchical sizing,” IEEE/ACM ICCAD, pp.
847-854, 2004.

[5] H. Abdel-Malek and A. Hassan, “The ellipsoidal technique
for design centering and region approximation,” IEEE
Trans. CAD, vol. 10, no. 8, pp. 1006-1014, Aug. 1991.

[6] K. Antreich, H. Graeb and C. Wieser, “Circuit analysis and
optimization driven by worst-case distances,” IEEE. Trans.
CAD, vol. 13, no. 1, pp. 57-71, Jan. 1994.

[7] A. Seifi, K. Ponnambalam and J. Vlach, “A unified
approach to statistical design centering of integrated circuits
with correlated parameters,” IEEE Trans. CAS-I, vol. 46,
no. 1, pp. 190-196, Jan. 1999.

[8] M. Hershenson, S. Boyd and T. Lee, “Optimal design of a
CMOS Op-Amp via geometric programming,” IEEE Trans.
CAD, vol. 20, no. 1, pp. 1-21, Jan. 2001.

[9] M Hershenson, “Design of pipeline analog-to-digital
converters via geometric programming,” IEEE/ACM
ICCAD, pp. 317-324, 2002.

[10] D. Bertseksa, Nonlinear Programming, Athena Scientific,
1999.

[11] R. Phelps, M. Krasnicki, R. Rutenbar, L. Carley and J.
Hellums, “Anaconda: simulation-based synthesis of analog
circuits via stochastic pattern search,” IEEE Trans. CAD,
vol. 19, no. 6, pp. 703-717, Jun. 2000.

[12] G. Plas, G. Debyser, F. Leyn, K. Lampaert, J.
Vandenbussche, G. Gielen, W. Sansen, P. Veselinovic and
D. Leenaerts, “AMGIE ― a synthesis environment for
CMOS analog integrated circuits,” IEEE Trans. CAD, vol.
20, no. 9, pp. 1037-1058, Sep. 2001.

[13] F. Schenkel, M. Pronath, S. Zizala, R. Schwencker, H.
Graeb and K. Antreich, “Mismatch analysis and direct yield
optimization by spec-wise linearization and feasibility-
guided search,” IEEE/ACM DAC, pp. 858-863, 2001.

[14] X. Li, P. Gopalakrishnan, Y. Xu and L. Pileggi, “Robust
analog/RF circuit design with projection-based posynomial
modeling,” IEEE/ACM ICCAD, pp. 855-862, 2004.

[15] B. Razavi, Phase-Locking in High-Performance Systems:
From Devices to Architectures, IEEE Press, 2003.

429

