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Abstract 

In this paper we propose a novel analog design optimization 
methodology to address two key aspects of top-down system-level 
design: (1) how to optimally compare and select analog system 
architectures in the early phases of design; and (2) how to 
hierarchically propagate performance specifications from system 
level to circuit level to enable independent circuit block design. 
Importantly, due to the inaccuracy of early-stage system-level 
models, and the increasing magnitude of process and 
environmental variations, the system-level exploration must leave 
sufficient design margin to ensure a successful late-stage 
implementation. Therefore, instead of minimizing a design 
objective function, and thereby converging on a constraint 
boundary, we apply a novel performance centering optimization. 
Our proposed methodology centers the analog design in the 
performance space, and maximizes the distance to all constraint 
boundaries. We demonstrate that this early-stage design margin, 
which is measured by the volume of the inscribed ellipsoid lying 
inside the performance constraints, provides an excellent quality 
measure for comparing different system architectures. The 
efficacy of our performance centering approach is shown for 
analog design examples, including a complete clock data recovery 
system design and implementation. 
 
1. Introduction 

The challenges associated with large-scale analog system-
level design exploration, which include topology selection and 
early-stage trade-off analysis, often create the bottleneck for 
mixed-signal system design. Various design automation 
approaches have been proposed for analog design space 
exploration [1]-[4] that are based on extracting the performance 
trade-off curve (called the Pareto optimal front) for each circuit 
block (e.g. Op Amp, LNA, etc.). Such trade-off curves represent 
the optimal (i.e. the best) performance values that each circuit 
topology can achieve with a given manufacturing process. 
Combining the performance trade-off curves of all circuit blocks 
and propagating them to system level, analog designers can 
quickly analyze the system-level design trade-offs and compare 
system architectures. 

Most of the algorithms for calculating the Pareto optimal front 
can be classified into two categories: equation-based evaluations 
[1] and simulation-based evaluations [2]-[4]. The equation-based 
evaluations utilize analytic performance models, where each 
circuit-level performance (e.g. gain, bandwidth, etc.) is 
approximated by a close-form expression of the design variables 
(e.g. transistor sizes, bias current, etc.). The equation-based 
evaluations are extremely fast, but the accuracy is limited since it 
is often difficult to accurately capture all analog performance 
metrics by analytic equations. In contrast, the simulation-based 
approaches run numerical simulations to construct the circuit 
performance models; however, many modeling and/or simulation 
errors can still be introduced, such as those due to device 
modeling errors, layout parasitics, process variations, etc. 

While simulation-based approaches are generally more 

accurate at the expense of efficiency, it should be noted that there 
is a limit to the attainable accuracy at the system-level exploration 
stage due to the modeling, layout and process uncertainties. 
Moreover, simplifications and approximations are required at the 
system level to make the full system analysis and optimization 
feasible, yet they further increase the lack of predictability. 

In this paper we propose a new analog system-level design 
methodology based on a novel performance centering 
optimization, which considers the lack of predictability for the 
existing performance trade-off models as a basic premise. Unlike 
most other analog circuit optimization formulations that minimize 
a cost function by pushing many performance constraints to their 
boundaries, we borrow the idea from traditional design centering 
for yield optimization [5]-[7] to derive a performance centering 
optimization approach for analog system-level design exploration. 
Our proposed methodology attempts to center the design within 
the performance space and maximize the inscribed ellipsoid lying 
inside the performance constraints. Importantly, our approach is 
simultaneously maximizing the design margin for all performance 
constraints, such that the resulting ellipsoidal volume represents a 
quality measure for the system-level architecture. For example, 
since the models are known to be imprecise, a small ellipsoidal 
volume indicates that the performance specifications will 
probably not be achievable at the circuit level or in the silicon 
implementation. We therefore propose how this ellipsoidal 
volume can be used as a quality metric for the assembly and 
exploration of the interconnected system-level components. 

The essence of our performance centering approach is 
analogous to leaving sufficient design margin for all performance 
metrics. Such over-design strategies are manually applied by 
analog designers routinely. The novelty of our performance 
centering method, however, is to provide a systematic and optimal 
way to address the problem of preserving design margin for top-
down design. The question we address in this paper is the how to 
mathematically formulate the system-level exploration problem so 
that we can optimally compare system architectures and 
hierarchically propagate the performance specifications from 
system level down to circuit/block level. After the circuit-level 
specifications are determined, each circuit block can be separately 
optimized by the circuit-level synthesis tools [11]-[14]. 

The remainder of the paper is organized as follows. In Section 
2, we review the background on existent design space exploration 
techniques. Then we propose our performance centering approach 
in Section 3. The efficacy of the proposed performance centering 
method is demonstrated by several circuit examples in Section 4, 
followed by our conclusions in Section 5. 
 
2. Background 
2.1 Equation-Based Performance Space Models 

The equation-based evaluation [1] starts from a set of analytic 
performance models: 
 ( ) ( )MmXpm ,,2,1 L=  (1) 
where X = [x1,x2,...,xN]T represents the N design variables and {pm, 
m = 1,2,...,M} corresponds to the M circuit-level performances. 
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The closed-form equations in (1) are derived to approximate the 
relations between all circuit-level performances and design 
variables. In [1], the author constrains each performance model to 
be in the form of a posynomial function g to facilitate convex 
optimization [8]: 
 ( ) ∑=

i
Ni

Niii xxxcxg ααα L21
21  (2) 

where there are N real and positive variables X = [x1,x2,...,xN]T 
with nonnegative coefficients ci ∈ R+ and real exponents αij ∈ R.  

Considering a feasible set S for the design variables X, i.e. X ∈ 
S, the feasible performance space P = [p1,p2,...,pM]T can be 
represented in the implicit form: 
 ( ){ }SXXPP ∈|  (3) 
We refer to (3) as the implicit form because the feasible 
performance space is implicitly specified in the design variables 
X. The feasible performance space in (3) can be propagated to 
system level and optimized with all circuit-level design variables. 
Such an optimization problem is huge; however, it is 
computationally feasible if the performance models are in the 
posynomial form. An optimization with posynomial cost function 
and constraints can be formulated as a geometric programming 
problem [1], [8], [9]: 

 
( )
( ) ( )

( )Nnx
KkXgtosubject

Xgminimize

n

k

,,2,10
,,2,11  

0

L

L

=>
=≤  (4) 

where all functions {gi, k = 0,1,...,K} are posynomials. The 
geometric programming problem can be converted into a convex 
optimization and solved efficiently. For example, the state-of-the-
art geometric programming solver can optimize thousands of 
variables in a few minutes [9]. The resulting values of all design 
variables can be then used as a starting point for a more fine-
grained post-tuning as required in later design stages. 

The feasible performance space can also be represented in the 
explicit form: 
 ( ){ }0| ≤PFP  (5) 
where F(P) = [f1(P),f2(P),...,fL(P)]T is a nonlinear vector function 
containing L nonlinear scalar functions. The explicit form in (5) 
does not include any circuit-level design variables. After equation 
(5) is propagated to system level, the system-level optimization 
problem only has the circuit-level performances as the unknown 
variables. Such a problem is much smaller than that using the 
implicit representation in (3). However, after the optimization is 
solved, the circuit-level design variables are still unknown and 
further steps are required to determine their values. 

The primary disadvantage of the equation-based approach is 
that various simplifications are generally applied and various 
second-order effects must be ignored when creating the closed-
form performance models. It follows that the estimated 
performance trade-offs might have large errors in some cases. 
 
2.2 Simulation-Based Performance Space Models 

To address the accuracy concerns, simulation-based 
evaluation approaches [2]-[4] run detailed simulations to derive 
the circuit-level performances, extract the feasible performance 
space, and represent it in the form of (5) with significantly 
improved accuracy. However, regardless of the accuracy of the 
simulator, the lack of predictability at the system level will limit 
the resulting performance model precision. This lack of 
predictability can be traced to the system-level abstractions, as 
well as the inability to abstract modeling information from the 

circuit and device levels due to the design uncertainty. Therefore, 
all of the following combine to increase the lack of predictability: 

• Device level: e.g. device modeling errors and the uncertainties 
due to process variations. 

• Circuit level: e.g. layout parasitics that cannot be accurately 
captured by running a schematic-level simulation. 

• System level: e.g. the inaccuracy of the macromodels that are 
used to approximate the behaviors of circuit blocks. Without 
the macromodels, a numerical simulator might not be capable 
of analyzing the entire large-size system. 

The key distinction between equation-based evaluation and 
simulation-based evaluation is the trade-off between accuracy and 
efficiency. It should be noted that due to the need to abstract the 
models (macromodels) to the system level to evaluate the 
interactions among components, there is a limit to the modeling 
accuracy which can be obtained in practice. For example, it is too 
expensive, if not impossible, to use a layout-in-the-loop approach 
to accurately capture the parasitic effect during the system-level 
optimization. 

While many prior works have focused on generating the 
circuit-level performance trade-off curves, the problem of how to 
effectively use these trade-offs in system-level design has not 
been as thoroughly studied. More specifically, how to formulate 
the system-level optimization problem and make it insensitive to 
performance modeling errors is still an open question. For 
example, most traditional constrained optimizations typically 
minimize one cost function by pushing many performance 
constraints to their boundaries. As a result, the optimized design 
can easily fail the specifications even if a small modeling error 
exists. In this paper, we propose a novel performance centering 
methodology to improve the robustness of the system-level design 
exploration. 
 
3. Performance Centering 

Our performance centering methodology attempts to address 
two key problems in analog top-down design: (1) how to 
optimally compare different system architectures and select the 
best one for detailed implementation; and (2) how to 
hierarchically propagate the performance specifications from 
system level down to circuit level so that each circuit block can be 
designed separately. We develop two optimization formulations to 
address these two problems respectively. 
 
3.1 Comparing System Architectures 

Feasible Region

Centered Design

x1

x2

 
Fig. 1. Illustration of the traditional design centering with two 

design variables x1 and x2 in design space. 

For explanation purposes, we define the system architecture as 
the circuit-level topologies and the interconnections among them. 
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Our performance centering approach is based on an adaptation of 
the traditional design centering method (for yield optimization) 
[5]-[7] to provide a criterion for comparing and contrasting 
system architectures. The basic idea of design centering is to 
make the design tolerant to uncertainties by maximizing the 
inscribed ellipsoid lying inside the feasible region in the design 
space. This is accomplished by simultaneously maximizing the 
distance to all constraint boundaries of the feasible design space, 
as shown in Fig. 1. Following optimization, the resulting 
ellipsoidal volume is an indicator of the design yield. For 
example, a larger ellipsoidal volume represents a higher 
probability that the design can meet the required specifications in 
silicon, and is less vulnerable to the various uncertainties outlined 
in Section 2.2. 

Therefore, we propose a process of architecture selection 
whereby we compare different system designs in terms of the 
probability of achieving a successful implementation in later 
design stages. We propose to select the architecture based on the 
performance values and the indicated vulnerability to the various 
uncertainties. 

Most importantly, it is not meaningful to simply compare two 
system architectures in terms of their maximized ellipsoidal 
volumes in the design space. The architecture selection problem is 
substantially different from design centering, since different 
system architectures consist of different circuit blocks and, 
therefore, have different design space structures. For example, the 
dimensions of the design spaces can be different for two 
architectures since they have different numbers of design 
variables, and it is not meaningful to compare their maximized 
ellipsoidal volumes. What is comparable is the performance 
space. All architecture candidates are toward implementing the 
same system function with a set of given system-level 
specifications. This observation motives us to center the design in 
the performance space, maximize the distance to all performance 
boundaries, and use the maximized volume of the inscribed 
ellipsoid as a criterion to compare system architectures. Such a 
performance centering idea is illustrated by the example in Fig. 2. 

q2

q1

q2 ≤ Spec2

q1 ≤ Spec1

ε2
ε1

Trade-off Curve

 
Fig. 2. Illustration of the performance centering with two 

performance specifications q1 and q2 in performance space. 

We mathematically formulate and solve the performance 
centering problem as follows. We formulate two optimization 
problems that use the implicit performance space models in (3) 
and the explicit performance space models in (5), respectively. 
 
A. Using Implicit Performance Space Models 

For simplicity, we focus on the system design with three 
hierarchal levels, as shown in Fig. 3. We should note, however, 
that nothing precludes us from extending our methodology to 
more complex, multi-level system structures. 

System-Level Performances
Q = [q1,q2,...,qK]T

Circuit-Level Performances
P = [p1,p2,...,pM]T

Circuit-Level Design Variables
X = [x1,x2,...,xN]T  

Fig. 3. System design with three hierarchal levels. 

We assume that the relations between the system-level 
performances {qk, k = 1,2,...,K} and the circuit-level performances 
{pm, m = 1,2,...,M} are available. These relations {qk(P), k = 
1,2,...,K} can be derived by hand analysis [1] or approximated by 
regression modeling [4]. Combining {qk(P), k = 1,2,...,K} and the 
circuit-level performance models {pm(X), m = 1,2,...,M} yields the 
system-level performance equations {qk(X), k = 1,2,...,K}. In 
addition, we assume that these system-level performances can be 
approximated as posynomials. This posynomial assumption might 
not be true for all analog designs; however, it is valid for many 
analog circuits. It has been demonstrated that many analog circuit 
specifications can be cast into posynomial functions [1], [8], [9]. 
The posynomial property guarantees that the system-level 
optimization problem is convex and can be solved efficiently. 
Otherwise, the explicit performance space models in (5) must be 
used to eliminate all circuit-level design variables and render a 
small-size, affordable system-level optimization problem. 

Without loss of generality, we normalize all system-level 
performance specifications to the standard form: 
 ( ) ( )KkXqk ,,2,11 L=≤  (6) 
where all {qk(X), k = 1,2,...,K} are posynomials and K is the total 
number of the system-level performance metrics. The standard 
form in (6) has been utilized by the authors in [1], [8], [9] to 
formulate the analog sizing as a geometric programming problem. 
A performance specification f(X) ≥ 1 can be written as 1/f(X) ≤ 1 
in order to fit into the standard form in (6) [8]. 

Based on (6), the performance centering problem can be 
formulated as: 

 
( ) ( )

( )
( )Nnx

Kk
KkXqtosubject

maximize

n

k

kk

K

,,2,10
,,2,10
,,2,11 

21

L

L

L

L

=>
=>
=−=

⋅⋅⋅

ε
ε

εεε

 (7) 

where {εk, k = 1,2,...,K} is a set of variables that represent the 
lengths of the ellipsoidal axes (see Fig. 2). The optimization in (7) 
solves for the optimal values of {εk, k = 1,2,...,K} and {xn, n = 
1,2,...,N} such that the ellipsoidal volume ε1·ε2·...·εK is maximized. 
Such an optimization can also be generalized to use other cost 
functions to measure the ellipsoidal size, e.g. ε1

2 + ε2
2 +...+ εK

2. 
The optimization problem in (7) does not match the geometric 

programming form in (4), since it maximizes a posynomial cost 
function and includes the posynomial equality constraints. 
However, equation (7) can be equivalently converted to: 

 
( ) ( )

( )
( )Nnx

Kk
KkXqtosubject

minimize

n

k

kk

K

,,2,10
,,2,10
,,2,11 

11
2

1
1

L

L

L

L

=>
=>
=≤+

⋅⋅⋅ −−−

ε
ε

εεε

 (8) 

Comparing (7) and (8), we note that maximizing the cost 
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function ε1·ε2·...·εK in (7) is equivalent to minimizing the cost 
function ε1

–1·ε2
–1·...·εK

–1 in (8). In addition, maximizing ε1·ε2·...·εK 
will push all {εk, k = 1,2,...,K} to their maximal values. It follows 
that the inequality constraints {qk(X)+εk ≤ 1, k = 1,2,...,K} in (8) 
always become active, i.e. reach {qk(X)+εk = 1, k = 1,2,...,K}, after 
the optimization. According to these observations, we have the 
following theorem: 

Theorem 1: The optimization problem in (8) is equivalent to the 
original problem in (7). 

Theorem 1 can be formally proved by using the Karush-Kuhn-
Tucker optimality condition [10]. Due to the space limitation, the 
detailed proof is not included here. 

The optimization in (8) is a geometric programming problem 
and, therefore, can be solved efficiently. In addition, the 
optimization formulation in (8) has two interesting properties. 

• Scaling-independent: both the optimized design variables {xn, 
n = 1,2,...,N} and the architecture selection result are 
independent on the performance scaling. For example, instead 
of normalizing the performance specifications as (6), we can 
scale the specifications by any pre-defined factors {βk > 0, k = 
1,2,...,K}, e.g. {βk·qk(X) ≤ βk, k = 1,2,...,K}, and change the 
optimization problem (8) to: 

 
( ) ( )

( )
( )Nnx

Kk
KkXqtosubject

minimize

n

k

kkkk

K

,,2,10
,,2,10
,,2,1 

11
2

1
1

L

L

L

L

=>
=>
=≤+⋅

⋅⋅⋅ −−−

ε
βεβ

εεε

 (9) 

The optimization of (9) yields the same optimal values of the 
design variables {xn, n = 1,2,...,N} as that in (8). The maximal 
ellipsoidal volumes (i.e. ε1·ε2·...·εK) computed from (8) and (9) 
differ by a scaling factor β1·β2·...·βK. However, these 
ellipsoidal volumes are only used for comparing system 
architectures. As long as the same normalization scheme is 
used for all architecture candidates, the resulting ellipsoidal 
volumes are scaled identically and their relative relation is 
unchanged. It follows that the architecture selection result is 
also independent on the performance scaling. The scaling 
independent property allows us to use the normalized 
specifications in (6) to formulate the performance centering 
problem. 

• Knowledge-compatible: analog designers can easily add their 
design knowledge into the optimization formulation (8). For 
example, if a designer wants to leave the margin εi for the i-th 
performance as two times the margin εj for the j-th 
performance, he/she can explicitly add the constraint εi = 2εj 
into the optimization. Such an equality constraint can be split 
into two posynomial inequality constraints 0.5εi·εj

–1 ≤ 1 and 
2εi

–1εj ≤ 1 so that the optimization is still a geometric 
programming problem. Geometrically, adding such a 
constraint will adjust the ellipsoidal shape during the 
optimization. This is similar to defining the correlation among 
uncertainty parameters in traditional design centering [7]. 
However, the uncertainty correlation in performance centering 
is much more difficult to estimate than that in design 
centering. Since the knowledge of a given system architecture 
is limited at the early design stages, the correlation 
information can only be estimated based on the design 
experience. 

 
B. Using Explicit Performance Space Models 

If the posynomial assumption in the previous sub-section fails, 
the system-level optimization becomes a general nonlinear 
programming problem that must be solved by comprehensive 
algorithms, e.g. simulated annealing or genetic programming. In 
such cases, including all circuit-level design variables {xn, n = 
1,2,...,N} into the system-level optimization is infeasible, since it 
yields a huge problem and is too computationally expensive. The 
explicit performance space models in (5) should be utilized to 
eliminate all circuit-level design variables to make the system-
level optimization tractable. 

We focus on the three-level system structure in Fig. 3 and 
assume that the relations {qk(P), k = 1,2,...,K} are known. After 
normalizing all system-level performance specifications to the 
standard form (6), the performance centering problem can be 
formulated as: 

 
( ) ( )
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( )Kk
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KkPqtosubject
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where {fl(P), l = 1,2,...,L} stands for the L nonlinear scalar 
functions that specify the feasible performance space (see (5)). 
The optimization in (10) solves for the optimal values of {εk, k = 
1,2,...,K} and {pm, m = 1,2,...,M} such that the ellipsoidal volume 
ε1·ε2·...·εK is maximized. Similar to (8), the scaling-independent 
and knowledge-compatible properties are also valid for the 
optimization in (10). 
 

In summary, the optimization formulations in (8) and (10) are 
developed to center the system-level design in the performance 
space by maximizing the inscribed ellipsoid lying inside the 
specification boundaries. The resulting ellipsoidal volume is used 
as a criterion to compare system architectures. A larger ellipsoidal 
volume implies a higher probability to achieve a successful 
implementation in later design stages. 

The proposed architecture comparison can be directly applied 
to analog design based on component library, where basic analog 
blocks are pre-characterized with performance models. In this 
case, the performance centering approach can be used to run 
optimizations for all architecture candidates in the library and then 
automatically pick up the best one for detailed implementation. 

It should be noted, however, that the quality of the 
architecture comparisons significantly depends on the quality (i.e. 
accuracy) of the performance models. If the performance models 
are extremely inaccurate and two system architectures are 
extremely close, the performance centering approach might not be 
able to distinguish these two architectures because the 
performance modeling errors are larger than the architecture 
difference. In such cases, more accurate performance models must 
be utilized to achieve an accurate architecture comparison. 
 
3.2 Propagating Performance Specifications 

After the system architecture is selected, the equally important 
step is to propagate the performance specifications from system 
level down to circuit level and, hence, assign the performance 
specifications for all circuit blocks so that they can be designed 
separately. The specification propagation is a key step to enable 
the top-down design flow. 

There are two challenging problems that one must consider 
when propagating performance specifications. Firstly, at the 
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circuit level, sufficient margin should be reserved for each circuit-
level performance metric. Otherwise, if the circuit-level 
specifications are too tight, they will become infeasible at the 
detailed modeling and implementation stages. 

Secondly, sufficiently large margins for system-level 
specifications are also required, since the relation between the 
system-level and circuit-level performances are not exactly known 
in the early design stages. Without these system-level 
performance margins, even if all circuit-level performance 
specifications are met, the system-level specifications will 
probably fail in the bottom-up verification. 

Following these two observations, most traditional 
constrained optimizations seem ill-equipped to solve the 
specification propagation problem since they typically minimize 
one cost function by pushing many performance constraints to 
their boundaries. Instead, we are proposing to simultaneously 
maximize the design margins for all system-level and circuit-level 
performance metrics, as shown in Fig. 4. 

System

q2

q1

ε2 ε1

System

q2

q1

ε2 ε1

Block 1

p2

p1

δ2 δ1

Block 2

p4

p3

δ4 δ3

Block 1

p2

p1

δ2 δ1

Block 1

p2

p1

δ2 δ1

p2

p1

δ2 δ1

Block 2

p4

p3

δ4 δ3

Block 2

p4

p3

δ4 δ3

p4

p3

δ4 δ3

 
Fig. 4. Illustration of the specification propagation with two 
system-level specifications (q1 and q2) and four circuit-level 

specifications (p1, p2, p3 and p4). The performance centering is to 
maximize the overall design margin ε1·ε2·δ1·δ2·δ3·δ4. 

The following is the mathematic formulation for optimally 
solving such a specification propagation problem. Two 
optimization formulations are developed to use the implicit 
performance space models in (3) and the explicit performance 
space models in (5), respectively. 
 
A. Using Implicit Performance Space Models 

Considering the three-level system structure in Fig. 3, where 
we represent the circuit-level performance specifications as {p̃m, 
m = 1,2,...,M}, i.e.: 
 ( ) ( )MmpXp mm ,,2,1~ L=≤  (11) 
and approximate {pm(X), m = 1,2,...,M} by posynomials. These 
performance specifications {p̃m, m = 1,2,...,M} are the problem 
unknowns that will be determined during specification 
propagation. Similar to (6), equation (11) is the standard form to 
define the performance specifications. A specification f(X) ≥ f̃ can 
be written as 1/f(X) ≤ 1/f ̃ in order to fit into the standard form in 
(11) [8]. 

In addition, we assume that the system-level performances can 
be approximated as posynomial functions of the circuit-level 
specifications, i.e. {qk(P ̃), k = 1,2,...,K}, where P ̃ = [p̃1,p̃2,...,p̃M]T. 

Similar to (6), we normalize the system-level performance 
specifications as: 
 ( ) ( )KkPqk ,,2,11~

L=≤  (12) 
Combining (11) and (12), the specification propagation 

problem can be mathematically formulated as: 
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where {εk, k = 1,2,...,K} denotes the design margins for the 
system-level performances and {δm, m = 1,2,...,M} stands for the 
design margins for the circuit-level performances. It is 
straightforward to verify that the optimization in (13) is a 
geometric programming problem. It maximizes the ellipsoid 
defined by both system-level and circuit-level performance 
specifications. In other words, it simultaneously maximizes the 
design margins for all system-level and circuit-level performance 
metrics. After the optimization problem is solved, the circuit-level 
performance specifications {p̃m, m = 1,2,...,M} are known and 
they can be used to design each individual circuit block separately 
in later design stages. 

Compared with (13), the optimization in (8) does not leave 
any margin for circuit-level specifications. In the application of 
topology selection, different system architectures consist of 
different circuit blocks. Therefore, it is not meaningful to compare 
ellipsoidal volume at the circuit level, and only the system-level 
ellipsoid is maximized and compared to select the best system 
architecture. In contrast, for the problem of specification 
propagation, we need to distribute the design margins from system 
level down to circuit level. In such cases, the ellipsoid should be 
maximized at both levels, as shown in (13). 

It is worth noting that the scaling-independent and 
knowledge-compatible properties that are described in Section 
3.1.A are also valid for the optimization in (13). For example, 
based on one’s design experience, it is possible to modify the cost 
function and constraints in (13) to make a different tradeoff 
between the system-level and circuit-level design margins. 
 
B. Using Explicit Performance Space Models 

The optimization formulation in (13) can be easily extended to 
use the explicit performance space models in (5): 
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where {fl(P), l = 1,2,...,L} stands for the L nonlinear scalar 
functions that specify the feasible performance space (see (5)). If 
the constraints in (14) are arbitrary functions, the optimization 
should be solved by comprehensive algorithms, e.g. simulated 
annealing or genetic programming. 
 

In summary, the optimization formulations in (13) and (14) 
are developed to maximize the design margins for both system-
level and circuit-level performance metrics. As such, the system-
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level specifications are distributed to the circuit level so that each 
circuit block can be optimized individually by the circuit-level 
synthesis tools [11]-[14]. 

It must be noted, however, that our performance centering 
methodology does not guarantee a feasible system-level design – 
but rather it finds the design that is most capable of achieving the 
required specifications. Moreover, the quality of the performance 
centering results significantly depends on the quality (i.e. 
accuracy) of the performance models. If the performance models 
are extremely inaccurate and the design constraints are extremely 
tight, the performance centering approach might fail because the 
performance modeling errors are larger than the maximal design 
margins that are available. Therefore, as the design constraints 
become tighter, we must rely on more accurate performance 
models. Similar requirements have been noted for traditional 
design centering for yield enhancement [5]-[7]. When the process 
variations are too large to achieve a high product yield, better 
process control is required to reduce the manufacturing 
uncertainties and improve the yield. 
 
4. Numerical Examples 

In this section, we demonstrate the efficacy of the proposed 
performance centering approach using two design examples: an 
operational amplifier and a clock and data recovery circuit. All 
numerical experiments are run on a SUN ― 1 GHz server. 
 
4.1 Operational Amplifier 

 
Fig. 5. Circuit schematic of a simple two-stage Op Amp. 

 
Fig. 6. Circuit schematic of a folded-cascode two-stage Op Amp. 

Table 1. Design specifications and results for Op Amp 
Performance Spec Result 

VDD (V) = 2.5 ― 
Gain (dB) ≥ 100 102 

UGF (MHz) ≥ 10 10.9 
Offset (mV) ≤ 1.0 0.01 

Phase Margin (degree) ≥ 60 63.2 
Slew Rate (V/µs) ≥ 20 20.5 

Swing (V) ≥ 0.5 1.00 
Power (mW) ≤ 20 0.79 

Fig. 5 and Fig. 6 show the circuit schematics of a simple two-
stage Op Amp and a folded-cascode two-stage Op Amp, 
respectively. The purpose of this design example is to select a best 
Op Amp topology from Fig. 5 and Fig. 6 to meet the performance 
specifications in Table 1. The Op Amp circuits are based on these 
topologies as implemented in the IBM 0.25 µm BiCMOS process. 
 
A. Topology Selection 

We construct the implicit performance space models using 
posynomial design equations, and formulate the performance 
centering problem as (8). The details of the Op Amp design 
equations can be found in [8]. In this example, since the 
performance models are approximated as posynomials, the 
performance centering problem in (8) can be efficiently solved 
using geometric programming algorithm, taking 1~2 seconds for 
this Op Amp example. 
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Fig. 7. Maximized ellipsoidal volume in performance space when 

applying different gain and VDD specifications for Op Amp. 

Fig. 7 shows a comparison between the Op Amp topologies in 
terms of the maximized ellipsoidal volume in the performance 
space. As we would expect, the two-stage folded-cascode 
topology is better than the simple two-stage one when the power 
supply voltage is sufficiently high to provide the necessary 
voltage headroom. In this example, we find that a sufficient 
voltage is 2.5 V, whereas, the folded-cascode topology appears to 
be inferior to the simple two-stage one once the supply voltage is 
dropped to 2.0 V. Perhaps less obvious, however, we find that for 
extremely high gain specification, the quality measure (i.e. the 
ellipsoidal volume) for the simple Op Amp once again falls below 
that for the folded-cascode Op Amp, even at a 2.0 V supply. This 
indicates that the folded-cascode configuration would provide a 
better topology for detailed implementation even at VDD = 2.0 V if 
the gain requirement is high enough. Given the performance 
specifications in Table 1, the folded-cascode Op Amp topology in 
Fig. 6 provides larger design margin (i.e. larger ellipsoidal 
volume) and, therefore, represents our preferred topology for 
these design specifications in the IBM 0.25 µm technology. 

It is important to consider that as IC technologies continue to 
scale, many traditional analog circuit topologies will begin to 
break down owing to reduced power supply voltages and/or 
device nonidealities such as excessive leakage current. It is 
essential to understand the limitation of each topology during the 
system-level design. The proposed performance centering 
approach offers a systematic way to quickly identify these 
ineffective topologies within the early design stages. 
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B. Detailed Sizing 

Once the circuit topology is determined (Fig. 6), various 
circuit-level optimization tools (e.g. [11]-[14]) can be utilized to 
carefully optimize the device sizes using accurate transistor-level 
simulation. Table 1 shows the Spectre simulation results 
following detailed sizing. The final circuit performance in Table 1 
meets all of the design requirements. 

For testing and comparison, we apply the same detailed sizing 
to the topology in Fig. 5. As we would expect, the circuit-level 
optimization cannot produce a feasible design that meets the 
specifications in Table 1. The main difficulty is that the simple 
two-stage Op Amp in Fig. 5 cannot achieve an extremely high 
gain of 100 dB. 
 
4.2 Clock and Data Recovery Circuit 

Next, we consider the application of our methodology to the 
analog system design shown in Fig. 8, which is the block diagram 
of a clock and data recovery (CDR) circuit for a 2.5 Gbps 
synchronous optical network communication channel (OC-48) 
[15]. The CDR system in Fig. 8 is implemented in the TSMC 0.25 
µm process and consists of three major circuit blocks: the phase 
and frequency detector (PFD), the charge pump (CP as shown in 
Fig. 9) and the voltage controlled oscillator (VCO as shown in 
Fig. 10). In this example, the PFD is pre-determined, since it is a 
pure digital circuit and is of less interest to our analog 
optimization. Our objective is to apply the proposed performance 
centering approach to systematically design the CP and VCO so 
that the overall CDR meets the specifications of the OC-48 
standard. Such a large-scale design problem is accomplished via 
three individual steps: system-level design, circuit-level sizing and 
system-level verification. 

PFD

CP

VCO
Input Data

Retimed Data

BB Control

CP Control

 
Fig. 8. Block diagram of a clock and data recovery circuit. 
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Fig. 9. Circuit schematic of the charge pump. 
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Fig. 10. Circuit schematic of the voltage controlled oscillator. (a) 
Block diagram of the VCO. (b) Circuit schematic of the delay 

block. (c) Circuit schematic of the load block. 

Table 2. System-level specifications and results for CDR 
Performance Spec Result 

Data Rate (Gbps) = 2.5 ― 
Power (mW) ≤ 60 43.98 

Peak-to-Peak (UI) ≤ 0.1 0.026 Jitter 
Generation RMS (UI) ≤ 0.01 0.007 

Bandwidth (MHz) ≤ 2.0 0.79 Jitter 
Transfer Peaking (dB) ≤ 0.1 0.00 
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Fig. 11. Jitter tolerance specifications and results for CDR. 

 
A. System-Level Design 

The purpose of the system-level design is to systematically 
propagate the OC-48 specifications down to the circuit level, i.e. 
determine the circuit-level specifications for the CP and VCO. 
The system-level CDR specifications consist of several 
requirements on jitter and power, as shown in Table 2 and Fig. 11. 

We construct the CDR performance models using posynomial 
design equations, resulting in a geometric programming problem 
for the performance centering formulation in (13). The details of 
the CDR performance equations can be found in [15]. In this 
example, the optimization includes 58 variables and 83 
constraints. It takes a few seconds to solve such a geometric 
programming problem. Table 3 shows the optimized circuit-level 
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specifications for both the CP and the VCO. 

Table 3. Circuit-level specifications and results for CDR 
Block Performance Spec Result 
PFD Power (mW) ― 36.46 

ICP/CCP (A/F) ≤ 16.62 14.45 CP 
Power (mW) ≤ 2.08 0.34 

F0 (GHz) = 1.25 1.22 
CP KVCO (GHz/V) ≤ 3.08 1.29 

≥ 1.92 BB Tune Range (MHz) 
≤ 3.10 

2.73 

PNoise @ 1MHz (dBc) ≤ -76 -84 

VCO 

Power (mW) ≤ 8.11 7.19 
 
B. Circuit-Level Sizing 

After the performance specifications for the CP and VCO are 
determined, circuit-level synthesis tools [11]-[14] are applied to 
optimize each circuit block separately. Table 3 shows the circuit-
level performances after detailed sizing. Note that the circuit-level 
sizing is successful for both the CP and the VCO, i.e. all 
performance specifications in Table 3 are satisfied. This 
demonstrates that the circuit-level specifications optimized by our 
performance centering approach are feasible for both circuits. 
 
C. System-Level Verification 

As the final step in the design flow, we connect the PFD, CP 
and VCO together and run the Spectre simulation for the entire 
CDR. Table 2 and Fig. 11 show the transistor-level Spectre 
simulation results for the jitter and power performances. In this 
example, all system-level CDR performances satisfy the OC-48 
requirements, as expected from our system-level optimization. 
 
5. Conclusions 

A new performance centering methodology has been proposed 
for robust (i.e. error-tolerant) analog system-level design 
exploration. By centering the design in the performance space, our 
proposed performance centering approach provides a quality 
measure of comparing system-level architectures and a systematic 
way of propagating the performance specifications from system 
level down to circuit level. As is demonstrated by numerical 
examples, the proposed performance centering approach provides 
successful system-level designs even using simple performance 
models. 
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