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Behavioral Modeling for Analog System-Level
Simulation by Wavelet Collocation Method
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Abstract—In this paper, we propose a wavelet collocation
method with nonlinear companding to generate behavioral models
for analog circuits at the system level. During the overall process
of circuit modeling, nonlinear function approximation is an
important issue to accurately capture the nonideal input–output
relations of analog circuit blocks. While a great number of
previous research works focus on the high-dimensional top-down
design/synthesis model, which involves large analog design spaces,
this paper primarily concentrates on the bottom-up verification
model requiring both simple representation and high accuracy.
Taking advantage of the local support of wavelet bases, a nonlinear
companding method is developed to control the modeling error
distribution based on system-level simulation requirements. It, in
turn, significantly improves the simulation efficiency at the system
level. To demonstrate the promising features of the proposed
method, two circuit examples, a fourth-order switched-current
filter and a voltage-controlled oscillator, are employed to build the
behavioral models.

Index Terms—Analog circuits, behavioral modeling, nonlinear
companding, wavelet collocation method.

I. INTRODUCTION

W ITH the remarkable evolution of VLSI technology, the
complexity of electronic systems, including both digital

and analog circuits, has increased significantly during the past
twenty years. Nowadays, a great number of computations origi-
nally carried out in the analog domain are moved to their digital
counterparts. However, many analog circuits, especially those
for interfacing purpose such as analog-to-digital (A/D) and dig-
ital-to analog (D/A) converters, are still widely used since the
real world is analog. In addition, numerous of new analog appli-
cations, such as radio frequency components, switched-current
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circuits, log-domain filters, and so forth, continue to appear to
meet the specific requirements on circuit speed and power con-
sumption.

As analog ICs have rapidly evolved from the relatively low
complexity of the early days to the high sophistication of today,
the need for more advanced behavioral modeling techniques has
become increasingly urgent. First, in top-down design, quick ex-
ploration of system architectures should be carried out before
detailed circuit implementation. System-level simulation based
on behavioral models can provide fast prediction of system per-
formance, which helps to select proper architectures for circuit
implementation and analyze tradeoffs at the early design stages.
Second, in bottom-up verification, the overall system specifica-
tions should be checked after individual circuit blocks are avail-
able. However, transistor-level simulation is too expensive in
memory space and computation time to afford the verification of
a whole chip containing a large number of analog components.
Under such circumstance, behavioral models are extracted for
each circuit block and simulated at the system level, providing
the necessary information for verifying system performance.

During the past decade, various methodologies have been
proposed for behavioral modeling of analog circuits. First, for
linear systems, there have been a significant body of works
originally evolved from the model order reduction problem
for interconnect analysis [1]–[4]. These methods are mathe-
matically elegant and are capable of generating reduced-order
transfer functions for complicated linear dynamic circuits.
Unfortunately, in the community of nonlinear circuit modeling,
no such mature techniques exist, although several theoretical
works have been developed in recent years [5]–[7]. Most
practical approaches for nonlinear circuit modeling can be
classified into three categories. First, the regression models
proposed in [8]–[10] map the design space to the performance
space directly. These methods construct high-dimensional
nonlinear functions to approximate the relation between
circuit performances (e.g., gain, area, dominant pole) and
design parameters (e.g., transistor size). Second, for nonlinear
continuous-time systems, Hammerstein model is described in
[11] to separate the nonlinearity and frequency-dependency,
i.e., the input–output behavior of a nonlinear dynamic circuit
is approximated as a static nonlinear function followed by a
linear transfer function. Finally, for switching circuits such as
switched-capacitor/current filters and delta-sigma converters,
the sampled-data operation can be efficiently modeled by a
discrete-time system which consists of a number of ideal unit
delay blocks and static nonlinear functions [12]–[14]. Clearly,
for all these techniques, nonlinear function approximation is a
crucial issue within the overall behavioral modeling procedure.
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There exist two approaches to approximate the nonlinear
functions encountered in analog circuit modeling: 1) devel-
oping the nonlinear function manually by hand analysis [13]
and 2) constructing the nonlinear approximation by data fitting
[8]–[10], [12]. The first approach takes into account the internal
nonidealities of analog circuits and helps designers to under-
stand the physical behavior more accurately and intuitively.
However, such a modeling method is restricted to simple circuit
structures and device models. It is awkward, if not impossible,
to manually extract the nonlinearity for complex circuits with
sophisticated device models (e.g., BSIM3 model). Compared
with the first modeling approach, the second one is more
efficient and flexible. Recently, several new methodologies,
including radial basis approximation [8], [9] and data mining
[10], etc., have been developed to efficiently approximate
the high-dimensional nonlinear functions for analog circuit
modeling. These techniques mainly focus on the problem of
top-down design/synthesis, where the dimension of analog
design space, i.e., the number of free variables, is extremely
large.

The work of this paper, on the other hand, primarily concen-
trates on the bottom-up verification problem. After individual
circuit blocks are available, the analog design space has already
been fixed and, consequently, we don’t face the high-dimen-
sional function approximation in bottom-up verification, as
is the case for top-down design. The most challenging task
involved here is how to accurately characterize the nonideal
input-output relation with simple model representation. An
accurate and simple behavioral model is crucial for bottom-up
verification, because a complicated analog/mixed-signal
system consisting of a great number of circuit blocks should be
simulated with sufficient accuracy and acceptable computation
time as well as small memory consumption. While there is a
general tradeoff between modeling accuracy and model com-
plexity, controlling error distribution of the behavioral model is
an effective way to improve the overall simulation efficiency
and, in the meantime, to save memory space. Namely, if the
behavioral modeling error is equalized and minimized based on
system-level simulation requirement, the simulation efficiency
can be significantly improved.

In this paper, we propose a wavelet collocation method with
nonlinear companding to address this error distribution control
problem, which has been insufficiently studied in previous re-
search works. Wavelet methods have originally been developed
for imaging compression and signal decomposition [15]–[17],
and later been employed to compress the integral operator
encountered in electromagnetics computations [18]–[20].
The work in [21], [22] is the first one to apply the wavelet
collocation method to circuit simulation. That work is extended
to behavioral modeling of analog circuits in [23]. The purpose
of this paper is to further develop and study the behavioral
modeling problem using the spline wavelet collocation method
proposed in [24].

The rest of this paper is organized as follows. In Section II, we
illustrate the importance of error distribution control in behav-
ioral modeling by an example of the switched-current memory
cell. In Section III, we review the background for wavelet ap-
proximation theory, then introduce the basic principle of the

wavelet collocation method for behavioral modeling in Sec-
tion IV. A nonlinear companding algorithm for error distribution
control is developed in Section V. To demonstrate the computa-
tional efficiency of the proposed method, two circuit examples,
a fourth-order switched-current filter and a voltage-controlled
oscillator (VCO), are employed in Section VI to construct the
behavioral models. Finally, we draw conclusions in Section VII.

II. I MPORTANCE OFERRORDISTRIBUTION CONTROL

The motivation for error distribution control in behav-
ioral modeling can be illustrated by a simple example of
the switched-current memory cell. For switching circuits, a
high-speed clock is used to sample the input signal and convert
the continuous-time signal into its discrete-time counterpart.
The general purpose circuit simulators such as SPICE will
spend a large amount of computation time in analyzing the
transient behavior during each clock switching, resulting in ex-
pensive simulation cost for switching networks. A well-known
technique for analyzing switching circuit is to model the
sampled-data operation by a discrete-time system, because
only the steady-state behavior at the end of each clock phase is
of great interest to circuit designers.

For example, shown in Fig. 1 is the circuit schematic for a
basic switched-current memory cell and its discrete-time system
model. The current memory cell works in two nonoverlapping
clock phases and . The memory transistor M (shown in
Fig. 1) sinks the input current during phase from time
point to , memories the current ,
and conducts it to the output during phase from
time point to . It is worth noticing that the cir-
cuit state at each phase depends on the nonidealities such as
charge injection, mismatch and finite input/output conductance
[13], [25]. Moreover, the state of the circuit could be settled to a
steady-state value during each phase switching, and the transi-
tion behavior, which may be ringing or slewing, is not important.
Only the final current level at the end of each clock phase will
affect the future response of the circuit. However, this current
level, for example , tends to be different from the ideal
value of as a result of the comprehensive effect of
all nonidealities. The modeling objective here is to model each
current memory cell in the presence of those nonidealities using
sampled data points for different input values, as expressed by
(1)

when high
when low.

(1)

Function in (1) [also shown in Fig. 1(b)] describes the
nonlinearity of the switched-current memory cell. As shown in
Fig. 2, is very simple in this example. However, a simple

helps us to make a full comparison between various ap-
proximation methods, and, therefore, it is a good example to be
studied here.

In order to illustrate the importance of error distribution
control, we approximate the nonlinear function (Fig. 2)
in interval A A by both polynomial and spline
bases, which are the most widely used basis functions in analog
circuit modeling [12], [13]. For each approximation method,
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(a)

(b)

Fig. 1. A switched-current memory cell. (a) Circuit schematic for a switched-current memory cell. (b) Discrete-time system model for the switched-current
memory cell.

Fig. 2. Nonlinear functionf(�) for the switched-current memory cell by
SPICE.

15 basis functions are respectively employed and the unknown
coefficients for these basis functions are obtained through
the least-square error approach [27]. Then, given a sinusoidal
input of amplitude 50 A (large signal input), we simulate
the switched-current memory cell using these two models and
reach the results in Fig. 3. Note that, the behavioral simulation
is quite accurate for large signal input. Now, we decrease the
sinusoidal input amplitude to 5 A (small signal input) and
re-simulate the memory cell, resulting in the output response
in Fig. 4. Comparing Fig. 3 with Fig. 4, one would find that the

Fig. 3. Simulation result by SPICE and behavioral model with sinusoidal input
�50�A.

behavioral model constructed by either polynomial or spline
approximation cannot predict the circuit behavior under small
signal input accurately. Table I summarizes the simulation error
for various sinusoidal input amplitudes. The absolute error in
Table I is defined as

(2)

where is the simulation result by SPICE,
is the result by the behavioral model, and is the overall
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TABLE I
SIMULATION RESULT FOR THESWITCHED-CURRENT MEMORY CELL

Fig. 4. Simulation result by SPICE and behavioral model with sinusoidal input
�5 �A.

simulation interval in time domain. Similarly, the relative error
is defined as

(3)

A close studying on Table I indicates that the absolute mod-
eling errors for various sinusoidal input amplitudes are almost
identical. However, the relative modeling errors for small signal
input are about three to six times as those for large signal input.
This simple example demonstrates two important issues in be-
havioral modeling.

a) The behavioral model developed by conventional polyno-
mial or spline approximation cannot achieve the same ac-
curacy for various input/output amplitudes.

b) As a criterion for system-level simulation, the relative
error is stricter than the absolute one in evaluating the ac-
curacy of behavioral models. Therefore, it is more desir-
able to keep the relative modeling error being uniformly
distributed over various circuit input/output values.

The above two observations motivate us to propose the
wavelet approximation with nonlinear companding for error
distribution control in behavioral modeling, which will be
presented in detail in Sections III–VI.

III. B ACKGROUND FORWAVELET APPROXIMATION THEORY

A. Wavelet Basis Functions

The wavelet basis functions can be constructed by many
means [17], but in this paper, we will use the spline wavelets
developed in [24] because they were proved to have a high
convergence rate. Let be the Sobolev space, which
basically contains all functions with square integrable second
order derivatives [26]. We first introduce the following function
subspaces:

	

(4)

where the definitions of functions , , ,
, and

	 are given below.
is a function set formed by all linear

combinations of functions and stands for
the direct sum.

In (4), functions and are used to handle the non-
homogeneity of the boundary data

(5)

where

if
otherwise.

(6)

The boundary scaling functions are

(7)

and the interior scaling functions are

(8)

where

(9)
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Fig. 5. Wavelet basis functions in subspaceV .

The functions defined in (5)–(9). construct the bases of the sub-
space in (4). Fig. 5 displays those wavelet basis functions
for subspace . Note that all wavelet bases are
located in a finite interval, i.e., wavelet basis functions have
compact support. This is the key difference between wavelet
bases and other global support basis functions such as polyno-
mial ones.

Now, consider the subspace in (4). The boundary wavelet
functions are

(10)

where

(11)

and the interior wavelet functions are

(12)

where

(13)

The functions defined in (10)–(13). construct the bases of the
subspace in (4). Figs. 6 and 7 show the wavelet basis func-
tions for subspace and re-
spectively. Comparing Fig. 6 with Fig. 7, one would find that, as
the wavelet subspace levelincreases, high-level wavelet basis
functions in subspace have high order singularities. Here,
singularity means the fast changing of the function waveform,
which also implies the high frequency components in the fre-
quency spectrum of the function. Therefore, as more high-level
wavelet basis functions are included, the approximation error
can be reduced.

Fig. 6. Wavelet basis functions in subspaceW .

Fig. 7. Wavelet basis functions in subspaceW .

B. Adaptive Scheme

One of the main advantages of the wavelet approximation is
that there exists an adaptive scheme, which relies on the mul-
tiresolution analysis in wavelet theory [17], [22], [24]. Using
the adaptive technique, those wavelet basis functions, which are
needed for approximating the given nonlinear function, can be
employed automatically. It, in turn, improves the approximation
efficiency significantly. The spline wavelets in [24] consist of a
closed subspace of :

(14)

where the notation stands for the direct sum.
As illustrated in [22], [24], the magnitude of the wavelet co-

efficients in indicates whether a refinement, by increasing
the wavelet space level, is needed or not. For example, define
the maximum relative magnitude of the wavelet coefficients in

as

(15)

where is the maximum magnitude of the wavelet co-
efficients in , and is the maximum magnitude of all
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wavelet coefficients. If is greater than a given error tolerance
, we increase the wavelet space levelto , where

[22], [24].
More importantly, because of the local support of wavelet

bases, not all basis functions in higher wavelet spacesare
needed in order to achieve more accuracy. Actually, only basis
functions, whose local positions require high accuracy, should
be included [21], [22], [24]. In other words, suppose that func-
tion is defined in interval , then the adaptive algo-
rithm divides the overall interval into a set of sub-inter-
vals , where and

. In each sub-interval, a proper wavelet space is
adaptively assigned for approximating. Because the wavelet
space level employed in each sub-interval is different from
each other, the modeling error distribution, consequently, is reg-
ulated. From this viewpoint, the wavelet approximation has the
potential to control the error distribution, which is not affordable
by other approximation methods with global support bases, e.g.,
the polynomial approach.

However, the above adaptive algorithm presents some limita-
tions in analog circuit modeling. It is shown in (10)–(13) that the
wavelet bases in are generated if we compress those basis
functions in lower level space by one time. Consequently,
the singularity of the wavelet bases in is doubled, compared
with that in . Note that the singularity of basis functions
doesn’t change continuously when the wavelet space level
is increased. It, in turn, implies that the approximation error
doesn’t change continuously either, because the singularity of
wavelet basis functions determines their capability for approx-
imation [17], [21], [22], [24]. As a result, the modeling error
cannot be regulated smoothly from one sub-interval
to its neighborhood or . The disclo-
sure of the above limitation motivates us to develop a new non-
linear companding method for error distribution control, which
is described detailedly in Sections IV–VI.

IV. BEHAVIORAL MODELING BY WAVELETS

In this section, we first develop the wavelet collocation
method for approximating one-dimensional nonlinear func-
tions, then extend the proposed method to high-dimensional
functions.

A. Wavelet Approximation for One-Dimensional Functions

Without loss of generality, we assume that the nonlinear func-
tion for approximation is denoted by

(16)

According to the wavelet approximation theory [17], function
can be expanded by

(17)

where are unknown coefficients,
are wavelet basis functions, and is

the total number of basis functions that have been employed.

Discretize (17) at some interior collocation points
, then (17). can be written in a

familiar form

(18)

where

(19)

...
...

...
...

(20)

(21)

For each value , can be found by a transistor-level sim-
ulator such as SPICE. Then, the optimal solution for (18) with
least-square error is given by [27]

(22)

where denotes the operation of transpose.

B. Wavelet Approximation for High-Dimensional Functions

High-dimensional wavelet basis functions can be
generated from tensor products of low-dimensional
bases [28]. For example, if
are one-dimensional wavelet bases, then functions

construct a set of two-di-
mensional wavelet basis functions. In general, a-dimensional
nonlinear function with input variables

(23)

can be expressed by wavelet expansion

(24)

where
are unknown coefficients and

are
-dimensional wavelet bases [28]. Equation (24) shows that a
-variable nonlinear function is approximated by the linear

combination of -dimensional wavelet
basis functions. The overall number of unknown coefficients,
therefore, is . Those unknown parameters can
be obtained by a similar approach as that for one-dimensional
cases, i.e., discretizing (24) at

interior collocation points
then

solving the corresponding linear equation to find the
least-square error solution.

It is worth mentioning that the above nonlinear function ap-
proximation scheme can be practically used when the function
dimension is not very large. For bottom-up verification, which is
essentially what this paper focuses on, the analog design space
has already been fixed and the nonlinear function in (23) does
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not include design parameters as input variables. In such cases,
the dimension of the nonlinear function is small and, therefore,
the expansion in (24) can be efficiently applied.

V. ERRORDISTRIBUTION CONTROL BY COMPANDING

In this section, we propose a nonlinear companding technique
to regulate the error distribution, so that the modeling error can
satisfy the system-level simulation requirement. For example,
the relative error is equalized at different circuit input/output
values.

A. Algorithm of Nonlinear Companding

According to the wavelet approximation theory [17], the ap-
proximation error depends on the singularity of wavelet basis
functions. Singular basis functions are capable of capturing the
high frequency components of , and thereby improve the
approximation accuracy. Hence, the modeling error distribution
can be modified if the singularity of wavelet bases is changed.
This idea can be realized by a nonlinear companding algorithm
introduced in the following.

Assume that function is defined in interval
. We call the Input Domain. On the

other hand, we artificially define the wavelet basis functions
in another domain , which

is called theCompanding Domain. The relation between the
Input Domainand theCompanding Domainis determined by a
nonlinear companding function . Now, with nonlinear
companding, the original wavelet expansion in (17) is modified
to

(25)

where is the inverse function of , and
wavelet coefficients can be obtained by
the collocation method illustrated in Section IV. The nonlinear
function defined in interval should satisfy the
following constraints.

a) and .
b) Function is monotonically increasing.

Hence, function establishes a one-to-one mapping
between theInput Domainand theCompanding Domain. It is
worthy mentioning that these two constraints are sufficient, but
not necessary, conditions for constructing a companding func-
tion. For example, a monotonically decreasing function may
also be suitable for nonlinear companding. For the reason of
simplicity, we only discuss those companding functions satis-
fying the proposed two constraints in this paper, since similar
results can be reached in other cases.

The nonlinear companding algorithm discussed above
can be easily extended to high-dimensional func-
tions. Considering a function with input variables

, we define a set of nonlinear functions
to establish a

one-to-one mapping from the -dimensionalInput Domain

Fig. 8. Concave function for nonlinear companding.

to the -dimensionalCompanding Domain
. Then, the principles introduced in this section

can be applied straightforwardly.
Note that the actual basis functions, which are used to repre-

sent in (25), are . The singu-
larity of will be changed if is modified. There-
fore, by using proper companding function , we can
force the modeling error distribution satisfy certain specifica-
tions required by the system-level simulation. The mechanism
of the nonlinear companding for error distribution control and
the method of constructing the companding functions will be
presented in the following.

B. Mechanism of Nonlinear Companding

The mechanism of nonlinear companding can be illustrated
either inInput Domainor equivalently inCompanding Domain.

1) Analysis of Companding in Input Domain:Equation
(25). implies that the process of nonlinear companding is
equivalent to transforming a set of wavelet basis functions

initially in Companding Domain
to their counterparts in Input
Domain. Then, the companded basis functions are
employed to expand the nonlinear function in Input
Domain. The first-order derivative of is

(26)

Equation (26) demonstrates that the derivative of is scaled
by after nonlinear mapping. Since the derivative of a func-
tion indicates its singularity, (26) thus implies that the singu-
larity of the original wavelet basis functions is changed
in Input Domain. For example, consider the concave function

(displayed in Fig. 8),
which is defined in interval . Fig. 9 gives the waveforms
of a set of wavelet basis functions with uniform level in theCom-
panding Domain, and their equivalent counterparts inInput Do-
mainare depicted in Fig. 10. Comparing Fig. 9 with Fig. 10, one
would notice that the companded wavelet basis functions near

have higher order singularities than that near .
Such a feature can be explained as a result of the nonlinear
mapping, because the first-order derivative and
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Fig. 9. Wavelet basis functions inCompanding Domain.

Fig. 10. Companded wavelet basis functions inInput Domain.

. Therefore, when the companded wavelet basis
functions are used to represent function in Input Domain,
the singular bases near have the potential to approximate

more accurately since they contain more high frequency
components.

The above analysis indicates that from the viewpoint of
wavelet basis functions, the modeling error in one interval can
be reduced by increasing the singularity of wavelet bases in that
region. According to (26), the singularity of wavelet bases is
proportional to , i.e., the greater the first-order derivative

is, the more singular the wavelet bases will be. Therefore,
we shall increase the value of in those regions where high
modeling accuracy is required.

2) Analysis of Companding in Companding Do-
main: Considering (25), one would find that the process
of nonlinear companding is also equivalent to transforming
the function initially defined in Input Domain into its
counterpart in Companding Domain. Then, the
companded function is expanded by wavelets

in Companding Domain. The
first-order derivative of is given by

(27)

Fig. 11. Sinusoidal function inInput Domain.

Fig. 12. Companded sinusoidal function inCompanding Domain.

The above equation indicates that the derivative of
is scaled by after nonlinear mapping, and conse-
quently, the singularity of the original function is changed
in Companding Domain. For example, is given
in Fig. 8 and function is a sinusoidal one depicted in
Fig. 11. The companded sinusoidal function in
Companding Domainis displayed in Fig. 12. Note that the
original function has been compressed near but
expanded near . The companded function
then becomes increasingly singular near and very smooth
near , since the first-order derivative
and . As a result, when function is
represented by wavelet expansion with uniform level (displayed
in Fig. 9), the modeling error near will be greater than
that near , because waveforms near contain more
high frequency components and they are more difficult to be
approximated than the smooth waveforms near .

In summary, we can reduce the modeling error in one interval
by smoothing the function in that region. Equation (27)
implies that the singularity of is reversely proportional to

, i.e., the greater the first-order derivative is, the less
singular the function will be. Therefore, we shall increase
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Fig. 13. Absolute approximation error by the concave function.

the value of in those regions where high model accuracy
is needed.

Actually, the idea of nonlinear companding is not a new
one, but has already been widely used in communication [29],
audio magnetic recording [30] and analog circuit design [31],
[32]. Although the mechanism for those three applications and
our analog circuit modeling is different, the motivation for
companding is the same, i.e., to improve the signal-to-noise
ratio (SNR) at small signal region with the cost of a little
lose of accuracy at large signal region. Consequently, the
SNR at any input/output amplitude is kept above a minimum
acceptable level. In case of analog circuit modeling, we can
regard the exact waveform to be approximated as signal and
the approximation error as noise.

C. Constructing the Companding Function

It has been shown in Sections V-A and B that we shall in-
crease the value of in those regions where high modeling
accuracy is needed.

a) If the modeling error is required to be decreasing in in-
terval , then should be increasing in .
In this case, a concave function, such as the exponential
function, can be chosen for companding. For example, let

(28)

as shown in Fig. 8. Applying nonlinear companding with
such a companding function, we approximate the sinu-
soidal function in Fig. 11 by wavelet bases in Fig. 9. The
absolute approximation error is depicted in Fig. 13. Note
that the error near is about 50 times as that near

, which is consistent with our requirement.
b) Contrarily, if the modeling error is needed to be increasing

in interval , then should be decreasing in
. In this case, a convex function, such as the log-

arithmic function, can be chosen for companding. For ex-
ample, let

(29)

Fig. 14. Convex function for nonlinear companding.

Fig. 15. Absolute approximation error by the convex function.

as shown in Fig. 14. Applying nonlinear companding with
such a companding function, we approximate the sinu-
soidal function in Fig. 11 by wavelet bases in Fig. 9. The
absolute approximation error is depicted in Fig. 15. Now,
the error near is about 50 times as that near ,
as specified in our requirement.

The concave and convex functions discussed above are two
kinds of basic functions for nonlinear companding. More com-
plicated functions can be constructed by these two basic ones.
For example, if the modeling error is required to be decreasing in

and increasing in , then we can build a companding
function with the combination of one concave and one convex
function. Define

(30)

which is depicted in Fig. 16. We approximate the sinusoidal
function in Fig. 11 with such a companding function. The ab-
solute approximation error is displayed in Fig. 17. Note that the
error near is only 5% of that near and .

The above discussion has given a qualitative analysis on how
to define a proper companding function to reduce
the modeling error in some specific regions. Unfortunately,
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Fig. 16. The combination of one concave and one convex function for
nonlinear companding.

Fig. 17. Absolute approximation error by the combination of concave and
convex functions.

the quantitative relation between modeling error and the com-
panding function is unavailable, because the exact
error is determined by not only the function but also
many other factors, such as the singularity of the function to
be approximated, the singularity of the wavelet basis functions
that are employed, etc. In practical applications, we can build
the companding function by three steps.

Step 1) Specify the requirements on modeling error distribu-
tion. For instance, the relative simulation error is to
be equalized.

Step 2) Based on those requirements developed in Step 1,
determine the prototype of the companding function,
i.e., whether concave function, convex function or
their combination should be used.

Step 3) Refine the prototype of repeatedly, so that
the exact modeling error meets those requirements
given in Step 1.

Step 3 can be carried out automatically by an optimization
process, if the modeling requirements are mathematically ex-

(a)

(b)

Fig. 18. A forward Eular integrator composed of two switched-current
memory cells. (a) Circuit schematic for a forward Eular integrator. (b)
Discrete-time system model for the forward Eular integrator.

pressed as an explicit merit function. In Section VI, we will
show how to construct proper companding functions step by
step in two circuit examples.

D. Comparison With Conventional Wavelet Approximation

As described in Section III, the adaptive algorithm in the
conventional wavelet approximation theory cannot regulate the
modeling error distribution continuously. On the other hand, the
nonlinear function in the proposed companding ap-
proach is continuous and smooth so that it can modify the singu-
larity of wavelet basis functions, and consequently the modeling
error distribution, continuously. Therefore, while the adaptive
algorithm is very useful in many other applications, the non-
linear companding technique is more efficient for analog circuit
modeling, where continuous error distribution is required.

E. Application of Companding in Behavioral Modeling

The wavelet collocation method with nonlinear companding
can be easily applied in analog circuit modeling. Taking
advantage of the effectiveness of the nonlinear companding
technique, we can equalize the relative modeling error at var-
ious input/output amplitudes by cutting the absolute modeling
error at the small signal region and losing a little accuracy at
the large signal region. The behavioral model generated by the
wavelet collocation method can be incorporated into system
level simulation tools, such as MATLAB SIMULINK, to
verify the overall system performance. Note that, without those
behavioral models, it is impossible to afford the verification
of an entire analog/mixed-signal system containing a large
number of components.
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Fig. 19. Fourth-order lowpass Butterworth filter.

VI. BEHAVIORAL MODELING EXAMPLES

In this section, two circuit examples, a fourth-order switched-
current filter and a VCO, are examined to demonstrate the effec-
tiveness of the proposed wavelet collocation method in analog
behavioral modeling.

A. Switched-Current Filter

In the past one decade, switched-current technique [25] has
been considered as a promising technique for the monolithic
implementation of mixed analog and digital VLSI. Due to the
high-speed switching behaviors, general purpose circuit simu-
lators such as SPICE always consume a large amount of com-
putation time in simulating those switching networks. In recent
years, the modeling and simulation methodology for switched-
current circuits has also gained much attention [12]–[14]. In this
subsection, we model the switched-current filter circuit by the
proposed wavelet collocation method and compare it with other
conventional approximation techniques.

1) Overview of Modeling Methodology:Fig. 1 shows the
circuit schematic of a switched-current memory cell, which
is the basic building block of switched-current circuits. Com-
bining two memory cells, a forward Eular integrator is obtained
in Fig. 18. In addition, a fourth-order lowpass Butterworth
filter, which consists of four forward Eular integrators, is
illustrated in Fig. 19.

The input-output relation for the basic memory cell is
modeled in (1) The nonlinear function shown in Fig. 2 is
obtained by SPICE simulation. Now, we apply the nonlinear
companding algorithm to equalize the relative error at various
input/output amplitudes.

Step 1) Specify the modeling requirements. In the current
application, the relative simulation error should
be equalized. Such a linguistic specification can
be mathematically expressed as an explicit merit
function.

(31)
The notation represents
the relative simulation error (defined in (3)),
when the switched-current memory cell is
stimulated by a sinusoidal input of amplitude

. After merit function

(31) is minimized, we have 5 A
50 A, so that the minimum

and equalized relative error is obtained.
Step 2) Build the prototype function. Our goal is to equalize

the relative simulation error. Therefore, when func-
tion in Fig. 2 is expanded by wavelets, the
absolute approximation error near A should
be smaller than that near 50 A. We build
a companding function with the combination of
concave and convex functions, which is similar
to (30) Define the prototype function in interval

as

(32)

where is a parameter controlling the nonlinearity
of the function and its value is to be determined by
an optimization process in Step 3.

Step 3) Refine the prototype function. With merit function
(31) and prototype function (32), we optimize pa-
rameter by Golden Section Search method [27].
As long as the minimum value of (31) is reached,
the optimal is found and consequently the proper
companding function is determined.

Function is thus mathematically represented by the
wavelet expansion. The integrator, as shown in Fig. 18, is
modeled by a discrete-time system including a number of static
nonlinear functions and ideal sample-and-hold blocks. The
fourth-order switched-current filter is behaviorally modeled by
a signal flow graph in Fig. 19. Such a signal-flow-graph-based
model is simulated by MATLAB SIMULINK to verify the
accuracy of the proposed models.

2) Simulation Results of the Memory Cell:In this section,
four methods are applied to approximate the nonlinear func-
tion in Fig. 2, which is very simple but helps us to make
a full comparison between various approximation techniques.
First, the polynomial and spline approximations are employed
to express by 15 basis functions respectively. Second, we
use the conventional wavelet collocation method with adaptive
scheme to automatically select proper high-level wavelet basis
functions so that the relative simulation error is equalized. As a
result, 17 wavelet bases are chosen by the adaptive scheme to
represent function . Third, the wavelet collocation method
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Fig. 20. Optimal nonlinear companding functionl = g(x) obtained by the
optimization process.

Fig. 21. Relative simulation error of different memory-cell models.

with nonlinear companding is applied to approximate function
by 15 basis functions. Fig. 20 depicts the optimal com-

panding function , after the merit function (31) is min-
imized.

We test the developed behavioral models by transient simula-
tions with various sinusoidal input amplitudes. Fig. 21 depicts
the relative simulation error, defined in (3), for these models.
Note that the relative error of both polynomial and spline model
increases as the input current amplitude decreases, which im-
plies that the modeling error distribution is completely uncon-
trolled. This observation is consistent with the simulation re-
sults listed in Table I. On the other hand, the wavelet expansion
with either adaptive scheme or nonlinear companding is able
to equalize the relative error at different input/output values.
Moreover, it is shown in Fig. 21 that the modeling error of the
nonlinear companding technique is less than that of the adap-
tive scheme, although the wavelet basis functions employed by
the latter method are more than those employed by the former
approach. From this point of view, the nonlinear companding
method is more efficient than the conventional adaptive scheme

Fig. 22. Time domain response of the fourth-order switched-current filter.

Fig. 23. Frequency domain response of the fourth-order switched-current
filter.

in modeling switched-current circuits, which consists with the
theoretical analysis in Section V-D.

3) Simulation Results of the Filter:Using the basic
memory cell model developed above, we create the
signal-flow-graph-based filter model in MATLAB SIMULINK.
Such a discrete-time system model is then simulated by
SIMULINK to verify the modeling accuracy of the entire filter.

a) Time domain response. First, we test the filter models
by a sinusoidal input of frequency 1 kHz and amplitude

10 A. Fig. 22 gives the time-domain simulation results
obtained from SPICE and four kinds of different behav-
ioral models. Again, these results indicate that the model
developed by the wavelet collocation method with non-
linear companding is the most accurate one in predicting
circuit behaviors.

b) Frequency domain response. Second, the filter model is
tested with sinusoidal inputs of amplitude10 A at dif-
ferent frequencies. Fig. 23 depicts the frequency response
obtained from SPICE and four kinds of different behav-
ioral models. Note that the model expressed by wavelet
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TABLE II
COMPUTATION COST FORMODELING AND SIMULATING 4TH ORDER SWITCHED-CURRENT FILTER

expansion with nonlinear companding works much better
than the other three ones.

c) Simulation speed. We build behavioral model and run
behavioral simulation on a Pentium III-550 computer.
Table II outlines the computation cost for both modeling
and simulation. It is shown that SPICE simulation for
such a switching filter is extremely expensive. On the
other hand, the overall computation time for both behav-
ioral model generation and behavioral simulation equals
to seconds, which is less than
20% of the SPICE simulation time. In this example, the
fourth-order switched-current filter is constructed by
8 identical memory cells. The behavioral model of the
memory cell is extracted only once. Such a modeling
procedure is not expensive, because the memory cell
is a very small circuit block, as shown in Fig. 1. Then,
the same memory cell models are repeatedly applied to
build the entire filter model, which provides significant
behavioral simulation speed-up. From this point of view,
the benefit of generating behavioral models for basic
circuit building blocks is clearly demonstrated.

B. Voltage-Controlled Oscillator (VCO)

VCOs are essential circuit components in phase-locked
loops, which are basic analog building blocks used extensively
in many analog and digital systems. Transistor-level simulation
(e.g., by SPICE) of PLL circuit results in impractical run-times,
because the acquisition procedure of a PLL circuit will take
a large number of clock cycles [33]. In order to improve the
simulation speed, it is necessary to extract the behavioral
model for each component of the PLL circuit. Based on those
behavioral models, high-level simulation can be executed
efficiently to verify the overall PLL performance. In this part,
we model the VCO by different wavelet collocation methods
so that a full comparison can be made between the proposed
nonlinear companding algorithm and those conventional
wavelet approximation techniques.

1) Overview of Modeling Methodology:Fig. 24 shows the
simplified model of a relaxation oscillator. The detailed imple-
mentation for the – converter block is depicted in Fig. 25,
where is the input voltage and is the output current. If
all components in Figs. 24 and 25 are ideal, the oscillation fre-
quency is given by [33]

(33)

However, the exact oscillation frequency does not comply
with such a simple formulation, when nonideal behaviors are
considered. For example, the relation between and will be

Fig. 24. A voltage-controlled oscillator (VCO).

Fig. 25. Voltage–current converter in VCO.

Fig. 26. Input–output relation for theV –I converter by SPICE.

nonlinear due to the nonlinear features of the operation amplifier
and transistors in Fig. 25. In this example, we first expand the
input–output relation of the – converter by wavelets. Then,
we simulate the overall VCO in time domain to obtain its oscil-
lation frequencies under different input voltages.

2) Modeling Errors in – Converter: The SPICE simula-
tion result for various input voltage , output voltage and
output current of the V–I converter is given in Fig. 26. It is
shown that the output current depends not only on the input
voltage , but also on the output voltage due to the finite
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output impedance of the transistor. In the following, we illus-
trate how to construct the proper companding functions step by
step to approximate the nonlinear function .

Step 1) Specify the modeling requirements. In this example,
the relative simulation error should be equal-
ized. Considering (33) one would find

(34)

and

(35)

(36)

Equation (36) indicates that the relative simulation
error of is actually determined by the relative
error of the term . Therefore, the mod-
eling requirements are equivalent to equalizing the
relative error of . Such a linguistic spec-
ification can be mathematically expressed as an ex-
plicit merit function

(37)

where is the total number of collocation points
, is the output current

value obtained by SPICE and is the
output current value evaluated by the developed
behavioral model. After merit function (37) is min-
imized, the minimum and equalized relative error
can be obtained.

Step 2) Build the prototype functions. Based on the re-
quirements given in Step 1, our goal is to keep
the relative simulation error of
constant. As shown in Fig. 26, the value of
is monotonically increasing when and
increase, and reaches the maximum value

mA when V. Therefore,
mA is reversely propor-

tional to and . In order to achieve constant
relative error of , we shall let the abso-
lute error be reversely proportional to and
too. It, in turn, means that the concave functions
should be employed for nonlinear companding.
Similar to the exponential function expressed in
(28), we define two prototype functions in interval

for companding and respectively.

(38)

Fig. 27. Relative simulation error by three wavelet expansion methods.

(39)

where and are two parameters controlling
the nonlinearity of the functions and their values are
to be optimized in Step 3.

Step 3) Refine the prototype functions. With merit function
(37) and prototype functions (38). and (39) we
optimize and by Levenberg-Marquardt
method [27]. As long as the minimum value of (37)
is reached, the optimal values of and are
found and consequently the proper companding
functions and are
determined.

3) Simulation Results:Three wavelet collocation methods
in all are applied to expand function of the

– converter. First, the collocation method with neither
adaptive scheme nor nonlinear companding is employed to
express function by 420 two-dimensional
wavelet bases. Second, we use the conventional adaptive
scheme to automatically select proper high-level wavelet basis
functions in those regions where high accuracy is needed. As
a result, 332 two-dimensional wavelet bases are chosen by the
adaptive scheme to represent . Third, the
nonlinear companding algorithm is applied to approximate

by 200 two-dimensional basis functions.
The behavioral models developed by these three approaches
are tested respectively. Fig. 27 depicts the relative error of
oscillation frequency in correspondence with these three
models.Table III outlines the computation time by SPICE and
three behavioral models respectively, which is obtained on a
Pentium III-550 computer. Several comments can be made
according to the data in Fig. 27 and Table III.

a) When neither adaptive scheme nor nonlinear companding
is applied, the maximum relative error of is about
1.4% associated with 420 wavelet basis functions. After
the adaptive scheme is used, proper wavelet bases are au-
tomatically selected. As such, only the most important
basis functions are picked up and the overall number of



LI et al.: BEHAVIORAL MODELING FOR ANALOG SYSTEM-LEVEL SIMULATION 313

TABLE III
COMPUTATION TIME FOR SIMULATING VOLTAGE-CONTROLLED OSCILLATOR IN TIME DOMAIN [0; 200 �s]

wavelet bases is reduced without losing significant accu-
racy. It is shown in Fig. 27 that the adaptive scheme results
in 332 basis functions, while the maximum relative error
of is reduced to 1.1%. Finally, using the nonlinear
companding algorithm, the maximum relative error is fur-
ther reduced to 0.8%, although the companding algorithm
only employs 200 wavelet bases. The above comparison
implies that the nonlinear companding algorithm is more
effective than the conventional wavelet collocation tech-
niques for this VCO example.

b) The computation time needed for behavioral simulation
based on the generated models is much less than that for
transistor-level simulation by SPICE. The total speed-up
is more than two orders in time domain. In addition, due
to the reduced number of wavelet bases, the behavioral
simulation with nonlinear companding model is the most
efficient one, even if the excessive phase for companding
requires additional computation time1 .

VII. CONCLUSION

Efficient system-level simulation of analog/mixed-signal
systems requires simple and accurate behavioral models for in-
dividual circuit components. The companding-oriented wavelet
collocation method proposed in this paper is able to reduce the
modeling errors and control the modeling error distribution
continuously based on system-level simulation requirements.
Moreover, the proposed companding scheme can efficiently
reduce the number of base functions, i.e., the number of
coefficients needed to represent the model. It, in turn, improves
the simulation efficiency significantly at the system level. From
this viewpoint, the wavelet collocation method exploits a new
general-purpose approach for modeling analog circuits, as a
counterpart of those conventional techniques.

On the other hand, we also notice two limitations of the pro-
posed wavelet modeling approach. First, the nonlinear com-
panding function is currently developed by a combination of
manual design and automatic optimization. Second, the cur-
rent model complexity will increase exponentially, if high-di-

1In our behavioral simulation program, the data structure for the behavioral
model with adaptive scheme is more complicated than that for the other two
models. For the wavelet model with adaptive scheme, additional information
should be stored to identify those important wavelet basis functions which are
automatically selected. Therefore, in Table III, the computation time for the
model developed by adaptive algorithm is even larger than that for the model
with neither adaptive scheme nor nonlinear companding, although the basis
functions employed by the former model are less than those employed by the
latter one.

mensional nonlinear functions are considered. Our future re-
search work will focus on developing an automatic companding
algorithm and extending the proposed modeling approach to
high-dimensional function spaces. In addition, it is worth men-
tioning that the nonlinear companding method proposed in this
paper can essentially be applied to any other basis functions with
local support (e.g., radial basis functions). The detailed discus-
sion on this issue will also be incorporated as a part of our future
research.
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