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ABSTRACT

In this paper, we propose a fast wavelet collocation algorithm for
high-speed clock tree simulation. Taking advantage of the
specific structure of clock trees and the superior computational
property of wavelets, the proposed algorithm presents the
following merits. (1) It can perform both transient simulation
and steady-state analysis with arbitrary input. (2) It employs
nonlinear buffer mode! and nonuniform interconnect wire model.
(3) It has a low computational complexity O(N) and can deal
with considerably large circuits. (4) The proposed wavelet
method works in time domain so that the simulation error in time
domain can be well-controlled. Numerical experiment results
demonstrate the promising features of the proposed algorithm in
high-speed clock tree simulations.

1. INTRODUCTION

One of the most challenge tasks involved in multi-GHz
microprocessors chip design is to properly construct the clock
signal distribution circuits. Under GHz clock rate and deep
submicron range, the clock wires present strong transmission
line effects and pose strong singularities in signal waveforms. To
characterize such signal integrity problem, fast and accurate full
waveform simulation tool is inevitably required in the clock
routing [1]. During the past several years, analytical formulas [2]
or full-waveform simulations [3]-[4] have been developed for
interconnect analysis. Due to the simplified model for theoretical
analysis, the accuracy of the analytical formulas is not
guaranteed to characterize GHz frequency interconnect wires. To
tackle with large scale interconnect circuits, order reduction
techniques such as moment matching [5]-{6] and TBR [7] have
been proposed to represent the linear distributed interconnect
network by a reduced-order model. The moment-matching
approaches [5]-[6] have achieved spectacular success in solving
many practical VLSI interconnect problems. However, the
solution obtained is valid only at the neighborhood of the
frequency expansion point, and the error cannot be bounded in a
wide frequency range. The truncated balanced realizations TBR
[7] have a well-defined error bound in both frequency and time
domain. Unfortunately, the computational complexity is O(N?),
which limits their application in large circuits.

Recently, the wavelet theory has been developed for high-
speed circuit simulations [8]-[9]. However, the complexity of
FWCM in [8] is also O(A?). Due to the compact support and
O(h*) convergence rate of B-spline wavelets in [8]-[9], we
expect that the wavelet method will be very powerful in dealing
with the strong singularities in GHz clock signals and achieving
uniform error distribution in time domain. In this paper, we aim
to develop a specific wavelet simulation algorithm for clock tree
simulation, which has linear complexity to effectively handle
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large scale distributed circuits and in the meantime guarantee the
accuracy of the simulation results in the whole time region.
Moreover, we employ the nonuniformly distributed transmission
line model and nonlinear buffer model in the proposed algorithm
to further improve the simulation accuracy.

The rest of this paper is organized as follows. We develop
the wavelet algorithm for simulating single interconnect wire in
Section 2 and extend the proposed algorithm to high-speed clock
tree simulations in Section 3. The complexity analysis of the
proposed algorithm is presented in Section 4. Experiment results
and conclusions are given in Section 5 and Section 6.

2. WAVELET ALGORITHM FOR SINGLE WIRE
SIMULATION

In this section, we first propose the wavelet models for the RLC

element block and the whole interconnect wire. Then we present

the nonlinear buffer model and illustrate how to combine the

wavelet models with the nonlinear buffers to simulate the single

interconnect wire.

2.1. Wavelet model for element RLC block

Element Block

Fig. 1.  Element RLC block in interconnect wire

Shown in Fig. 1 is the RLC element block in interconnect wire.
In time domain, the relation between the input voltage/current
(V,,1,) and output voltage/current (V,,1,) is
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In order to transfer the time domain specification (3) into
wavelet domain, we discretizate equation (3) at some interior
collocation points {t;,2,,--+,¢,,} [8]-[9] and derive the wavelet

model in equation (4).
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Note that the initial conditions haven’t been included in equation
(4). Actually, (4) may lead to different solutions if different
initial conditions are considered.

2.1.1. Solution of Transient Response

In this subsection, we will derive the transient response of the
interconnect wire. Without loss of generality, we assume the
initial conditions for L and C (Fig. 1) are zeros so that the input-
output variables ¥;, I;, V, and I, satisfy equation (8).

Vv, = L4 (t=0) ®)

t
1,=0 (t=0)
Combining equation (4) and (8), we may obtain the following
relation.
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where w/(0) includes the wavelet basis function values at +=0,
and superscript T denotes the operation of transpose.

2.1.2. Solution of Steady-State Response
To analyze the steady-state response of the interconnection wire,
the output variables ¥, and I, are forced to satisfy the two-
point boundary constraints,
Volt=0)=V,(t = Tppioa) (12)
L(e=0)=1,(t=Tps)

where Tp,,q is the response period determined by the input

excitations. Regarding equation (4) and (12), we may obtain the
similar input-output relation as equation (9) except that the

matrix P4, P®, PC and PP are given by
P* = LCD,T; + RCDT; +Tg; PP =—-CD/T; (13)
P€ =-LD,T; - RTy; PP =T,
where
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In summary, the above analysis indicates that the input
coefficient vectors [Q,, @,] can be mapped to the outputs

[0,, ©:,] by a linear transform P. Either transient response or
steady-state response can be obtained by employing different
transform matrix P.

2.2. Wavelet model for interconnect wire

Block N-1 Block 1
IN Ly, Rui Iy, I J‘J“_AR, I
et YV A A
+ o+ l +
Vy o TCN_, Ve, VY, =C, v,
Fig. 2. Model for interconnect wire

Shown in Fig. 2 is the nonmuniform transmission line model
cascaded by N RLC element blocks, each of which may have
different R, L, C values. Based on the results in Section 2.1, we

can find out the transform matrix P’ for each element block i.
Then the wavelet domain expression for the input-output relation
of the interconnect wire is given by
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where Q,, and (), are wavelet coefficient vectors for
representing V(1) and I v(t) (Fig. 2) respectively, and
Py =P P?..- PV, Note that the transform matrixes

P! p? ... P¥! are different from each other for nonuniform
interconnect line and shall be constant if uniform line is studied.

2.3. Dealing with nonlinear buffers
/l I, 1,
Va i/ \C Interconnect Wire Vi
Excitation Buffer 3 Load Buffer
Fig. 3. Interconnect wire with excitation and load buffer
In this subsection, we will simulate the interconnect wire with

one excitation buffer and one load buffer, as shown in Fig. 3.
The excitation buffer is modeled as a nonlinear voltage source

Ve =ry.V) (16)
is the input voltage of the excitation buffer, and Vy

where V,

in
and [, are its output voltage and current respectively. In the
meantime, the load buffer is simplified as a linear capacitance
C . Therefore, at the load point, the voltage ¥ and the current

I, shall satisfy the boundary constraint
L=-c,. % an
dt
or equivalently in wavelet domain, the wavelet coefficients shall
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satisfy
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Substituting (18) into (15), we can express coefficient vectors
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On the other hand, at the excitation point, we have
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where {t,,t,,--+,1,,} are interior collocation points. Regarding

equation (19), we formulate (21) as a nonlinear equation in terms

of Oy
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In addition, the circuit response ¥, shall satisfy the following
initial conditions
O W(O) =0 (for transient response) (23)
0 (0)= 0y W (Tpoioa ) (for steady - state response)

The above nonlinear equations (22) and (23) can be solved if the
optimization algorithm, such as the Levenberg-Marquardt
method [10], is applied. Consequently, the transient/steady-state
response of the interconnect wire is obtained.

3. WAVELET ALGORITHM FOR CLOCK TREE
SIMULATION

In this section, we extend the developed algorithm in Section 2
to high-speed clock tree simulation.

I,

—
V! V!
]Nodﬂ ]Nz IIz
VNode \,N2 \,lz
A A
Fig. 4. Typical topology in clock tree
g yp pology

The difference between a single interconnect line and the
clock tree is that in clock tree two or more branches will
combine into one at their father node, as shown in Fig. 4. We
adopt a bottom-up approach for clock tree simulation. We start
analysis at the bottom of the tree (the leaf nodes), then go to the
intermediate nodes, and finally deal with the root node.

At the leaf nodes, if K branches connect with each other at
their father node, as depicted in Fig. 4, we have

VNode = thr = VI\ZI == VAII( (24)
INode =I}l\’ +1)2'I +"'+III§
where ¥y and Ii (i=12,---,K) are respectively the voltage
and the current at the terminal of ith downstream branch (Fig. 4).
Vwode and I,,,. are respectively the voltage and the current of
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the upstream branch (Fig. 4). Based on equation (24), the
wavelet coefficients shall satisfy

QWME=Q:'N=Q3N="'=Q5N 25)
Otvode = Qi + Qi+ + Qi
where @)y and Qi (i=12,---,K) are wavelet coefficient
vectors for representing ¥}, (¢) and I (¢) respectively. O,z
and Q. are wavelet coefficient vectors for representing
Viode and Iy, respectively. Regarding equation (19), the

coefficient vector [Q,’,N Q}'N] can be expressed as a linear

transform of Q}, , i.e.
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With equation (25) and (26), we can obtain
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Equation (28) indicates that we can obtain an explicit formula to
express Qunoge and QOpv., only by one coefficient vector

Q{;l,Vie {1,2,--',1( } Repeating the same operation for several

times, we can get a set of linear equations that only include the
root node and the leaf nodes
Qvroot = Ql‘:’l ‘Pégo: ((=12-.K) 29)
Oronr =91 'PR,;:OI (i=1,2,~~,K)
Finally, the excitation buffer at the root node is modeled by a
nonlinear source (16), and the circuit response at both root node
and the leaf nodes can be obtained by applying the algorithm in
Section 2.3.

Fig.5.  Clock tree with more than one nonlinear excitation

buffers

If there are more than one nonlinear excitation buffers in
clock tree, as shown in Fig. 5, we can simulate the tree in a
pipeline scheme. Taking the clock tree in Fig. 5 for example, we
first find the response voltage at node 1 and node 2 using the
proposed method. Then, repeat the same simulation procedure to
find the circuit responses at node 3, 4, 5, 6 and other downstream
nodes until the leaf nodes are reached. In such a strategy, we can
obtain all clock signal waveforms in the clock tree circuit.

4. COMPLEXITY ANALYSIS

The complexity for constructing the formula (15) is O(N), where
N is the number of cascaded element blocks in a single
interconnect wire. The computation cost of the operations in
Section 2.1 and 2.3 only depends on M (the number of
collocation points), which is not related to the circuit size.



Therefore, the overall computational complexity for simulating
single interconnect wire is O(N). For clock tree simulation, the
computation cost of the additional operations performed at each
branching vertex depends linearly on the number of the
branching vertices (Section 3). Hence, the overall computational
complexity of the proposed algorithm for clock tree simulation
remains O(N), where N refers to the circuit size, i.e. the total
number of element blocks and branching vertices.

5. NUMERICAL EXPERIMENTS

In this section, several circuit examples are examined on a
Pentium Il 550 computer to demonstrate the accuracy and
computational efficiency of the proposed method in high-speed
clock tree simulations.
4.1 Transient simulations

Table 1. Circuit sizes and simulation errors of 8 clock trees.

Circuit No.

Circuit Size Simulation Error

1 51 1.480383x107
2 148 1.165245x107
3 342 8.948777x10°
4 730 7.379149x10?
5 1506 2.275622x107
6 3058 8.131610x10°
7 6162 8.342300%10°
8 12370 5.797106x10°
250
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Fig. 6 Computation time for different simulation methods

We simulate the step response of eight clock tree circuits
generated by [1] and obtained the simulation errors of the
proposed algorithm compared with SPICE in Table 1. It is shown
that the relative errors are all within 2.5%. Fig. 6 depicts the
computation time spent by different circuit sizes (numbers of
components) for different simulation methods. Note that the
computation time of the proposed wavelet method increases
linearly with the circuit size and the maximum speed-up (No. 8
clock tree circuit) is about one order compared with SPICE.

4.2 Steady-state simulations

8
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Fig.7  Steady-state response of clock tree circuit

A clock tree circuit with 1037 components with operation
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frequency of 1GHz is employed for steady-state simulation. Fig.
7 depicts the circuit response obtained by SPICE and the wavelet
method. The state equations shall be integrated by SPICE for
quite a long time until the transients die out. The relative
simulation error in Fig. 7 is 5.65%.

6. CONCLUSIONS

In this paper, we propose a fast wavelet collocation algorithm for
high-speed clock tree simulation. The wavelet method can
efficiently deal with time domain singularities in GHz clock
signal waveforms so that the simulation error in time domain can
be well-controlled. The proposed algorithm can perform both
transient simulation and steady-state analysis with arbitrary input.
The algorithm takes into account the nonlinear buffer model,
inductance L and nonuniform interconnect wire. The algorithm
has a low O(N) computational complexity and can deal with
considerably large circuits. The proposed method is very
promising to be embedded in some clock tree routing tools for
designing high-performance clock signal distribution networks.

In future work, we’ll compare this method with traditional
model order reduction methods such as PVL and others. Also,
more accurate model for the buffer is under research, which will
lead to more precise simulation result.
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