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ABSTRACT 
In this paper, a novel wavelet balance method is proposed for 

steady-state analysis of nonlinear circuits. The proposed method 
presents several merits compared with those conventional 
frequency domain techniques. First, it has a high convergence rate. 
Second, it works in time domain so that many critical problems in 
frequency domain can be handled efficiently. Third, an adaptive 
scheme exists to automatically select the wavelet basis functions 
needed at a given accuracy. 

1. INTRODUCTION 
A major difficulty in time domain simulation of nonlinear 

circuits, such as power supplies, high-Q amplifiers, modulator and 
oscillators, etc., is that the transient response may stand for quite a 
long time before the steady-state is reached. This problem makes it 
infeasible to calculate the steady-state response by conventional 
transient simulation algorithms because direct integration of the 
circuit equations throughout the transients consumes unbearable 
computing time. 

During the past decades, a great number of techniques have 
been developed to solve the periodic steady-state problem [ 11-[6], 
which can be categorized into three classes: shooting methods [ 13- 
[2], harmonic balance methods [3]-[5] and sample balance methods 
[6]. The shooting methods attempt to find a set of initial conditions 
satisfying the two-point boundary constraint, such that the circuit 
starts in periodic steady state directly. However, the shooting 
methods consume expensive computing time since they require to 
numerically integrate the system equations time after time. The 
harmonic balance methods assume the circuit solutions in the form 
of Fourier series. Moreover, they divide the circuit into a linear and 
a nonlinear part so that the linear subnetwork can be solved 
efficiently in frequency domain. Unfortunately, the harmonic 
balance methods need to repeatedly execute DFT and IDFT 
operations during the solution process, and employ a large number 
of harmonic components to achieve an accurate simulation result. 
Therefore, they also expend substantial computing time. The 
sample balance methods directly approximate the time-domain 
state-variable waveforms by suitable basis functions, such as 
periodic cubic splines, and use time-domain samples as problem 
unknowns. Nevertheless, there doesn't exist a strong theory to 
ensure the convergence features of these methods and it is often 

determined by experience that how many basis functions are 
needed at a given accuracy. 

Recently, the wavelet theory has been well developed [7], [8] 
and widely used in many applications, such as solving partial 
different equations [9] and performing high-speed circuit 
simulations [lo], [ 1 I]. However, the wavelet-based method for 
steady-state analysis has never been explored. In this paper, we 
propose a novel wavelet-based algorithm, named the ivuvelef 
buluiice method, to access the periodic steady-state problem. 
Taking advantage of the wavelets, the proposed method works 
more efficiently in time domain than those frequency domain 
techniques, and has a solid theoretical background based on 
wavelet approximation theory. 

The rest of the paper is organized as follows. In Section 2. we 
first introduce the basic principle of the wavelet balance method, 
then compare the proposed algorithm with the conventional 
Fourier-based algorithms [3]-[SI. In Section 3 we present numerical 
experiments to demonstrate the computational efficiency of the 
proposed algorithm, and draw conclusions in Section 4. 

2. WAVELET BALANCE APPROACH 

2.1 The Wavelet Balanced Steady-State Analysis 
Without loss of generality, we assume that a circuit is 

described by an ordinary differential equation of the type 

FOR STEADY-STATE ANALYSIS 

dX 
dt 
- = f (X  , t )  

where X ( f ) = [ X , ( t )  X 2 ( f )  ... X , ( t ) r  are the N unknown 
state variables, and f ( X  , I )  is a given nonlinear vector function. 

The basic idea of the wavelet balance method in this paper is 
to expand the unknown state variables by wavelet series, but not 
the Fourier series that have been used in the conventional 
techniques [3]-[S]. Assume the steady-state response period of the 
circuit is T, and the Sobolev space H [O, L ]  is studied for wavelet 
expansion. Usually, because the period T doesn't satisfy some 
specific conditions needed for wavelets, for example, L 2 4 
corresponding io the wavelet basis functions in [lo], [ 111, a scaling 
operation should be applied to map the interval [O, T] to [O. L ] ,  
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i.e. 

where re [O,T], I €  [O,L], and K is a constant which equals to 

vector function i ( X , t )  in ( I )  only depends on the state variables 
so that the merit function in (9) may be simplified to 

/I d l  

/ = K . t  ( 2 )  

Q = CB(0)- CB(L) K . C L  1 - f (CB(ll )) 
LIT . Substituting ( 2 )  into ( I ) ,  we obtain 

In order to find the steady-state solution, the state 
X (I) is expanded by wavelets 

= C . B ( / )  

where CE R N x M  is the coefficient 

(3) 

variables Here, because the oscillation period T is un iown.  the constant K 
in ( 1  I )  needs also to be determined by optimization process. 

In summary, the essence of the proposed wavelet balance 
method is to approximate the state variables by wavelet basis 
functions, but not the Fourier b e e s  e'?*'' as in many 
conventional algorithms. Moreover, the wavelets are forced to keep 
"balance" at the two boundary points in (8). so that the steady-state 
solution is guaranteed when the state equation is solved. 

(4) 
- 

marr;.r, 
{ B , ( l ) . i = l , 2 : . . , M }  are wavelet basis functions, and M is the 
total number of basis functions that have been employed. The 
wavelet basis functions can be constructed by many means [SI, but 
in this paper. we prefer to use the basis functions in [IO], [ I l l  
because they are proved to have a high convergence rate 0(h4), 
where I7 is the step length [IO], [ I  I]. 

Substituting (4) into (3). we get 

Then, discretizate the state equation ( 5 )  at some interior collocation 
points [IO], [ I I I  

The above equations, from (1  ) to (6). are similar to those illustrated 
in [IO] and [ I  I] .  But for steady-state response, the state variables 
X (/) should further satisfy the two-point boundary constraint 

Thus, we get one more equation for the coefficient matrix C 

From ( 6 )  and (8). we define the merit function 

X ( O ) = X ( L )  ( 7 )  

C . B(O)= C . B(L)  (8) 

where 11 - 11 denotes the Frobenius norm. It is obvious that both (6) 

and (8) will hold as long as the merit function Q reaches its 
minimum value, i.e. zero. 

For nonautonomous circuits, the steady-state response period 
Tis determined by the input excitations, and the constant Kin  (9) is 
known in advance. Therefore, some optimization algorithm, such 
as the Levenberg-Marquardt method in [12], can be employed to 
find out the optimal coefficient matrix C, as well as the steady-state 
solutions 

X ( / ) = C . B ( / )  
X ( t ) = C . B ( K t )  

(10) 

On the other hand, in the autonomous cases, the nonlinear 

2.2 Adaptive Technique 
One of the main advantages of the wavelet balance method is 

that there exists an adaptive scheme, which relies on the 
multiresolution analysis in wavelet theory [9]-[I I]. Using adaptive 
techniques, the number of the wavelet basis functions, which is 
needed for approximating state variables, can be determined 
automatically, and this improves the computational efficiency 
significantly. 

A multiresolution approximation of H' [0, L]  is a sequence 

{V, , J = . . . , - 1,0,1,. . .} of closed subspaces of H ' [O, L ]  such 
that: 

1 .  ... cv-, c v o  C V ,  c... 

2 .  n v ,  ={O} 

3. U V ,  = H'[O,L] 
.I=- 

4. v, = VJ-/ 0 w, 
where the notation 0 stands for the direct sum. It is clear that the 
approximation accuracy depends on the wavelet space order J .  The 
higher the space order is, the less the error will be. Furthermore, it 
is pointed out in [9]-[ll] that the wavelet coefficients of an 
approximation to a function reflect the singularity of the function. 
Thus, the magnitude of the wavelet coefficients in W, will 
indicate whether a refinement, by increasing the wavelet space 
order, is needed or not. For example, define the maydmum relative 
magnitude of the wavelet coefficients in W, as 

MAXlCJ I 

where MAXIC:l is the maximum magnitude of the wavelet 

coefficients in W, , and MAXIC,I is the maximum magnitude of 

all the wavelet coefficients. If R, is greater than the given error 
tolerance E , then we increase the wavelet space order J to J ' ,  
where J '  > J [ 1 I].  

More importantly, because of compact support of the wavelet 
bases, not all wavelet basis functions in higher wavelet spaces W,. 
are needed in order to improve the accuracy. In fact, only basis 
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functions, whose positions near the singularities (which can be 
determined by the magnitude of the wavelet coefficients on order J ) ,  
shall be included [ 1 I]. 

2.3 Comparison with the Conventional Fourier- 
Based Techniques 
The key feature of the wavelet balance method is the fact that 

wavelet bases have compact support or local support in time 
domain, whereas Fourier bases ej2nk'T ha ve a global support. 
Hence, the proposed wavelet balance method presents following 
advantages. 

First, the wavelet balance method has a high convergence 
rate, resulting in low computational complexity. It is demonstrated 
in [lo], [ 1 I] that the wavelet basis functions presented there, which 
are also used in this paper, have a high convergence rate O(h'). 
where h is the step length, i.e. the distance between two adjacent 
collocation points. 

Second, the wavelet balance method works in time domain, 
so that many critical problems in frequency domain, such as 
nonlinearity and high order harmonics, can be handled efficiently. 

Third, an adaptive scheme exists to automatically select the 
wavelet basis functions and determine the wavelet space order 
needed at a given accuracy. 

3. NUMERICAL EXPERIMENTS 
In this section, two circuit examples are examined to 

demonstrate the effectiveness of our proposed wavelet balance 
method for steady-state analysis. 

3.1 Van der Pol Oscillator 

Fig, 1. Circuit schematic of Van der Pol oscillator where 
fG" )=5 . (w-  I v y ? ) .  

Shown in Fig. 1 is a highly nonlinear Van der Pol oscillator, 
which has been served as a benchmark circuit for testing various 
steady-state analysis algorithms [2], [SI for autonomous circuits. 
The circuit solution by wavelet balance method is depicted in Fig. 
2. where 63 basis functions are employed. Comparing Fig. 2 with 
that in [SI, the waveform obtained in [5] with 60 samples still gives 
some small ringing, but our result in Fig. 2 shows great smoothness 
and almost achieves the same accuracy as that obtained in [5] with 
240 samples. 

By using wavelet balance method, the oscillator period T 
converges to 11.51s for 23 basis functions, 11.57s for 43 basis 
functions and 11.61s for 63 basis functions, respectively. The 
accuracy of T i s  also much better than that presented in [5] ,  where 
the Fourier-based technique is used. Especially, a very accurate 
solution can be reached even at extremely low wavelet order, for 
example, only 23 basis functions are employed. This characteristic 
makes it possible to optimize a high order solution with initial 
values from the low order solution. It is obvious that such an 
optimization procedure is robust and may converge very fast. 

0 2 4  6 8 1 0 1 2  

Time (Sec.) 
Fig. 2. Simulation result for Van der Pol oscillator by wavelet 
balance method. 

3.2 MOS Amplifier 

q{ol;;l 
in 

~ i l  

Fig. 3. Circuit schematic of MOS amplifier. 

The MOS amplifier shown in Fig. 3 is used to test the 
wavelet balance method for nonautonomous circuits. The input 
excitation is a square wave of amplitude +IV and frequency 1kH:. 
First, we simulate the circuit by harmonic balance method and 
Table 1 gives the relative simulation errors as different basis 
function numbers are employed. The relative error is defined as 

j [ ~ s m E  (1)- Y H B  (/)I2 dr 
(12) i j [ Y S P I C E  (41' df 

ErrX = 

where ysplcE (t ) represents the exact steady-state response 
obtained by SPICE and y H B  (t) represents the simulation response 
by the harmonic balance method. Note that the state eqwtion 
should be integrated by SPICE for quite a long time until the 
transients die out, so that an accurate steady-state response can be 
obtained. 

Second, we expand the state v&bles by wavelets and apply 
the wavelet balance method to calculate the steady-state response. 
When the adaptive technique is not used, all basis functions in 
given wavelet spaces are employed for computation. Table 2 gives 
the relative simulation errors under different wavelet basis function 
numbers. Comparing Table 2 with Table 1, one would find that the 
wavelet balance method hasn't gained any point in this special 
example and the convergence rate of the harmonic balance method 
is even a little higher than that of the wavelet balance method. 

Finally, we show that the wavelet balance method can 
improve its efficiency significantly after the adaptive algorithm is 
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applied. Let the error tolerance E =IO”  and employ the adaptive 
technique to select proper basis functions and determine the 
necessary wavelet space order at such accuracy. Seven wavelet 
spaces (from order 0 to order 6) in all are applied by the adaptive 
algorithm during the course of iteration. Table 3 displays the 
relative simulation error and the total number of selected wavelet 
basis functions as different wavelet spaces are included. Two 
comments can be made according to the data in Table 1 ,  Table 2 
and Table 3. 
1 .  After the adaptive algorithm is applied, the number of 

wavelet basis functions which are used at a given space order 
is reduced since not all basis functions in that wavelet space 
are needed for computation. On the other hand, the 
simulation error doesn’t change much as shown in Table 2 
and Table 3 .  This demonstrates that the adaptive algorithm 
has the potential to pick up the most important basis 
functions and those ones neglected by the adaptive scheme 
don’t contribute a lot to the simulation accuracy. 

Table 1. Simulation result of the harmonic balance method 
Basis Function Number Relative Simulation Error 

21 9.60603 1 x 1 0.’ 
41 5.034534xlO-’ 
81 2.48 1 4 9 5 ~ 1 0 ~  
161 1.155528xlO-’ 
32 1 4.832508~10-’ 
64 I 1 .624008~10~ 

Table 2. Simulation result of the wavelet balance method 
(without adaptive scheme) 

Wavelet Space Overall Basis Relative Simulation 
Order Employed Function Number Error 

0 23 9.73 1733xlO-’ 
. I  43 5.427637xlO-’ 
2 83 2.770902~ 10’ 
3 163 I .328406xlO-’ 
4 323 5.888023~ 1 0-3 
5 643 2.250459xlO-? 

Table 3. Simulation result of the wavelet balance method 
(with adaptive scheme) 

Wavelet Space Overall Basis Relative Simulation 
Order Employed Function Number Error 

0 23 9.73 1733xlO-’ 
43 5.427637~10’ 
77 2.770964~ IO-’ 
123 I .329575xlO-’ 
195 5.9331 IOxIO-‘ 
319 2.440557~ 10-7 

6 5 15 I .233289xlO-’ 

2. Taking advantage of the property of compact support, the 
adaptive algorithm can automatically select proper wavelet 
basis functions in time domain to expand the state variables. 
High order basis functions are only included near 
singularities, which improves the computational efficiency 
significantly. However, Fourier bases have global support and 
it is infeasible to realize such a selection in time domain as 
wavelets. Therefore, as displayed in Table 1 and Table 3, the 
wavelet balance method exhibits higher convergence rate 
than the harmonic balance method after the adaptive scheme 

is employed. 

4. CONCLUSION REMARKS 
We present in this paper a novel wavelet balance method for 

steady-state analysis of nonlinear circuits. As a counterpart of those 
Fourier-based techniques, the wavelet balance method works in 
time domain and has a solid theoretical background based on 
wavelet approximation theory. Taking advantage of the superior 
computational properties of wavelets, the proposed method 
presents greater efficiency than the conventional Fourier-based 
techniques in many practical problems, which is both analyzed 
theoretically and confirmed by numerical experiments in the paper. 
In this point of view. the wavelet balance method exploits a new 
approach to access the steady-state problem besides those 
frequency domain methods that have been used for a long time. 
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