
Towards Verifiable Resource Accounting
for Outsourced Computation

Chen Chen
CyLab, Carnegie Mellon University

Pittsburgh, PA, USA

Petros Maniatis
Intel Labs, ISTC-SC
Berkeley, CA, USA

Adrian Perrig
CyLab, Carnegie Mellon University

Pittsburgh, PA, USA

Amit Vasudevan
CyLab, Carnegie Mellon University

Pittsburgh, PA, USA

Vyas Sekar
Stony Brook University
Stony Brook, NY, USA

Abstract
Outsourced computation services should ideally only charge cus-
tomers for the resources used by their applications. Unfortunately,
no verifiable basis for service providers and customers to recon-
cile resource accounting exists today. This leads to undesirable out-
comes for both providers and consumers—providers cannot prove
to customers that they really devoted the resources charged, and
customers cannot verify that their invoice maps to their actual us-
age. As a result, many practical and theoretical attacks exist, aimed
at charging customers for resources that their applications did not
consume. Moreover, providers cannot charge consumers precisely,
which causes them to bear the cost of unaccounted resources or
pass these costs inefficiently to their customers.

We introduce ALIBI, a first step toward a vision for verifiable re-
source accounting. ALIBI places a minimal, trusted reference mon-
itor underneath the service provider’s software platform. This mon-
itor observes resource allocation to customers’ guest virtual ma-
chines and reports those observations to customers, for verifiable
reconciliation. In this paper, we show that ALIBI efficiently and
verifiably tracks guests’ memory use and CPU-cycle consumption.

Categories and Subject Descriptors D.4.6 [Security and Protec-
tion]: Access controls; K.6.4 [System Management]: Management
audit; K.6.5 [Security and Protection]: Unauthorized access

General Terms Measurement, Reliability, Security, Verification

Keywords Cloud computing, Accounting, Metering, Resource
auditing

1. Introduction
The computing-as-a-service model – enterprises and businesses
outsourcing their applications and services to cloud-based deploy-
ments – is here to stay. A key driver behind the adoption of cloud
services is the promise of reduced operating and capital expenses,
and the ability to achieve elastic scaling without having to maintain
a dedicated (and overprovisioned) compute infrastructure. Surveys
indicate that 61% of IT executives and CIOs rated the “pay only for
what you use” as a very important perceived benefit of the cloud
model and more than 80% of respondents rated competitive pricing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’13, March 16–17, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1266-0/13/03. . . $10.00
Reprinted from VEE’13,, [Unknown Proceedings], March 16–17, 2013, Houston,
Texas, USA., pp. 1–12.

and performance assurances/Service-Level Agreements (SLAs) as
important benefits [3].

Despite this confirmation that resource usage and billing are top
concerns for IT managers, the verifiability of usage claims or ser-
vices provided has so far received limited attention from industry
and academia [34, 39]. Anecdotal evidence suggests that customers
perceive a disconnect between their workloads and charges [1, 4,
12, 29]. At the same time, providers suffer too as they are un-
able to accurately justify resource costs. For example, providers
today do not account for memory bandwidth, internal network re-
sources, power/cooling costs, or I/O stress [22, 30, 46]. This ac-
counting inaccuracy and uncertainty creates economic inefficiency,
as providers lose revenue from undercharging or customers lose
confidence from overcharging. While trust in cloud providers may
be a viable model for some, others may prefer “trust but verify”
given providers’ incentive to overcharge. Such guaranteed resource
accounting is especially important to thwart demonstrated attacks
on cloud accounting [27, 42, 50].

Our overarching vision is to develop a basis for verifiable re-
source accounting to assure customers of the absence of billing
inflation, thereby forestalling billing disputes. Furthermore, the en-
hanced transparency of precise resource accounting helps cloud
users optimize their utilization.

Unfortunately, existing trustworthy computing mechanisms
provide limited forms of assurance such as launch integrity [40]
or input-output equivalence [18], but do not address resource ac-
counting guarantees. An alternative is to develop “clean-slate” so-
lutions such as a new resource-accounting OS or hypervisor [25];
however, these are not viable given the existing legacy of deployed
cloud infrastructure.

The challenge here is to achieve verifiable resource accounting
with low overhead and minimal changes to existing deployment
models. To this end, we propose an architecture that leverages re-
cent advances in nested virtualization [9, 48]. Specifically, we en-
vision a thin lightweight hypervisor atop which today’s legacy hy-
pervisors and guest operating systems can run with minor or no
modification. Thus, this approach lends itself to an immediately
deployable alternative for current provider and customer side in-
frastructures.

The properties of verifiable resource accounting, however, do
not directly map to the applications targeted by nested virtualiza-
tion (e.g., defending against hypervisor-level rootkits or addressing
compatibility issues with public clouds). Thus, we need to iden-
tify and extend the appropriate resource allocation “chokepoints”
to provide the necessary hooks, while guaranteeing that customer
jobs run untampered.

As a proof-of-concept implementation, we demonstrate verifi-
able resource accounting by extending the Turtles nested virtualiza-
tion framework [9], in which we build a minimal trusted Observer,

1

observing, accounting for, and reporting resource use. As a start-
ing point, we show this for the two most commonly accounted re-
sources, CPU and memory, which are directly observable by lower
virtualization layers, thanks to existing virtualization support in
hardware.

Our prototype, ALIBI, is limited and is intended as a proof of
concept of verifiable accounting. It demonstrates that: (i) verifiable
accounting is possible and efficient in the existing cloud-computing
usage model; (ii) nested virtualization is an effective mechanism to
provide trustworthy resource accounting; and (iii) a number of doc-
umented accounting attacks can be thus thwarted. Our evaluation
of the salient points of our system shows that resource accounting
and verifiability add little overhead to that of nested virtualization,
which is already efficient for CPU-bound workloads. While there
is non-trivial overhead for I/O bound workloads, recent and future
advances in virtualizing or simplifying interrupts [17], as well as
hardware support for nested virtualization [37] make the approach
promising.

While ALIBI already represents a significant advance over the
status quo in resolving the uncertainty in resource accounting, we
acknowledge that this is only a first step. Beyond the aforemen-
tioned performance limitations of nested virtualization for I/O-
intensive workloads, we need to address several other issues to fully
realize our vision for verifiable accounting. As future work, we plan
to extend our framework to handle other charged resources, such as
I/O requests or provider-specific API requests (e.g., Amazon S3),
which are most often not directly observable by the low layers of
virtualization. While we expect non-trivial challenges in addressing
these issues, the initial success demonstrated here, the experiences
we gained in the process, and emerging processor roadmaps give
us reasons to be optimistic in our quest.

2. Motivation
In this section, we survey the landscape of outsourced computation,
identify shortcomings in how resources are invoiced, and derive the
desirable properties for addressing those shortcomings.

2.1 The Lifecycle of Outsourced Computation
The typical outsourced-computation pattern we study in this work
is Infrastructure as a Service (IaaS), exemplified by Amazon’s
Elastic Compute Cloud (EC2)1, Rackspace2, and Azure3 among
others. IaaS offers customers a virtual-hardware infrastructure to
run their applications.

A new customer starts by creating an account on the plat-
form, and exchanging private/public key-pairs, to be able to au-
thenticate and encrypt future communication channels. After ac-
count establishment, a customer can upload a virtual-machine im-
age to platform-local storage, which contains a virtual boot disk
with an OS, needed applications, and data. The platform operator
may require mild customization of that image to improve perfor-
mance or compatibility, e.g., installing customized device drivers
or BIOS. The customer then launches an instance, by booting that
customized image in a platform guest VM, and either directly logs
into that instance to manage it, or lets it serve requests from remote
clients (e.g., HTTP requests). While her instance is running, the
customer may use additional hosting features, such as local stor-
age (e.g., Amazon’s Elastic Block Store (EBS)4). Later on, the cus-
tomer terminates that instance.

1 aws.amazon.com/ec2/
2 www.rackspace.com
3 www.windowsazure.com
4 aws.amazon.com/ebs/

The platform provider charges the customer either for provi-
sioned services or according to usage. For example, EC2 charges a
customer for the total time her instance is in a running state (length
of time between launch and termination, even if the virtual CPU is
idle in between). Additionally, EC2 charges the customer per dis-
tinct I/O request sent by her instance to a mounted EBS volume5.
The former is an instance of a provisioned service, charged whether
it is used or not, while the latter is an instance of a pay-per-use ser-
vice. Although platform operators provide some SLAs (e.g., Ama-
zon offers a minimum-availability guarantee6, and a credit process
when that guarantee is violated during a pay cycle), most provi-
sioned services (e.g., a provisioned-IOPS EBS volume, which has
a provisioned bandwidth of up to 1000 I/O operations per second)
are not accompanied by precise SLAs. Except for small differences,
other providers, such as Microsoft’s Windows Azure service, oper-
ate in a similar fashion for their IaaS products.

To summarize, the lifecycle of a customer’s VM on a provider’s
platform has the following steps: (i) Image installation; (ii) Image
customization; (iii) Instance launch of an installed image; (iv) Ex-
ecution accounting of resource use by the instance; (v) Instance
termination; and (vi) Customer invoicing based on instance-usage
accounting.

2.2 Challenges with Unverified Resource Use
We now identify how lack of verifiability can cause account-
ing inaccuracy and deception in the context of the outsourced-
computation lifecycle.

Image Installation The transfer of a new VM image from the
customer to the platform incurs network costs, and the storage of
an installed image incurs storage costs. If the installation channel
lacks integrity guarantees, external attackers may cause extraneous
storage and network charges. In fact, the management interfaces
of both EC2 and Eucalyptus, an open-source cloud-management
platform, were found vulnerable to such abuse, making this a real-
istic threat. Somorovsky et al. [42] used variants of XML signature-
wrapping attacks [28] to hijack the command stream between a le-
gitimate customer and the provider. In this fashion, an attacker may
replace the image installed by a customer and cause subsequent
launches to bring up the wrong image.

In a similar fashion, the provider is currently unconstrained
from performing image installation; e.g., by discarding the image
supplied by the customer and replacing it with another. This is a
special case of outsourced-storage integrity and retrievability [41].

Image Customization Before execution, a customer’s image may
be modified for the hosting platform. For example, the provider
may install its proprietary drivers or BIOS into the image. This
may constitute a legitimate reason why the image that runs in the
cloud is different from the customer-supplied image. Furthermore,
the provider may wish to conceal proprietary information about its
platform and its customizations.

Instance Launch A launch event (i.e., when an image is launched
within a VM instance) is significant for accounting purposes –
this is the time when actual charges start accruing for on-demand
pricing schemes. Unfortunately, nothing stops a greedy provider
from spuriously starting an instance and there is no defense against
external attackers who abuse the control interfaces [42] to start an
instance on behalf of an unsuspecting customer.

Execution Accounting There is little a customer can do to ensure
that, after launch, her instance continues to run the intended image;
e.g., the platform or an external attacker can suspend the instance,

5 aws.amazon.com/ec2/pricing/
6 aws.amazon.com/ec2-sla/

2

aws.amazon.com/ec2/
www.rackspace.com
www.windowsazure.com
aws.amazon.com/ebs/
aws.amazon.com/ec2/pricing/
aws.amazon.com/ec2-sla/

replace its image with another, and resume it. Practical attacks
have been demonstrated against the prevalent (sampling-based)
scheduling and accounting where malicious customers can run their
own tasks but cause charges to be attributed to other customers.
One such attack, described by Zhou et al. [50], allows instances
that share a physical CPU to suspend themselves right before a
scheduler tick is issued. As a result, the victim customer’s instance
that is subsequently scheduled gets charged for being active during
the scheduler tick.

On the other hand, platform providers, even when promising
dedicated resources, can inflate charges. For example, larger EC2
instances (e.g., a “Medium” instance) are assigned – and charged –
dedicated CPUs and memory while the instance is running. But
a customer may wonder if the CPU she is paying for is really
dedicated; can a provider overbook (or, more bluntly put, double-
charge) by “dedicating” the same physical CPU to multiple in-
stances?

Liu and Ding have identified ways in which a platform provider
can subvert the integrity of resource metering [27]. Even assum-
ing limited attack capabilities – in their case, an attacker who can
only change privileged software but not system software or the cus-
tomer’s image – a malicious provider can inflate resource use by
arbitrarily prolonging responses to the customer instance’s system
requests. Such requests include the setup period between instance
launch and control transfer to the customer’s image; the handling of
system calls, hypercalls, exceptions, and I/O requests; the issuance
of extraneous interrupts; and the implementation of platform fea-
tures in local or remote libraries.

Instance Termination Termination is the end point of the CPU-
charging period for instances and, consequently, it is another crit-
ical event for proper accounting. Premature termination of an in-
stance (e.g., against the customer’s intentions) may indicate the re-
placement of the image in a running instance with another arbitrary
one. Also, delayed termination past the point dictated by the cus-
tomer or her management scripts may be an avenue for deceptively
inflating usage charges.

Invoicing The invoice generated by the provider and submitted to
the customer for payment is intended as a summarized record of
the customer’s use of the provider’s resources. The challenge with
verifiable accounting is to ensure that this record is consistent with
the actual usage incurred by the customer’s VMs. For example,
an external attacker, especially one with unchecked access to the
management interface, may pass her own use of the platform as
incurred by a different customer. Conversely, the platform operator
may generate inflated invoices, since customers cannot witness the
usage of their own instances, to associate the invoice with the actual
expenditure.

3. Desired Properties
The implication of the above weaknesses is that the customer who
receives an invoice at the end of a billing cycle cannot distinguish
between charges for her legitimate VM image, or some attacker-
installed VM image running on her behalf, or charges arbitrarily
and undeservedly assessed by a deceitful provider. Building on
the attack scenarios described above, we identify three properties:
Image Integrity (what is executing), Execution Integrity (how it is
executing), and Accounting Integrity (how much provider charges
customer). To achieve verifiability, a customer needs assurance that
the provider cannot violate the integrity properties undetected and,
conversely, a correct provider needs assurance to avoid slander for
purported integrity violations.

To formulate these properties, we consider the system model il-
lustrated in Figure 1. The customer-provider interface includes op-
erations to transfer new images (xfer), to customize images before

E
I

A

image2

instance

image1

time

cu
st
o
m
iz
e

d
el
et
e

st
o
ra
g
e

n
et
w
o
rk

xf
er

te
rm

in
a
te

la
u
n
ch

co
m
p
u
te

fc da b g he

Figure 1. The System Model: There are three types of integrity
properties Image (I), Execution (E), and Accounting (A). The figure
shows a timeline during the lifecycle of an outsourced computation
task and how different events relate to the integrity properties we
require for verifiable accounting.

launch, and to delete images from storage, to stop incurring stor-
age costs. Instances can be launched using a previously-installed
image, and terminated later on. While an instance is running, it
undergoes state changes, including requests for storage, network,
and compute. Some of these operations are relevant to images (I),
some to execution (E), and some are chargeable events relevant to
accounting (A), as shown at the bottom of the figure.

Image Integrity Informally, the OS, programs, and data making
up the customer’s image must have the contents intended by the
customer at the time of each instance launch. In other words, the
sequence of management operations – image installation, image
customization, and instance launch given an image – have the same
effect on instance launches (i.e., cause the same image to boot upon
instance launch) as they would have if the customer were executing
these operations on a trusted exclusive platform.

Note that this property can be maintained while the provider
modifies customer images without explicit customer authorization
(e.g., by moving them from block device to block device, compress-
ing them, deduplicating them, copying them, etc.). The requirement
is that upon a customer-initiated launch, the launched image is as
the customer intended via her explicit operations.

Execution Integrity Similarly, changes to the state of an im-
age while it is executing in an instance are “correct” if the se-
quence of actions (instruction execution, requests received exter-
nally, non-deterministic interrupts) taken by an image instance be-
tween launch and termination have the same effects on the instance
state (its local storage while it is running), and external interfaces
(e.g., responses sent to remote requests) as it would have, if that
same image were executing under the same sequence of actions on
a trusted, correct, exclusive platform.

Since all external devices are under the control of the platform,
execution integrity cannot prevent network packets or disk blocks
from being malicious, or triggering non-control data vulnerabili-
ties [10]. Integrity here assumes a correct CPU and memory system.
This property does not restrict platform operations from suspend-
ing an instance, migrating it, or otherwise manipulating it, as long
as those manipulations do not alter the behavior of the instance.

Accounting Integrity This property ensures that the customer is
only charged for chargeable events, such as CPU-cycle utilization,

3

Provider Platform

Co-tenant
Application

Customer’s
Application

ReportObserver

HW

Verifier

Integrity
protected Trusted Adversarial

ch
a
rg
ea
b
le

ev
en
t

Figure 2. The conceptual architecture of ALIBI. We envision a
lightweight trusted Observer that runs below the cloud provider’s
platform software. This trusted layer generates an attested report or
witness of the execution of the guest VM to the customer.

while an instance is running. In other words, the provider cannot
charge the customer for spurious events (e.g., for having used a
CPU cycle while another instance was using it). Similarly, the prop-
erty ensures that the customer cannot incur unaccounted chargeable
events.

A charging model (i.e., a specification of what events should
be charged how much), maps a sequence of image and execution
actions to an invoice. Accounting integrity then ensures that the
provider invoices the customer as if the customer had run her
sequence of actions on a trusted, exclusive platform, and applied
the charging model on the resulting action sequence7.

Verifiable resource accounting requires us to satisfy all three
properties. With accounting integrity alone, the customer may
know that the right events were measured in the invoice (i.e., she
was not charged for fictitious cycles), but she cannot know if those
events corresponded to her jobs. For that, it is essential to ensure the
correct execution of the right image (execution and image integrity,
respectively). Similarly, image integrity alone is meaningless; the
provider may charge for arbitrary, spurious events that have noth-
ing to do with the customer’s image and precluding that scenario
requires accounting integrity. Image integrity, even with account-
ing integrity, is insufficient, since the provider may inject arbitrary
code charges for correct events issued by an instance launched with
the correct image, albeit for an incorrect execution.

4. ALIBI Design
The conceptual architecture of our system, ALIBI, is shown in Fig-
ure 2. At a high level, ALIBI uses nested virtualization to place
a trusted Observer at the highest privilege level underneath the
provider’s platform software and all customer instances. The Ob-
server collects all chargeable events incurred by a customer in-
stance, and offers them to the customer, as a trustworthy witness
of the provider’s invoice at the end of a billing cycle. At the same
time, the Observer protects the execution of the customer instance
against tampering by other instances or by the provider itself, while
ensuring that the provider does not miss customer actions that it
should be charging for.

We consider two case studies of resource accounting:

CPU Usage The customer agreed to be charged while her appli-
cation is executing on the provider’s CPUs, but not when it is
suspended.

7 Charging functions may not be independent from other concurrent users
of the platform (e.g., some resources may have congestion pricing, as for
example Amazon does with EC2’s spot instances). We narrow our scope
here to simpler, independent-charge models.

BIOS
Kernel
Loader

Kernel
Virtual Root
Partition

image

time

lo
a
d
 b
lo
cks

m
ea
su
re, rep

o
rt

lo
a
d
 b
lo
cks

m
ea
su
re, rep

o
rt

lo
a
d
 b
lo
cks

m
ea
su
re, rep

o
rt

m
o
u
n
t

VRP
Driver V

R
P

H
as
h

I = <bHash, lHash, kHash>

Figure 3. Instance Attestation: Timeline of instance launch show-
ing the different hashes of the BIOS, kernel loader, and kernel being
computed in sequence.

Memory Utilization The customer agreed to be charged for the
amount of physical memory her applications use, e.g., as the
number of pages integrated over allocated time.

In the next sections we explain in order how ALIBI guaran-
tees the three integrity properties from Section 3. Image integrity
is protected via attested instance launch (Section 4.1). Execution
integrity is protected via guest-platform isolation (Section 4.2).
Accounting integrity is protected via trustworthy attribution (Sec-
tion 4.3). Trust in the operation of the Observer itself is established
via authenticated boot (Section 4.4). We revisit the lifecycle of an
outsourced computation in Section 5, arguing that the weaknesses
we identified earlier (Section 2.2) are removed by ALIBI.

Viewed in a general systems context, ALIBI builds on the well-
known concepts of reference monitors and virtualization. Our spe-
cific contribution lies in the careful extension of these ideas to meet
the particular integrity requirements of verifiable resource account-
ing.

4.1 Image Integrity via Attested Instance Launch
Image integrity requires that the Observer verify the customer’s im-
age when it is first loaded into an instance by the provider platform.
If an image were loaded directly and entirely into a sufficient num-
ber of memory pages, then the Observer could measure those pages
– i.e., hash them in a canonical order with a cryptographic hash
function – and compare them to a hash submitted by the customer
during image installation.

Unfortunately, entire VM images are almost never entirely in
memory. Although the kernel remains pinned in (guest) memory,
user-space processes are placed into guest virtual memory on de-
mand, in the somewhat unpredictable order of process launch, via
the init process or the shell. Furthermore, memory-page contents
may be swapped out by the instance OS to reuse guest physical
memory, or even by the platform provider, to reuse host physi-
cal memory, when managing multiple concurrent instances on the
same physical hardware (e.g., via ballooning or transcendent mem-
ory).

To address this problem, ALIBI uses a hybrid software attesta-
tion approach. As in prior systems that bring up an attested ker-
nel (e.g., SecVisor [40]), the customer’s BIOS, kernel boot loader,
and kernel are measured and launched one after the other. All re-
maining data are loaded from the installed image by mounting it
in an integrity-protected fashion, either at the file system level, or
the storage block device level; protection is done in a traditional
chained-hash mechanism (e.g., SFS-RO [16] and dm-verity [2]),
and the root hash is hard-coded in the device driver, which is itself

4

statically compiled into the attested kernel. Figure 3 illustrates the
image structure.

These properties are guaranteed as follows. The Observer is told
explicitly about the I .

= 〈bHash, lHash, kHash〉 triple, contain-
ing the cryptographic hash of the BIOS, the kernel loader, and the
kernel, respectively, when a new customer image is installed in the
platform. Each successive stage of the instance boot process regis-
ters itself with the Observer (via a hypercall), reporting what cus-
tomer image it belongs to (a customer-configured ID), what stage
it is (BIOS, loader, kernel), and what guest physical memory pages
it occupies; the Observer hashes those memory pages, matches the
hash against the corresponding component of I for that image ID,
and records the memory range as part of the instance for the given
image.

Once the instance kernel is registered and loaded, it mounts its
root partition using the integrity-protected filesystem driver. Recall
that the root hash for the file system is embedded in the kernel (as
part of the statically compiled device driver), so kHash protects the
root partition as well.

At the end of this process, the Observer knows the memory
pages occupied by the static and dynamic portions of the customer
instance, and that their contents are consistent with the customer’s
registered image.

4.2 Execution Integrity via Guest-Platform Isolation
ALIBI provides execution integrity by protecting three assets of the
running customer instance: its state in memory, its state in storage,
and its control flow.

Memory: Given a current allocation of physical memory pagesM
to an instance i, the Observer enforces the invariant that memory in
M can only be written while i is executing.

ALIBI enforces this invariant via the Memory Management Unit
(MMU), and in particular the Extended Page Tables (EPTs) on In-
tel processors. An EPT maps guest physical pages to host physi-
cal pages, and associates write/execute permissions with each such
mapped page, much like traditional page tables. When a guest at-
tempts to access a guest physical page that has not as yet been
mapped to a host physical page in the EPT, an EPT violation trap
gives control to the hypervisor, which performs the mapping, and
resumes the guest. In our case, the Observer write- and execute-
protects all pages inM by modifying the platform software’s EPT,
while i is not executing. When the platform software attempts to
pass control to the customer instance, the instance’s EPT will be
installed, which automatically unprotects pages in M. When the
instance loses control, e.g., because of a hypercall or an interrupt,
the Observer automatically re-protects M by installing the plat-
form software’s EPT again.

When an instance is first launched via the mechanism described
in Section 4.1, the Observer only associates with the instance
the memory pages holding content that has been measured and
matched against the image integrity digest I. To capture further
modifications ofM, the Observer also write-protects the memory-
management structures of the platform software. This ensures that
the Observer interposes (via EPT violation traps) on all modifica-
tions of memory allocations by the platform to its guests. The Ob-
server applies the protection described above toM as that changes
over time, since changes are always essentially effected by the
Observer first.

One subtle issue here is that the platform software may have
legitimate reasons to modify the contents of a guest’s page unbe-
knownst to that guest, e.g., when migrating the guest to another
physical machine, or swapping guest-physical pages out or back in
again. While the above protections ensure that the Observer pre-
vents the platform from manipulating guest pages when they are
in memory, it does not prevent the pages from being arbitrarily

modified when they are swapped out and then swapped back in.
This requires an additional, but straightforward, protection. Specif-
ically, when the provider platform needs to unmap a guest physical
page (e.g., to swap it to disk), the Observer intercepts this request
as above (since all modifications to the guest’s EPT by the plat-
form result in a protection trap down to the Observer). At this time,
it computes a cryptographic hash of the contents, and records the
hash for the guest page address. If the platform later maps another
physical page to the same guest page, the Observer once again in-
terposes on this call to check that the contents have not been modi-
fied, by checking if the hash matches the recorded value. Manifests
of such page hashes can be transmitted to remote Observers during
migration. Our prototype does not yet implement this protection.

Note that platform software may write-share memory pages
with an instance (and instances may also share pages with each
other). We require the guest to explicitly mark some of its pages
as authorized for sharing with the platform, and exclude them
from the protection described above. For read-shared pages, as
might happen, for example, with the Kernel Samepage Merging
(KSM) mechanism in Linux-KVM, our protections still apply with
appropriate manipulation of the relevant EPTs when the platform
attempts to map the same page to multiple guests.

Storage: Instances typically have at their disposal some local stor-
age (EC2 calls it “instance storage”) for their lifetime. ALIBI pro-
tects that storage by mounting it via an integrity-protected filesys-
tem (a read-write variant of dm-verity [2]), in a manner similar
to how the root partition is mounted. Although the mutability of
this storage makes integrity protection somewhat more expensive
for a naı̈ve implementation, systems such as CloudVisor [48] have
demonstrated acceptable performance for even stronger protection
of this form (adding confidentiality).

Control Flow: To protect the control flow of instances, ALIBI
protects the stacks of a guest (both user-space and kernel-space)
as part of protecting the allocated memory pages to an instance.
As a result, the call stacks of processes in the instance cannot be
directly altered by the platform or other instances.

While an instance is not running, platform software has control
of the guest-CPU state, including the stack-pointer and instruction-
pointer registers (RSP and RIP), which also affect control flow
when the instance resumes, as well as general-purpose registers,
which may indirectly affect control flow upon resumption, and
model-specific registers, which may affect the general operation
of an instance (e.g., disable memory paging). ALIBI uses memory
protections on the data structures holding guest state in the platform
software, after an instance is launched; when platform software at-
tempts to modify such state, the Observer validates the modification
before allowing it to affect guest operation.

In general, ALIBI limits the options of in-flight modifications
of guest state available to the platform. In particular, it only al-
lows changes to RSP and RIP that are consistent with handling of
guest-mode exceptions (e.g., emulated I/O requests) that, typically,
amount to advancing the RIP register to the next instruction follow-
ing the one that caused an exception. ALIBI also explicitly records
general-purpose registers holding return data from a hypercall, and
allows the platform software to modify those registers.

Finally, the control flow of an instance may be affected by the
initial instruction executed when the instance is launched (in the
BIOS segment of the image). ALIBI only allows a newly launched
instance to be started at a given, fixed initial entry point (typically,
the entry point into the BIOS). Subsequent stages in the bootstrap
process are protected as described above.

5

4.3 Accounting Integrity via Bracketing
Accounting integrity relies on three fundamental components,
all of which must be verifiable to both parties’ satisfaction: (a)
chargeable-event detection, (b) chargeable-event attribution, and
(c) chargeable-event reporting. Event detection (Section 4.3.1)
must ensure that only real events are captured (which precludes
spurious charges), and no real events are missed (which precludes
service theft). Event attribution (Section 4.3.2) must verifiably as-
sociate a detected event with a customer to charge. Finally, event
reporting (Section 4.3.3) must protect the collected information at
rest on the provider’s infrastructure, and in transit to customers.

4.3.1 Event Detection
In this work, we focus on chargeable events that are directly observ-
able by the Observer. For example, given the protections required
for image and execution integrity (Sections 4.1 and 4.2), the Ob-
server sees every transfer of control (and, therefore, of the CPU)
between the platform software and customer instances. Similarly,
the Observer sees every memory allocation and deallocation by the
platform software to customer instances. We defer to future work
those chargeable events that are not necessarily observable by the
Observer, such as I/O requests, especially for directly-assigned de-
vices.

Such direct detection is effective for both instantaneous charg-
ing events (e.g., requests for growing a guest’s memory footprint)
and time-based charging events (e.g., duration of CPU possession
by a customer instance). For time-based events, the Observer col-
lects instantaneous events denoting the beginning and end of pos-
session of a chargeable device, from which the duration can then
be computed easily (e.g., using clock time, a cycle counter, or other
monotonically increasing hardware performance counters).

4.3.2 Event Attribution
Verifiable attribution implies that the provider cannot charge cus-
tomers for chargeable events willy-nilly, but is bound to charge the
customer whose image incurred the event.

ALIBI builds its verifiable attribution machinery on CPU own-
ership. Because of the attested instance launch mechanism (Sec-
tion 4.1), the Observer can associate definitively a set of memory
pages with a given installed image. Consequently, the Observer can
attribute ownership of the CPU to a given image when the CPU en-
ters the pages associated to that image. This means that ALIBI can
attribute events that acquire or relinquish ownership of other re-
sources to the appropriate customer image that currently holds the
CPU.

4.3.3 Event Reporting
Verifiable reporting implies that the provider cannot report incor-
rect chargeable-event measurements to the customers, but must re-
port accurate values.

The ALIBI Observer collects event measurements (e.g., CPU
possession and guest memory footprint) during the entire lifetime
of the customer image execution. The Observer then packages
these measurements along with the attestation triplet for a customer
image (from Section 4.1) in a signed report that also includes
the platform software state (see Section 4.4 below). Finally the
Observer ships the signed report to the related customer along with
an invoice.

4.4 Trust via Authenticated Boot
Fundamental to any security property that can be ascertained ex-
ternal to a platform manifesting the property of interest is a root of
trust. ALIBI relies on a Trusted Platform Module (TPM) [5] on the
provider platform for this purpose.

At a high-level, the TPM can be thought of as possessing a
public-private key-pair, with the property that the private key is
only handled within a secure environment inside the TPM. The
TPM also contains Platform Configuration Registers (PCRs) that
can be used to record the state of software executing on the plat-
form. The PCRs are append-only, so previous records cannot be
eliminated without a reboot.

Initially ALIBI is started via a dynamic root of trust mecha-
nism on the provider platform. This can be done for example, by
using a trusted boot-loader such as tboot [7] or oslo [24]. The
authenticated boot mechanism ensures that integrity measurements
are taken of all loaded code modules. These measurements are ex-
tended into one or more PCRs, so that a history of all modules
loaded is maintained and cannot be rolled back.

With accumulated measurements from authenticated boot, the
root of trust for reporting (or commonly called an attestation) be-
comes useful. ALIBI uses the TPM to generate an attestation, which
is essentially a signature computed with the TPM’s private key over
some of the relevant PCRs. Given the TPM’s corresponding pub-
lic key, an external verifier can check that the signature is valid
and conclude that the PCR values in the attestation represent the
software state of the platform (i.e., a correctly loaded ALIBI hyper-
visor). Note that numerous solutions exist to obtain the TPM’s au-
thentic public key [31]. One straightforward approach is to obtain a
public-key certificate from the provider which binds the public key
to the provider identity.

5. Lifecycle of a Verifiably Accounted Job
As discussed previously, the design of ALIBI makes one practical
assumption about the nature of IaaS deployments. In order to assure
the customer that the Observer itself was running, we assume
that a hardware root of trust, i.e., a TPM chip, is present on the
platform and provisioned with appropriate cryptographic material
by the manufacturer. A large fraction of server-grade machines
already come equipped with such capabilities. We now review the
lifecycle of an outsourced job with ALIBI and highlight how ALIBI
addresses the accounting vulnerabilities from Section 2.2.

Image Installation When a customer installs a new VM image,
she provides a random nonce, along with the integrity triple I, and
only presumes the installation successful upon receiving a receipt
containing the triple, the nonce, and a signature on the two from the
Observer. Even though the customer may not be directly contact-
ing the Observer, but may instead be using the platform API or web
interface, a receipt from the Observer indicates the latter has iden-
tified a particular VM image as protected. The nonce protects the
installation channel from replay attacks, and the signature protects
the communication between the customer and the Observer from
the intervening platform software.

Image Customization Customization may result in changes to the
customer’s image, but is transparent to ALIBI. When a customer is
done modifying an image, she must reinstall it, as described above,
possibly uninstalling the original version of the image.

The explicit re-installation of a customized image prevents sur-
reptitious image modifications before launch, which would be oth-
erwise open to the platform and external attackers hijacking the
control interface.

Note here that in this work, we assume the “easier” version of
customization, where the platform provider may recommend cer-
tain stock device drivers (e.g., paravirtualized Xen device drivers)
that must be installed and the customer explicitly and manually
installs those drivers to its image before launching. As such, we
assume that the stock device drivers are as trusted by the cus-
tomer as the rest of her image software. We leave for future

6

work the “harder” version of customization, where image modi-
fications are not trusted (e.g., may come in binary form from the
provider), which may require more complex solutions, perhaps
akin to OSck [20], adapted to the outsourced domain.

Instance Launch Launch for a particular installed image works as
described in Section 4.1. The attested instance-launch mechanism
ensures that instances are launched legitimately only with full vis-
ibility to the Observer, only from images that have been explicitly
installed by the customer. What is more, this mechanism ensures
that the launch-point state of an instance is consistent with the im-
age, and cannot be modified undetected by the platform.

Execution Accounting During instance execution, integrity is
guaranteed through the state and control-flow protections described
in Section 4.2. Consequently, surreptitious modifications of system
libraries or the internal functionality of an instance [27] are not
possible.

The Observer accounts for CPU and memory as described in
Section 4.3, and has full visibility of related chargeable events.
Although the platform can delay the execution of operations in
platform software on behalf of the customer (e.g., the handling of
hypercalls issued by the instance), this happens outside the CPU-
control of the instance, does not constitute a chargeable event, and
is therefore immaterial to the customer’s invoice. Note, however,
that in a model that charges customers for system costs, this might
be more complex to handle, as we describe in Section 8.

Similarly, scheduling tricks [50] have no effect, since charging
is done via explicit counting of events, rather than the bias-prone
sampling. This also means that the platform cannot charge two
customers for the “same CPU cycle” since the CPU instruction
pointer can only be in one memory location at a time, and the
Observer keeps track of the memory footprint of an instance via
its EPT.

Instance Termination When an instance terminates, a running
period ends and the platform explicitly deregisters an image from
the Observer, thereby removing the physical pages it had previ-
ously allocated to that image from the Observer’s protection. No
(execution-related) chargeable events are collected for that image
beyond instance termination.

Invoicing When invoicing the customer, the platform also presents
a witness report (Section 4.3.3) consisting of Observer-signed event
traces supporting that invoice. Those traces are periodically passed
to the platform as the Observer collects them, to minimize the
storage requirements for the Observer, but the platform must ac-
cumulate and supply those traces to the customer along with an
invoice.

The witness report is associated with the precise image that was
launched and protected during runtime by the Observer. As a result,
an invoice for charges substantiated with a witness generated by an
image that the customer did not install can easily be detected as
fraudulent.

6. Implementation
In this section, we describe the pieces of the ALIBI prototype
we have implemented, and demonstrate the salient aspects of the
design from Section 4.

As shown in Figure 4, we have implemented ALIBI on the open-
source Linux-KVM hypervisor codebase. Our prototype is based
on the Linux-KVM kernel, version 3.5.0, with support for efficient
nesting provided by the Turtles developers as separate patches, as
yet unincorporated into the mainline kernel. For the purposes of
our prototype, we assume that the platform already uses KVM as
its virtualization software, and that customer guests run the Linux

KVM-L1

L2 Guest L2 Guest

KVM-L0

HW

Alibi

EPT02

EPT01

EPT12

Read Timestamp Counter Under Alibi control

Figure 4. ALIBI Implementation: We currently leverage the nested
virtualization support provided via the Turtles project in KVM. AL-
IBI is a lightweight extension to this nested virtualization codebase.
While our current prototype runs KVM as the L1 hypervisor, this is
purely for convenience and does not represent a fundamental con-
straint.

OS. We implement the ALIBI Observer using another layer of
KVM virtualization, below the purported provider’s KVM software
platform.

We chose KVM because of its advanced and efficient support
for nested virtualization [9] on top of modern CPUs’ hardware-
virtualization features8. Although this support is not part of our
contribution, we review it in Section 6.1, since it forms the basis for
ALIBI’s implementation. Then we describe how we implement the
particular kind of isolation that is essential for ALIBI’s integrity,
in Section 6.2. We delve into the implementation details for pro-
viding accounting for the two types of resources in Section 6.3. In
describing our implementation, we describe specifics pertaining to
the Intel platform we use for prototyping; analogous support exists
on AMD platforms as well.

6.1 Background: Nested Virtualization with KVM
The basic tools offered by hardware support for virtualization are
CPU-state and physical-memory virtualization. Intel-architecture
processors virtualize CPU state by providing a data structure in
physical memory, called the Virtual Machine Control Structure
(VMCS) in Intel’s processors, where the host’s state is held while
a guest is executing, and where the guest’s state is held while the
host is executing. The VMCS also holds configuration information
about what the guest is allowed to do (e.g., which privileged in-
structions it may invoke without trapping to the host, etc.).

Physical memory is virtualized via an extra layer of page tables,
which are called Extended Page Tables (EPT) for Intel’s processors;
the EPT maps guest physical addresses (GPA) to host physical
addresses (HPA), and can contain read/write/execute protections
for mapped pages separate of those in the regular OS-managed page
table maintained by the guest. If the CPU attempts to access a GPA
in violation of the EPT, the CPU traps from guest to host mode with
an EPT_VIOLATION exception.

With nested virtualization, these two virtualization mechanisms
must themselves be virtualized. In the absence of explicit hardware
support for such nested virtualization, host software such as KVM
must do this virtualization of the VMCS and EPT in software9.

8 On a pragmatic, but slightly non-technical note, we chose KVM because
the Turtles code is publicly available. The mechanisms we envision can
also be incrementally added to other nested virtualization platforms such
as CloudVisor [48]. Unfortunately, the CloudVisor authors could not yet
provide us with the source code when we requested it.
9 Several variants exist, but we present here the one we have used, as first
described in Turtles [9].

7

Especially since the hardware knows nothing about nesting, only
the “bottom-most,” Level-0 (L0) hypervisor (running the ALIBI
Observer) uses a native EPT and a native VMCS. The “middle,”
Level-1 (L1) hypervisor (the platform’s KVM layer in our case) is
just a guest of L0, and so is the nested, Level-2 (L2) guest holding
customer images. This means that the L0 KVM must maintain a
separate VMCS and EPT for its L1 guest (VMCS01 and EPT01),
and for its L2 guest (VMCS02 and EPT02). The platform software,
L1, also thinks it is maintaining a VMCS and an EPT for its guest
(VMCS12 and EPT12).

Nested-virtualization support in KVM allows L0 to know how
L1 maintains VMCS12 and EPT12, and compose them with its
own VMCS01 and EPT01, to produce appropriate VMCS02 and
EPT02; doing this efficiently saves unnecessary and costly con-
trol transfers across L0, L1, and L2. For VMCSes this is straight-
forward; L0 updates its own VMCS02 structures according to
VMCS12 when L1 issues (and traps on) a VMWRITE instruction,
and when L0 passes control to L2. For EPTs, when L0 first starts
L2, it marks EPT02 empty. Each time that L2 accesses a nested
guest physical address (NGPA) that is not yet mapped in EPT02,
an EPT_VIOLATION exception occurs, trapping back to L0, which
handles the exception via the nested_tdp_page_fault function
in KVM; this walks EPT12, trying to find a GPA for the unmapped
NGPA; if it finds none, it passes on the job to L1, by injecting it with
the EPT_VIOLATION fault; if L0 does find a mapping in EPT12,
it write-protects that mapping (by changing the permissions of the
EPT01 entry pointing to the page holding the appropriate entry of
EPT12), it then adds the mapping to its EPT02, and resumes the
L2 guest.

The write protection of L1’s EPT serves the purpose of moni-
toring remappings of customer-guest memory by the platform soft-
ware: if L1 attempts to modify that mapping in its EPT12 – e.g.,
because it is swapping out a guest physical page – since the mem-
ory holding its EPT is write-protected by L0, an EPT_VIOLATION
will occur, allowing L0 to update its EPT02 to match the modified
mapping by L1.

6.2 Protected Execution
To offer execution integrity, the Observer at L0 must protect the
contents of the guest (L2) physical memory, which L1 maps to
L2, from L1 itself. L0 detects allocations by L1: L1 marks those
allocations in its EPT12, which L0 monitors, so L0 is alerted every
time such EPT12 modifications occur (see Section 6.1). At that
time, L0 write-protects newly allocated pages for as long as L1 is
running. When L2 starts running, L0 unprotects those pages, until
L2 exits. Our current prototype does not yet implement vetting of
platform-initiated VMCS changes.

6.3 Accounting Case Studies
In addition to the mechanisms ensuring the integrity properties
of ALIBI, the prototype addresses the particular case studies we
consider as described below.

CPU cycles: To measure the CPU cycles used, the Observer takes
measurements of the IA32 TIME STAMP COUNTER model-specific
register at each bracketing event: entry into and exit from the
instance. The Observer already receives traps for these events with
the nested virtualization implementation as described previously in
Section 6.1.

To protect the accounting integrity of the timestamp counter,
our prototype had to ensure that the register cannot be modified by
guests. We do this by enabling an appropriate control field in the
related VMCSes (VMCS01 for the platform and VMCS02 for the
customer instance) that causes a trap when the WRMSR instruction is
executed with the TSC register as an argument. The Observer turns
such WRMSR instructions into no-ops.

We also take care when the TSC register is set to be virtualized
by the platform (this means that the register is auto-loaded from
a previously stored value in the VMCS upon entry, and auto-
stored back into the VMCS upon exit from that guest). When such
virtualization occurs, we measure the advancement of the counter
from the virtual value.

Memory: The invariant we maintain for memory accounting is that
a customer is charged for a physical page only while that page is
accessible to its instance. For the page to be accessible, the EPT02

must map it, and the platform (L1) must have allocated it to the
instance.

We record the assignment of ownership of a page to a guest in
the Observer when the relevant entry in EPT02 is synchronized
with EPT01 and EPT12. This occurs when a L2 guest first ac-
cesses an assigned page, causing an EPT violation, and L0 first syn-
chronizes its EPT02 entry; and when the L1 platform modifies a
page mapping in EPT12, which causes a protection trap back to L0.
In the latter case, the KVM shadowing logic is used, which marks
the relevant entry in EPT02 as unsynchronized. Later, when an in-
validation occurs (e.g., through the INVEPT instruction), L0 resyn-
chronizes the EPT02 entry, unassigning the old page and assigning
to the guest the new one (this happens in the ept_sync_page func-
tion in KVM).

We record the relinquishment of ownership of a page by a guest
(i) when a page mapping is modified by L1 (as described in the
previous paragraph), and (ii) when L1 unmaps a page from a guest,
e.g., due to swapping. Then an EPT violation trap to L0 occurs, and
L0 records the relinquishment.

7. Evaluation
We now present the evaluation of our prototype implementation and
analysis of nested virtualization overheads with macro benchmarks
that represent real-life CPU/memory and I/O-bound workloads.

Our setup consisted of an HP ML110 machine booted with a
single Intel Xeon E31220 3.10GHz core with 8GB of memory. The
host OS was Ubuntu 12.04 with a kernel that is based on the KVM
git branch “next”10 with nested virtualization patches11 added. For
both L1 and L2 guests we used an Ubuntu 9.04 (Jaunty) guest with
the default kernel versions (2.6.18-10). L1 was configured with
3GB of memory and L2 was configured with 2GB of memory.
For the I/O experiments we used the integrated e1000e 1Gb/s NIC
connected via a Netgear gigabit router to an e1000e NIC on another
machine.

7.1 Compute/Memory-bound Workloads
SPEC CINT2006 is an industry-standard benchmark designed to
measure the performance of the CPU and memory subsystem. We
executed CINT2006 in four setups: host (without virtualization),
single-level guest, nested guest, and nested guest with ALIBI ac-
counting. We used KVM as both L0 and L1 hypervisor with multi-
dimensional (EPT) paging. The results are depicted in Figure 5.

We compared the impact of running the workloads in a nested
guest (with and without accounting) with running the same work-
load in a single-level guest, i.e., the overhead added by the addi-
tional level of virtualization and accounting. As seen a single-level
virtualization imposes, on an average, a 9.5% slowdown when com-
pared to a non-virtualized system. Nested virtualization imposes
an additional 6.8% slowdown on average. The primary source of
nested virtualization overhead is guest exits due to interrupts and

10 Commit hash ade38c311a0ad8c32e902fe1d0ae74d0d44bc71e
11 The nested virtualization support in KVM is still not mainstream and
currently only exists as a patch-set at http://comments.gmane.org/
gmane.comp.emulators.kvm.devel/95395

8

http://comments.gmane.org/gmane.comp.emulators.kvm.devel/95395
http://comments.gmane.org/gmane.comp.emulators.kvm.devel/95395

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

40
0.p
erl
be
nc
h	

40
1.b
zip
2	

40
3.g
cc	

42
9.m

cf	

44
5.g
ob
mk
	

45
6.h
mm

er	

45
8.s
jen
g	

46
2.l
ibq
ua
ntu
m	

46
4.h
26
4re
f	

47
1.o
mn
etp
p	

47
3.a
sta
r	

48
3.x
ala
nc
bm
k	

%
	
 N
a%

ve
	
 (h

ig
he

r	
 t
he

	
 b
e/

er
)	

Single-­‐level	
 Nested	
 Alibi	

Figure 5. SPEC CINT2006 results. We see that for most of the
CPU intensive benchmarks ALIBI adds little overhead over that of
nested virtualization.

privileged instructions [9] which we expect will diminish with
newer hardware [17]. Note that ALIBI’s integrity and accounting
mechanisms impose a negligibly small overhead (≈ 0.5%) in addi-
tion to that imposed by nested virtualization.

We note that this additional overhead imposed by nested virtu-
alization/ALIBI is already quite low given that cloud consumers are
willing to pay the cost of single-level virtualization for other ben-
efits such as reduced infrastructure and management costs. We en-
vision verifiable accounting as an opt-in service where consumers
can choose if they want the additional assurances about account-
ing; jobs whose owners wish to run without such assurances can
be placed by the provider on machines without ALIBI, and the
provider can dynamically start machines with or without ALIBI
based on demand for the service. Thus, we speculate a <6% over-
head is a small cost that customers may be willing to incur given
that it eliminates the (potentially unbounded) uncertainty in ac-
counting that exists today. Given that providers also have an eco-
nomic and management incentive to motivate adoption of verified
accounting, we expect that providers will subsidize such services.
For example, it is not unreasonable to expect that cloud vendors
may offer a 3–6% discount to offset the potential overhead for cus-
tomers running over ALIBI.

7.2 I/O Intensive Workloads
To examine the performance of a nested guest in the case of I/O
intensive workloads we used netperf, a TCP streaming applica-
tion that attempts to maximize the amount of data sent over a single
TCP connection. We measured the performance on the sender side,
with the default settings of netperf (16,384 byte messages).

There are three commonly used approaches to provide I/O ser-
vices to a guest virtual machine: (i) the hypervisor emulates a
known device and the guest uses an unmodified driver to interact
with it [43]; (ii) a para-virtual driver is installed in the guest [36];
or (iii) the hypervisor performs direct device assignment where a
real device is assigned to the guest which then controls the device
directly [17].

These three basic I/O approaches for a single-level guest im-
ply nine possible combinations in the two-level nested guest
case. Of the nine potential combinations we evaluate the follow-
ing interesting cases of virtualization method between L0/L1 and
L1/L2: (a) L0/L1 and L1/L2 with emulation; (b) L0/L1 with para-
virtualization and L1/L2 with emulation; (c) L0/L1 and L1/L2 with
para-virtualization; and (d) L0/L1 with direct device assignment
and L1/L2 with virtio. Figure 6 shows the results for running the
netperf TCP stream test on the host, in a single-level guest, and
in a nested guest (with and without accounting) using the I/O vir-

0

100

200

300

400

500

600

700

800

900

1000

Throughput (Mbps)

Figure 6. Performance of netperf in combinations of I/O virtu-
alization methods between L0/L1 and L1/L2. emul, virtio and
direct refer to device emulation, para-virtualization and direct de-
vice assignment, respectively.

tualization combinations described above. We used KVM’s default
emulated NIC (RTL-8139) and virtio [36] for a para-virtual NIC.
All tests used a single CPU core.

On the native system (without virtualization), netperf eas-
ily achieved line rate (939 Mb/s). Emulation gives a much lower
throughput: On a single-level guest we get 60% of the line rate. On
the nested guest the throughput is much lower (15% of the line rate)
and the overhead is dominated by the cost of device emulation be-
tween L1 and L2. Each L2 exit is trapped by L0 and forwarded to
L1. For each L2 exit, L1 then executes multiple privileged instruc-
tions, incurring multiple exits back to L0. In this way the overhead
for each L2 exit is multiplied.

The para-virtual virtio NIC performs better than emulation since
it reduces the number of exits. Using virtio for both L0/L1 and
L1/L2 gives 44% of the line rate, better but still considerably below
native performance.

Using direct device assignment between L0 and L1 and virtio
between L1 and L2 enables the L2 guest to achieve near native per-
formance. However, the measured performance is still suboptimal
because 70% of the CPU is used for running a workload that takes
48% on the native system. Unfortunately on current x86 architec-
ture, interrupts cannot be directly assigned to guests, so both the
interrupt itself and its End-Of-Interrupt (EOI) signaling cause ex-
its. The more interrupts the device generates, the more exits, and
therefore the higher the virtualization overhead – which is ampli-
fied in the nested case.

The ALIBI CPU and memory accounting overhead in all nested
combinations add very little overhead (less than 1%) than what is
already imposed by nested virtualization.

Although I/O-bound workload overheads are non-trivial with
nested virtualization, we expect recent and future advances in virtu-
alizing or simplifying interrupts [17], as well as (anticipated) hard-
ware support for nested virtualization [37] to reduce this overhead
significantly.

8. Discussion

TCB size: We acknowledge that in our current implementation,
ALIBI does not meet our goal of having a minimal trusted base.
Since ALIBI relies on the nested virtualization support in KVM, it
has to invariably include the KVM codebase and the Linux kernel
itself in its TCB. This is an artifact of our current prototype and our
pragmatic choice in choosing KVM because of the readily available
codebase and nested virtualization support. The actual protection
mechanisms that ALIBI adds are negligible (few hundred lines

9

of code) over the basic nested virtualization support. We believe
that this can be added to more lightweight nested virtualization
solutions including CloudVisor [48] and XMHF [45].

Stochastic correctness: It is possible to provide a weaker form of
accounting integrity without explicitly providing image and execu-
tion integrity. This might make sense under a weaker threat model
where the customer is running on a benign, bug-free platform. In
this case, “good faith” usage observations might give loose assur-
ances to customers by external randomized auditing mechanisms.
For example, the customer can create a known workload with a pre-
specified billing footprint and synthetically inject it into the cloud
to see if there are obvious discrepancies. In our threat model, the
platform may inflate costs or may have bugs exploitable by others.
In this case, this form of “stochastic accounting integrity” without
execution and image integrity is less applicable as it tells the cus-
tomer nothing about what code actually incurred the charges.

Multi-core support: Our current prototype implementation sup-
ports a single processor core. We chose to support only a single
core primarily for ease of debugging. There is no fundamental lim-
itation either in the Linux-KVM codebase or in the ALIBI architec-
ture that precludes support for multi-core platforms. For example,
Linux-KVM nested virtualization already maintains multiple VM-
CS/VCPU/EPT structures for SMP support. Our existing prototype
can be reinforced with SMP support by simply converting the ex-
isting global data structures for CPU and memory accounting and
memory protection logic to be VCPU-relative. We also note that
some of the current best practices in public clouds make support
for multi-core much easier. Although we have yet to implement
such support, we are cautiously optimistic.

Resources expended by providers: Our design does not currently
account for external costs that a provider or ALIBI incurs on behalf
of a specific customer: e.g., cycles for servicing hypercalls, or due
to cache/memory contention. These costs can be ameliorated by
better job placement, so the platform should be in part responsible.
Another alternative is that these costs may be amortized into the
billing mechanism if the provider can have an estimate of the
overhead it incurs as a function of the offered load. We are also
considering more systematic causality-based tracking to attribute
system/Alibi costs to the proper job, to enable different charging
models.

Physical attacks: The root of trust in ALIBI lies with the TPM
chip on the provider’s infrastructure. If the provider can physically
tamper with properties of the TPM chip, she can tamper with the in-
tegrity of the Observer without being detected by customers, which
can, in turn, turn a blind observing eye to provider tampering with
the verifiable-accounting properties of ALIBI. Although extremely
difficult, attacks against TPM properties have been demonstrated –
for example, via cold-boot attacks [19] that recover from memory
TPM encryption or signing keys, or more sophisticated hardware-
probing attacks. Such attacks are in the purview of a sophisticated
platform today, but will reduce in feasibility as trusted-execution
functionality moves deeper into the hardware platform. For ex-
ample, an MMU that directly encrypts memory never puts secret
data such as keys on DRAM and, therefore, eliminates cold-boot
or bus eavesdropping attacks. Today’s TPM chips, although not
tamper-resistant, are tamper-evident: physical attack against them
renders them visibly altered. Periodic physical inspection by an ex-
ternal compliance agency, akin to a Privacy CA, might be a plau-
sible interim solution. What is more, CPU manufacturers hint that
trusted execution without an external TPM chip might be coming
in their future products [47]; physically attacking CPUs is signifi-
cantly harder than attacking motherboard-soldered chips.

9. Related Work
We discuss related work in different aspects of cloud computing
and trusted computing and place these in the context of our work
for enabling verifiable resource accounting.

Nested virtualization: While the idea of nested virtualization
has been around since the early days of virtualization, it is only
recently that we see practical implementations. The two works
closest to ALIBI in this respect are Turtles [9] and CloudVisor [48].
ALIBI builds on and extends the memory protection techniques
that these approaches develop. The key difference, however, is
in the applications and threats that these systems target. Turtles
is focused on being able to run any hypervisor in the cloud and
other security properties (e.g., to protect against hypervisor-level
rootkits). CloudVisor, on the other hand, is designed to prevent
a malicious platform operator from inferring private information
residing in a guest VM’s memory. These systems differ in one
key aspect: CloudVisor does not attempt to provide a full-fledged
hypervisor for multi-level nested virtualization that Turtles can
provide. In this respect, ALIBI is arguably closer to CloudVisor
in that we only need one more level of virtualization and do not
need multi-level nesting. At the same time, however, some of the
mechanisms in CloudVisor (e.g., encrypting pages) are likely an
overkill for ALIBI, since we only care about integrity and not
confidentiality. CloudVisor further assumes that the cloud provider
has no incentive to be malicious or misconfigured, which is not true
in the accounting scenarios we tackle. Consequently, it does not
provide any correctness of the accounting and execution integrity
properties. That said, the ALIBI extensions can be easily added
to the CloudVisor implementation as well if the sources are made
available.

Attacks in the cloud: The multiplexed and untrusted nature of
cloud environments leads to attacks by co-resident tenants and by
the providers themselves. These include side channel attacks to ex-
pose confidential information or identify co-resident tenants [35,
49]. More directly related, there are practically demonstrated at-
tacks against today’s cloud accounting including attacks against
management interfaces [28, 42] and current resource management
mechanisms [44, 50]. Liu and Ding discuss a taxonomy of potential
attacks [27]. Our goal is to protect against these specific types of ac-
counting vulnerabilities and at the same time allow cloud providers
to be able to justify the resource consumption.

Cloud accountability: Cloud customers may want to ensure that
the provider faithfully runs their application software and respects
input-output equivalence [18]; that has not tampered or lost their
data [8, 23]; and respects certain performance SLAs [32]. These
target other types of accountability; our work focuses specifically
on trustworthy resource accounting.

Cloud monitoring and benchmarking: Recent work from Li
et al. compares the costs of running applications under different
popular providers [26]. Other work makes the case for a unified
set of benchmarks to evaluate cloud providers [11, 21]. Several
efforts have identified challenges in scalably monitoring resource
consumption in cloud and virtualized environments [6, 14, 33].
While such tools are also motivated by resource monitoring, they
do not focus on verifiability of the measurements.

Integrity: There is rich literature on protecting control flow in-
tegrity [15]. Such work guarantees that a program follows valid
execution paths allowed by the control flow graph. While this guar-
antee is necessary for accounting correctness, it is not sufficient.
For example, without the protections we enable, the provider could
arbitrarily inflate the resource footprint by forcing the program to
take valid but unnecessary code paths. Image integrity is related

10

to the recent work on Root of Trust for Installation [38] but in the
cloud context.

Rearchitecting OS and hypervisors: As we discussed earlier, one
could envision clean-slate solutions where the operating system and
the hypervisor are rearchitected to support resource accounting as
a first-class primitive and also minimize the threat surface. This
includes recent work revisiting the design and implementation of
isolation kernels [25] and other work on microkernel-like hypervi-
sors [13]. By leveraging nested virtualization, our work explores a
different point in the design space and incurs a small overhead in
favor of immediate deployability.

10. Conclusions and Future Work
As computation is rapidly turning into a “utility,” the need for trust-
worthy metering of usage is ever more imminent. The multiplexed
and untrusted nature of cloud computing makes the problem of ac-
counting not only more relevant but also significantly more chal-
lenging compared to traditional utilities (e.g., water, power, ISPs).
For example, providers may have incentives to be malicious to in-
crease their revenues; other co-resident or remote customers may
try to steal resources for their own benefit; and customers have ob-
vious incentives to dispute usage. What is fundamentally lacking
today is a basis for verifiable resource accounting leading to severe
sources of uncertainty and inefficiency for all entities involved in
the cloud ecosystem.

As a first step to bridge this gap, we present the design and im-
plementation of ALIBI. Our design reflects a conscious choice to
enable cloud customers and providers to benefit from ALIBI with
minimal changes. To this end, we envision a novel, and perhaps vi-
able, use-case for nested virtualization. We demonstrate practical
protection schemes against a range of existing accounting vulnera-
bilities. Our implementation adds negligible overhead over the cost
of nested virtualization; we expect that future hardware and soft-
ware optimizations will further drive these overheads down, in the
same way that the adoption of cloud computing spurred innovation
in traditional virtualization technologies.

We acknowledge the need to address a range of additional con-
cerns to realize the full vision of verifiable accounting. This in-
cludes the need for better formalisms to reason about account-
ing equivalence, accounting for I/O resources, carefully attributing
provider-incurred cost (e.g., cost of hypercalls, cost of power/cool-
ing), among other factors. While we fully expect to run into sig-
nificant “brick walls” in addressing these issues, the initial success
shown here, the experiences we gained in the process, and emerging
processor roadmaps give us reasons to be optimistic in our quest.

Acknowledgments
We thank our shepherd, Gernot Heiser, for his help while preparing
the final version of this paper, as well as the anonymous reviewers
for their detailed comments. Rekha Bachwani, Yanlin Li, and David
Wagner have provided valuable ideas and feedback. Nadav Har’El
helpfully answered our questions about the pending Turtles nested-
virtualization optimizations in the mainline Linux-KVM codebase.
This work was funded in part by the Intel Science and Technology
Center for Secure Computing.

References
[1] Cloud storage providers need sharper billing metrics.

http://www.networkworld.com/news/2011/061711-cloud-
storage-providers-need-sharper.html?page=2.

[2] dm-verity: device-mapper block integrity checking target. http:
//code.google.com/p/cryptsetup/wiki/DMVerity. Retrieved
2/2013.

[3] IT Cloud Services User Survey: Top Benefits and Challenges. http:
//blogs.idc.com/ie/?p=210.

[4] Service billing is hard. http://perspectives.mvdirona.com/
2009/02/16/ServiceBillingIsHard.aspx.

[5] TPM Main Specification Level 2 Version 1.2, Revision 103 (Trusted
Computing Group). http://www.trustedcomputinggroup.org/
resources/tpm_main_specification/.

[6] VMWare vCenter Chargeback. http://www.vmware.com/
products/vcenter-chargeback/overview.html.

[7] The Trusted Boot Project (tboot). http://tboot.sourceforge.
net/, Sept. 2007.

[8] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song. Provable Data Possession at Untrusted Stores. In
ACM CCS, 2007.

[9] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,
A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour. The Tur-
tles Project: Design and Implementation of Nested Virtualization. In
OSDI, 2010.

[10] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-Control-
Data Attacks are Realistic Threats. In USENIX Security, 2005.

[11] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The Case for Evaluat-
ing MapReduce Performance Using Workload Suites. In Proc. MAS-
COTS, 2011.

[12] R. Cohen. Navigating the Fog - Billing, Metering and Measuring the
Cloud. Cloud computing journal http://cloudcomputing.sys-
con.com/node/858723.

[13] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield. Breaking Up is Hard to Do: Security
and Functionality in a Commodity Hypervisor. In SOSP, 2011.

[14] J. Du, N. Sherawat, and W. Zwaenepoel. Performance Profiling in a
Virtualized Environment. In Proc. HotCloud, 2010.

[15] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula.
XFI: Software Guards for System Address Spaces. In OSDI, 2006.

[16] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and Secure Distributed
Read-only File System. ACM TOCS, 20(1), 2002.

[17] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schus-
ter, and D. Tsafrir. ELI: Bare-Metal Performance for I/O Virtualiza-
tion. In ASPLOS, 2012.

[18] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel. Accountable
Virtual Machines. In OSDI, 2010.

[19] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest
We Remember: Cold Boot Attacks on Encryption Keys. In USENIX
Security, 2008.

[20] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel. Ensuring
Operating System Kernel Integrity with OSck. In ASPLOS, 2011.

[21] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench bench-
mark suite: Characterization of the MapReduce-based data analysis. In
Proc. ICDE Workshops, 2010.

[22] R. Iyer, R. Illikkal, L. Zhao, D. Newell, and J. Moses. Virtual Platform
Architectures for Resource Metering in Datacenters. In SIGMETRICS,
2009.

[23] A. Juels and B. S. Kaliski. PORs: Proofs of retrievability for large
files. In ACM CCS, 2007.

[24] B. Kauer. OSLO: Improving the Security of Trusted Computing. In
USENIX Security, 2007.

[25] A. Kvalnes, D. Johansen, R. van Renesse, F. B. Schneider, and S. V.
Valvag. Design Principles for Isolation Kernels. Technical Report
2011-70, Computer Science Department, University of Tromsø, 2011.

[26] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: Comparing
Public Cloud Providers. In IMC, 2010.

[27] M. Liu and X. Ding. On Trustworthiness of CPU Usage Metering and
Accounting. In ICDCS-SPCC, 2010.

[28] M. McIntosh and P. Austel. XML signature Element Wrapping At-
tacks and Countermeasures. In ACM SWS, 2005.

11

http://www.networkworld.com/news/2011/061711-cloud-storage-providers-need-sharper.html?page=2
http://www.networkworld.com/news/2011/061711-cloud-storage-providers-need-sharper.html?page=2
http://code.google.com/p/cryptsetup/wiki/DMVerity
http://code.google.com/p/cryptsetup/wiki/DMVerity
http://blogs.idc.com/ie/?p=210
http://blogs.idc.com/ie/?p=210
http://perspectives.mvdirona.com/2009/02/16/ServiceBillingIsHard.aspx
http://perspectives.mvdirona.com/2009/02/16/ServiceBillingIsHard.aspx
http://www.trustedcomputinggroup.org/resources/tpm_main_specification/
http://www.trustedcomputinggroup.org/resources/tpm_main_specification/
http://www.vmware.com/products/vcenter-chargeback/overview.html
http://www.vmware.com/products/vcenter-chargeback/overview.html
http://tboot.sourceforge.net/
http://tboot.sourceforge.net/
http://cloudcomputing.sys-con.com/node/858723
http://cloudcomputing.sys-con.com/node/858723

[29] A. Mihoob, C. Molina-Jimenez, and S. Shrivastava. A Case for
Consumer-centric Resource Accounting Models. In Proc. Interna-
tional Conference on Cloud Computing, 2010.

[30] J. C. Mogul. Operating systems should support business change. In
HotOS, 2005.

[31] B. Parno. Bootstrapping Trust in a “Trusted” Platform. In HotSec,
2008.

[32] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang.
Enabling Security in Cloud Storage SLAs with CloudProof. In Proc.
USENIX ATC, 2011.

[33] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt. Google-
Wide Profiling: A Continuous Profiling Infrastructure for Data Cen-
ters. IEEE Micro, 2010.

[34] K. Ren, C. Wang, and Q. Wang. Security Challenges for the Public
Cloud. IEEE Internet Computing, 16(1), 2012.

[35] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You,
Get off of my cloud: Exploring Information Leakage in Third-Party
Compute Clouds. In ACM CCS, 2009.

[36] R. Russell. virtio: Towards a De-Facto Standard for Virtual I/O
Devices. ACM SIGOPS OSR, 42(5), 2008.

[37] R. Sahita. Intel Virtualization Technology Extensions for High Perfor-
mance Protection Domains. https://intel.activeevents.com/
sf12/scheduler/catalog.do, Sept. 2012. Intel Developer Forum
2012, Session ID FUTS003.

[38] J. Schiffman, T. Moyer, T. Jaeger, and P. McDaniel. Network-Based
Root of Trust for Installation. IEEE Security and Privacy, 9(1), 2011.

[39] V. Sekar and P. Maniatis. Verifiable Resource Accounting for Cloud
Computing Services. In ACM CCSW, 2011.

[40] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny Hyper-
visor to Provide Lifetime Kernel Code Integrity for Commodity OSes.

In SOSP, 2007.
[41] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan. Auditing to

Keep Online Storage Services Honest. In HotOS, 2007.
[42] J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka,

and L. Lo Iacono. All Your Clouds are Belong to us – Security
Analysis of Cloud Management Interfaces. In ACM CCSW, 2011.

[43] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual Machine Monitor.
In USENIX ATC, 2001.

[44] V. Varadarajan, B. Farley, T. Ristenpart, and M. M. Swift. Resource-
Freeing Attacks: Improve Your Cloud Performance (at Your Neigh-
bor’s Expense). In ACM CCS, 2012.

[45] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta.
Design, Implementation and Verification of an eXtensible and Modu-
lar Hypervisor Framework. In IEEE S&P, 2013.

[46] M. Wachs, L. Xu, A. Kanevsky, and G. R. Ganger. Exertion-based
Billing for Cloud Storage Access. In HotCloud, 2011.

[47] A. Wolfe. Intel CTO Envisions On-Chip Data Cen-
ters. http://www.informationweek.com/news/global-
cio/interviews/showArticle.jhtml?articleID=221900325,
Nov. 2009.

[48] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor: Retrofitting
Protection of Virtual Machines in Multi-tenant Cloud with Nested
Virtualization. In SOSP, 2011.

[49] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM Side
Channels and Their Use to Extract Private Keys. In ACM CCS, 2012.

[50] F. Zhou, M. Goel, P. Desnoyers, and R. Sundaram. Scheduler Vulner-
abilities and Coordinated Attacks in Cloud Computing. In IEEE NCA,
2011.

12

https://intel.activeevents.com/sf12/scheduler/catalog.do
https://intel.activeevents.com/sf12/scheduler/catalog.do
http://www.informationweek.com/news/global-cio/interviews/showArticle.jhtml?articleID=221900325
http://www.informationweek.com/news/global-cio/interviews/showArticle.jhtml?articleID=221900325

	Introduction
	Motivation
	The Lifecycle of Outsourced Computation
	Challenges with Unverified Resource Use

	Desired Properties
	Alibi Design
	Image Integrity via Attested Instance Launch
	Execution Integrity via Guest-Platform Isolation
	Accounting Integrity via Bracketing
	Event Detection
	Event Attribution
	Event Reporting

	Trust via Authenticated Boot

	Lifecycle of a Verifiably Accounted Job
	Implementation
	Background: Nested Virtualization with KVM
	Protected Execution
	Accounting Case Studies

	Evaluation
	Compute/Memory-bound Workloads
	I/O Intensive Workloads

	Discussion
	Related Work
	Conclusions and Future Work

