FireFly: A Reconfigurable Wireless Data Center Fabric
Using Free-Space Optics

Navid Hamedazimi," Zafar Qazi," Himanshu Gupta,’ Vyas Sekar,» Samir R. Das," Jon P. Longtin,?

Himanshu Shah," and Ashish Tanwer?

fStony Brook University

ABSTRACT

Conventional static datacenter (DC) network designs offer extreme
cost vs. performance tradeoffs—simple leaf-spine networks are cost-
effective but oversubscribed, while “fat tree”-like solutions offer
good worst-case performance but are expensive. Recent results
make a promising case for augmenting an oversubscribed network
with reconfigurable inter-rack wireless or optical links. Inspired
by the promise of reconfigurability, this paper presents FireFly, an
inter-rack network solution that pushes DC network design to the
extreme on three key fronts: (1) all links are reconfigurable; (2) all
links are wireless; and (3) non top-of-rack switches are eliminated
altogether. This vision, if realized, can offer significant benefits in
terms of increased flexibility, reduced equipment cost, and minimal
cabling complexity. In order to achieve this vision, we need to look
beyond traditional RF wireless solutions due to their interference
footprint which limits range and data rates. Thus, we make the case
for using free-space optics (FSO). We demonstrate the viability of
this architecture by (a) building a proof-of-concept prototype of a
steerable small form factor FSO device using commodity compo-
nents and (b) developing practical heuristics to address algorithmic
and system-level challenges in network design and management.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design

Keywords
Data Centers; Free-Space Optics; Reconfigurablility

1 Introduction

A robust data center (DC) network must satisfy several goals: high
throughput [13,23], low equipment and management cost [13,40],
robustness to dynamic traffic patterns [14, 26, 48, 52], incremen-
tal expandability [18, 45], low cabling complexity [37], and low
power and cooling costs. With respect to cost and performance,
conventional designs are either (i) overprovisioned to account for
worst-case traffic patterns, and thus incur high cost (e.g., fat-trees
or Clos networks [13, 16, 23]), or (ii) oversubscribed (e.g., simple
trees or leaf-spine architectures [1]) which incur low cost but offer
poor performance due to congested links.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM'’14, August 17-22, 2014, Chicago, IL, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626328.

*Carnegie Mellon University

Ceiling mirror
A"’A""""’A“’A’A’A’A‘A’A’A’A’A"."A’A’A’A
FSO reconf I

Traffic
Patterns

FireFly
Controller

Rule
change

Steerable
FSOs

ToR
switch

Figure 1: High-level view of the FireFly architecture. The only
switches are the Top-of-Rack (ToR) switches.

Recent work suggests a promising middleground that augments
an oversubscribed network with a few reconfigurable links, using
either 60 Ghz RF wireless [26, 52] or optical switches [48]. In-
spired by the promise of these flexible DC designs,' we envision a
radically different DC architecture that pushes the network design
to the logical extreme on three dimensions: (1) All inter-rack links
are flexible; (2) All inter-rack links are wireless; and (3) we get rid
of the core switching backbone.

This extreme vision, if realized, promises unprecedented qualita-
tive and quantitative benefits for DC networks. First, it can reduce
infrastructure cost without compromising on performance. Second,
flexibility increases the effective operating capacity and can im-
prove application performance by alleviating transient congestion.
Third, it unburdens DC operators from dealing with cabling com-
plexity and its attendant overheads (e.g., obstructed cooling) [37].
Fourth, it can enable DC operators to experiment with, and bene-
fit from, new topology structures that would otherwise remain un-
realizable due to cabling costs. Finally, flexibly turning links on
or off can take us closer to the vision of energy proportionality
(e.g., [29]).

This paper describes FireFly,” a first but significant step toward
realizing this vision. Figure 1 shows a high-level overview of Fire-
Fly. Each ToR is equipped with reconfigurable wireless links which
can connect to other ToR switches. However, we need to look
beyond traditional radio-frequency (RF) wireless solutions (e.g.,
60GHz) as their interference characteristics limit range and capac-
ity. Thus, we envision a new use-case for Free-Space Optical com-
munications (FSO) as it can offer high data rates (tens of Gbps)
over long ranges using low transmission power and with zero in-
terference [31]. The centralized FireFly controller reconfigures the
topology and forwarding rules to adapt to changing traffic patterns.

While prior work made the case for using FSO links in DCs [19,
28], these fail to establish a viable hardware design and also do not
address practical network design and management challenges that

"'We use the terms flexible and reconfigurable interchangeably.

*FireFly stands for Free-space optical Inter-Rack nEtwork with
high FLexibilitY.

arise in reconfigurable designs. Our work bridges this gap along
three dimensions:

e Practical steerable FSO devices (§3): Commodity FSO de-
signs are bulky, power hungry, and offer fixed point-to-point
links. Our vision imposes new form-factor, cost, and steer-
ability requirements which are fundamentally different w.r.t.
traditional FSO use-cases. To this end, we establish the vi-
ability for a small-form factor FSO design using commodity
optical devices. We demonstrate two promising steering tech-
nologies using switchable mirrors [4] and Galvo mirrors [2].

e Network provisioning (§4): Given the budget and physical
constraints, the FireFly network hardware must be provisioned
to handle unforeseen traffic patterns. We argue that flexible
network designs should strive to optimize a new notion of dy-
namic bisection bandwidth. While it is hard to analytically
reason about topologies that optimize this metric, we show that
random regular graphs are surprisingly good in practice.

e Network management (§5,§6): The FireFly controller needs
fast and efficient topology selection and traffic engineering al-
gorithms to adapt to changing traffic conditions. However,
state-of-art off-the-shelf solvers fail to scale beyond 32-rack
DCs. Thus, we develop fast heuristics that achieve near-optimal
performance (§5). In addition, the FireFly controller must en-
sure that performance is not adversely impacted during recon-
figurations. We design simple but effective mechanisms that
ensure that the network always remains connected, there are
no black holes, and that the per-packet latency is bounded.

We evaluate our FSO prototype using a range of controlled lab
experiments and a longitudinal study in a real DC setting. We find
that the links are robust to real environmental disturbances and
achieve wireline-equivalent throughput, and the steering mecha-
nisms are fast, precise, and accurate. We evaluate the end-to-end
performance of FireFly using a combination of detailed packet-
level simulations [3], large scale flow-level simulations, and virtual
emulation platforms [7]. We compare FireFly against state-of-art
augmented designs and overprovisioned DC architectures. Over-
all, we find that FireFly can achieve performance close to a full
bisection bandwidth network but at 40-60% of the cost.

We acknowledge that there are several operational concerns, es-
pecially related to maintenance, reliability, and reluctance of op-
erators to adopt dynamic network designs. (We discuss some of
these in §9). We also note that other cost factors may dominate
deployment considerations; e.g., server vs. network vs. manage-
ment costs. In spite of these valid concerns, we believe that there is
value in exploring an FSO-based all-wireless design since it could
lead to unprecedented benefits. In particular, pursuing such a vision
could open up other avenues amenable to more incremental adop-
tion (e.g., hybrid/augmented networks) and inspire other novel use
cases for FSO in DCs.

2 Motivation and Overview

We begin with motivating key aspects of our vision: full flexibility,
wireless links, and use of free-space optics.

2.1 Case for Full Flexibility

A key intuition behind FireFly’s design is that a fully-flexible inter-
rack network can yield near-optimal bisection bandwidth even with-
out any core (non-ToR) switches.

To provide the basis for this intuition, we consider an abstract
model of a DC network with n racks (and hence n ToR switches).
We consider two abstract DC designs: (a) FBB: a full-bisection
bandwidth network, and (b) Flexible(f): an architecture with only

1
0

@ 08+

€

- 0.6

I

g 0.4

5 02 Normalized Cost
z 0 ‘ Normalizeq Pe‘rform‘ance‘

0 02 04 06 08 1 12 14 16 18 2
(# Flexible ports / # Servers) per rack

Figure 2: A fully-flexible network can offer optimal (full-
bisection) performance at a fraction of the cost. Here, the nor-
malized performance and costs are that of the flexible architec-
ture w.r.t. a full-bisection bandwidth network.

ToR switches, each of which has f flexible ports that can be rewired,
whenever needed, to connect to another ToR switch. (The flexible
ports are in addition to the ports connected to the servers.)

The performance metric of interest here is the evacuation time
of satisfying the demands in a given inter-rack traffic matrix. Com-
puting evacuation time for FBB is straightforward as there is no
congestion. For Flexible(f) too, we can compute evacuation time
by computing a near-optimal sequence of reconfigurations (see [27]
for details). Note that, for a given traffic matrix, Flexible(f) can re-
configure the topology multiple times; we restrict the number of
reconfigurations to be at most the number of non-zero entries in the
given traffic matrix.

In Figure 2, we plot the normalized performance and cost of
Flexible(f) w.r.t. FBB, for varying ratio of number of flexible ports
and number of servers on each rack. Here, we model the cost as
simply a (constant) multiple of the total number of ports in the
architecture. The normalized performance is the average ratio of
evacuation times of the two architectures, over many random traf-
fic matrices. The key takeaway is that the coreless fully-flexible
Flexible(f) architecture yields near-optimal performance when the
number of flexible ports (f) is equal to the number of servers per
rack, and at this point, its cost is only 40% of FBB (assuming FBB
to be a complete FatTree [13]). We note that this result is indepen-
dent of the number of racks or the number of servers per rack.’

Of course, any actual realization of Flexible(f) will be less opti-
mal because of limited flexibility, non-zero reconfiguration latency,
and other system inefficiencies. We show that our instantiation of
Flexible(f) via FireFly results in only a minimal degradation in this
cost-performance tradeoff.

2.2 Case for Wireless via Free-Space Optics

To realize a Flexible(f)-like network, conceptually we need a “patch-
panel” between racks. Of course, this is infeasible on several fronts:
(1) it requires very high fanout and backplane capacity (potentially
nullifying the cost benefits), (2) the cabling complexity would be
high [37], and (3) it introduces a single-point of failure [14, 20].
Thus, we look toward reconfigurable wireless links between the
ToR switches.

The seemingly natural solution is RF-based wireless (e.g., 60GHz)
[26,52]. However, since we seek to remove the wired core en-
tirely rather than just augment it, we need a large number of high-
bandwidth links to be active simultaneously. This makes the in-
terference management problem much more challenging than prior
work (e.g., using interference alignment and cancellation [22]). Al-
ternatively, one could eliminate interference by enabling laser-like

3We can show that the normalized performance of Flexible(f)
w.r.t. FBB is &~ min(f/l,1) where [is the number of servers per
rack [27].

directionality in RF links, but this would require antennas or an-
tenna arrays that are a few meters wide [39].4 Fundamentally, the
hardness here is due to the large wavelengths of RF for commonly
used RF bands. Finally, regulations over RF bandwidth and trans-
mit power further limit achievable data rates.

These limitations can be circumvented if we use a different part
of the EM spectrum with much smaller wavelengths. In particu-
lar, free-space optics (FSO) is a relatively established technology®
that uses modulated visible or infrared (IR) laser beams transmitted
through free space [31]. Laser beams can be very narrow, thus au-
tomatically eliminating interference and minimizing path loss. Fur-
ther, optical spectrum is unregulated and has no bandwidth limita-
tions. Thus, FSO links can easily offer Gbps—Tbps bitrates at long
distances (several kms) using relatively low transmit power [15,31].

2.3 FireFly System Overview

Building on the previous insights, FireFly uses a fully-flexible inter-
rack fabric enabled by wireless FSO links (Figure 1). FireFly uses
traditional wires for intra-rack connections. We assume an out-of-
band control network to configure the ToR switches and the FSO
devices (e.g., [8]).

FSO Links. Each ToR is equipped with a number of steerable
FSO devices. We assume that the FSO devices export APIs to the
controller for reconfiguration. We exploit the space above the racks
to establish an obstruction-free optical path. To ensure that the FSO
devices do not obstruct each other, we use ceiling mirrors [52] as
shown in Figure 1. The requirements of such mirrors are quite
minimal so long as they reflect IR and many conventional mirrors
work sufficiently well (§3). The ceiling mirror need not be a single
piece, and small unevenness in the mirrors is unlikely to be an issue
due to the misalignment tolerance of the FSO links (§3.1).

Network Provisioning. In the limit, we would like to have a very
large number of FSO devices per ToR. In practice, however, there
are physical and geometric constraints. For instance, FSO devices
will have a finite size that constrains the number of such devices
per ToR. Thus, we need to provision or preconfigure the network
so that it is robust to future (and unforeseen) traffic patterns.

Network Management. The FireFly controller dynamically se-
lects the runtime topology and configures forwarding paths, based
on prevailing traffic demands and events. Following prior work, we
leverage software-defined networking (SDN) capabilities for data
plane reconfiguration [12, 17,38]. Each SDN-capable ToR switch
also reports observed traffic demands to the controller. FireFly can
use other demand estimation algorithms; e.g., host buffer sizes [12]
or new switch features [17]. Since our focus is on FireFly-specific
aspects, we do not discuss these extensions.

In the following sections, we describe the design of a viable
steerable FSO link, network preconfiguration, and run-time net-
work management.

3 Practical Steerable FSO Design

In order for the FireFly vision to deployed in a DC, the FSO devices
must ideally have a small form factor (e.g., so we can pack several
devices on each ToR), be low-cost commodity devices (e.g., as we
envision thousands of these in a DC), with low power footprint rel-
ative to switches, and be steerable to enable flexibility.

At first glance, these requirements are at odds with the trajec-
tory of today’s commercial FSO devices—they are bulky, expen-

*In effect, we need RF beams with angular divergence ~ 1 millira-
dian to create a small interference footprint at 50-100m range.
>TeraHertz wireless technology may be a good alternative, but it is
much less mature at this time.

sive, and power-intensive [S]. The main challenge is that achieving
robust links at high data-rates and long ranges (a requirement in
both traditional deployments and FireFly) is hard. It has typically
required powerful lasers and expensive mechanisms for dynamic
alignment for outdoor use. Furthermore, conventional FSO de-
ployments provide fixed point-to-point links and do not focus on
steerability.

In this section, we demonstrate (perhaps surprisingly) that (a) it
is viable to repurpose commodity DC-centric optical networking
gear to establish robust and sufficiently long FSO links in a DC,
and (b) we can leverage existing commodity optical technologies
to steer the FSO beam with high precision and low latency.

3.1 FSO Link Engineering

As a first step, we demonstrate that it is possible to engineer an
FSO optical link using commodity DC-grade optical networking
equipment that can achieve high data rates, at ranges sufficient
for DC-scale deployment, and with sufficient (mis)alignment tol-
erance. In particular, we can avoid the additional overheads in
commercial FSO devices as concerns about outdoor environmental
factors largely disappear in the indoor controlled DC setting. How-
ever, we do need to carefully design the optical path to balance
the tradeoff between the laser beam divergence and misalignment
tolerance, as we discuss below.

We engineer the FSO system by coupling two optical fiber end
points directly with a free-space link without any opto-electric con-
version thus saving on both power and cost. This Fiber—-FSO-Fiber
link connects to standard optical interconnect technology widely
used in DCs (e.g., 1I0GBASE-SR). A typical example of this in-
terface is optical SFP (small form-factor pluggable) or its variants
such as SFP+.

This approach requires optical designs on both ends: (i) on the
transmit side, where the fiber ‘launches’ the laser beam in free
space, and (ii) on the receive side, where the laser beam is received
into the fiber (Figure 3(a)). Normally, when the laser beam comes
out of the fiber into free space it diverges with a significantly large
angle. To minimize divergence, we collimate the beam using a suit-
ably designed lens located at its focal length from the transmitting
fiber endpoint.® A similar lens near the receiving fiber end point
focuses the beam back to the fiber.

The above optical design is done carefully to ensure that the laser
beam maintains a sufficient width [46] so that it can tolerate minor
misalignments due to rack vibrations and other effects. However,
this presents a tradeoff: wider beams can tolerate misalignments
better, but suffer from a poorer power density at the receiving end.
The design we develop shows that a good balance is indeed pos-
sible using optical SFPs used for long range fiber communications
(e.g., I0GBASE-LR can go up to 10 km). They use highly sensitive
detectors that can work with very little received power. Our current
prototype has been tested for 20m. (20m is a limitation of our lab
set up; the general design can extend to 100 m [27].)

This approach satisfies all the design requirements except steer-
ing. The lens is small (about 3 cm diameter) with focal length about
the same. Even considering additional hardware (e.g., mounts or
adapters), the footprint of the assembly is only 5cm across. The
costs are also modest when procured in volume: ~ $50 for the lens
and $50 for the assembly. We acknowledge that there might be an
additional cost of using optical SFP (=$100), if optical wired links
are not already used. Finally, there is no additional power burden

®For brevity, we skip the details of the optical design. We only
state the basic approach and relevant tradeoffs. We refer readers to
a similar approach that has been used in a different context [51].

ToR switch

/g with Link length (up to e
SFP ports 20m tested) ~
SFP ~4mm
% connector — 57
Optical fiber /\F\ :\ T - \Laser beam
(short) Laser beam Collimating lens fOCU,SEd back
Focal length) fiber
diverges in (diam.=~3cm) _ ~3¢cm
free space
(a) FSO link design

1 Wired e
o8l BB
06
0.4
02

0
8400 8600 8800 9000 9200 9400
Throughput (Mbps)

(c) TCP throughput

(b) DC set up

Figure 3: FSO link design, prototype and performance. (a) Optical path and networking gear (not drawn to scale). (b) One end point
of the 10 Gbps link prototype running in a DC over ~ 20m); the inset shows a zoomed in version. The FSO link connects to a similar
set up on the other end. (c¢) Distribution of per-sec TCP throughputs on a 10 Gbps FSO link over ~ 20m on optical bench (Lab) and
DC racks (DC), over days of continuous runs. Throughput distribution on wired optical fiber is used for comparison.

beyond the SFP power consumption as the design does not add any
new opto-electronic conversion.

Prototype. We have developed a proof-of-concept prototype fol-
lowing the above design. We have successfully used both 1 Gbps
and 10 Gbps links with very similar optical setups. The proto-
type links use 1000BASE-LX (1GBASE-LR) SFP (SFP+) for the
1 Gbps (10 Gbps) case and multi-mode fibers for their larger diame-
ter. We first use standard optical bench set up to validate the design
using controlled experiments and then test the link in a production
DC. Figure 3(a) shows the general setup.” For the current design
the collimated laser beam maintains a ~4 mm diameter after it con-
verges. To get up to a 20 m length on a small optical bench, we use
a standard technique used in optics: the beam path is reflected mul-
tiple times via mirrors. This also validates use of mirrors on the
optical path and shows that optical loss due to reflections is low.

Link Performance. We test the link by running continuous TCP
transfers over the FSO link for several days at a time for several se-
lected link lengths with the set up on the optical bench. The results
are very similar for different lengths. For brevity we only report
the results for the longest tested case (=20m) for the 10 Gbps link.
See Figure 3(c). Note that the distribution of TCP throughputs is
almost identical to that observed over regular fiber links, demon-
strating no additional loss in the FSO links. To study misalignment
tolerance, we shift the transmit side set up in tiny incremental steps
(using a translating mount) perpendicular to the beam axis keeping
the receive side fixed. We see no throughput loss until 6 mm shift,
beyond which the link becomes unstable. As we will see below, this
6 mm tolerance is sufficient to handle minor misalignments due to
rack vibrations and environmental issues in a DC.

To understand the link performance “in the wild,” we set up the
link in a production (university run) DC environment. Unlike the
optical bench, this real environment has several key differences
that can produce mis-alignments: (1) racks experience vibrations
due to several factors (e.g., server fans, discs, HVAC and UPS
units [47]) and (2) the beam could ‘wander’ due to fluctuating air
density caused by temperature variations. We set up the FSO link
with the optical components placed on top of the rack using mag-
netic bases. Two racks are used at ~20 m apart. See Figure 3(b).
We use mirrors on the beam path - one on each end - for ease of

"Note that typical optical SFPs require two fibers and thus two
optical paths for duplex communication. However, single fiber
SFPs [9] that use WDM principles to multiplex both links on a sin-
gle fiber are beginning to be available. For 1 Gbps experiments we
use such SFPs. Due to unavailability of such devices for 10 Gbps,
we use fiber for the return path for the 10 Gbps experiments; all
reported performance measurements are from the FSO path.

alignment. The reader can view these mirrors as proxies for mirrors
to be used in steering (next subsection). Alignment is done manu-
ally with the help of an infra-red viewer (more on this in §9). The
TCP transfer experiment is run continuously over several days as
before. The statistics of per-sec TCP throughput is almost identical
again to the optical bench and wired cases (Figure 3(c)). This es-
tablishes the potential of our design. The average TCP throughput
is =~ 9.3 Gbps — note that no commodity RF technology exists in
small-form factor that can deliver such throughput at 20 m range.

The above design provides a basis for a low-cost, commoditiz-
able, and small-form factor FSO link at high data rates over ranges
sufficient for DC scale. Our experiments suggest that the link is
likely robust to realistic (mis)alignment concerns due to environ-
mental effects in DCs.

3.2 Developing Steering Mechanisms

Having established the viability of a point-to-point FSO link using
commodity optics, next we focus on making the beam steerable to
enable flexibility. Our goal is to establish a design roadmap that
is commoditizable. We explore two promising solutions: switch-
able mirrors and Galvo mirrors. We do not claim these are optimal
in any sense or that these are the only alternatives. Our choice is
pragmatic in that we want to establish a feasible roadmap using off-
the-shelf components. (There are a variety of other beam steering
approaches [35], but they are not off-the-shelf technologies.) Both
solutions offer different tradeoffs w.r.t. latency, degree of flexibility,
and cost/power, and at this time, no one solution is strictly better.
Thus, we believe it is instructive to understand and evaluate the
promise of both alternatives and the tradeoffs they offer.

Switchable Mirrors (SMs). Switchable mirrors (SM) are made
from a special liquid crystal material that can be electrically con-
trolled to rapidly switch between reflection (mirror) and transparent
(glass) states at millisecond timescales [4]. While the intended use
cases are different (e.g., rear-view mirrors that switch between a
regular mirror and a back-up camera display), we can use them for
beam steering as shown Figure 4(a).

Each FSO device has multiple SMs, with each SM aligned (dur-
ing a pre-configuration step as discussed in §4) to target a point on
a ceiling mirror and thus, a receiving FSO. The link is established
by switching one of the SMs to the mirror state, while leaving the
rest in the transparent state. (This is done at both ends, but we only
show transmit side for clarity.)

SMs directly satisfy our design requirements. It can be minia-
turized as it only needs to be slightly larger than the beam diame-
ter: 1cm? is sufficient. A SM of this size is expected to have low
cost (< $5) at volume [33]. Power consumption is also low: only
40 mW for the stated size [4]. We have evaluated the reconfigu-

CDDetector 1

T SMin‘glass’ c Tlf‘ ”’/
~ . Ceiling mirror o . v
Fsg modes € Ceiling mirror Laser sourceon ;
A ‘__'_’T $ - — ~ my g 450 | el
link | | { | . Y g 400 o
o i A
(i) ™ RX-1 RX-2 Coverage-angle s Detector 4 g a0 ﬂ,ﬁ*
I IIIIIIIIID of GM : 8 300 o
SM in “mirror” modg/‘/ . L ap Sy % 250 v,ﬁ':
A FSO link - E 200 4" Da
T A [‘== withGM) Function | 5ot Linearfit -
1 , = - Generator 4 7 10 13 16 19
(i) TX RX-1 RX-2 age-cone of GM Oscﬂloscope Angle of steering (degrees)

(a) Switchable mirror operation (b) Galvo mirror operation

Experimental set up Response time
(c) Galvo mirror response

Figure 4: (a) Using switchable mirrors (SMs) with FSOs: (i) 2nd SM is in mirror mode to steer the beam to RX-1; (ii) 3rd SM is in
mirror mode, steering the beam to RX-2. RX-s also have aligned SMs to direct the beam to its detector (not shown for clarity). (b)
Galvo mirror (GM) on an FSO device can steer the beam within its coverage-cone. (¢) Evaluating Galvo mirror response.

ration latency using an off-the-shelf 12" x 15" SM [4], and it is
~250msec. The switching latency decreases with the decrease in
the surface area, and is estimated [33] to be ~10-20 msec latency
for the 1 cm? SM size we envision.

Galvo Mirrors (GMs). Galvo mirrors (GMs) [2] are typically
used in laser scanning applications. Here, a small mirror, few mm
across, rotates (up to specific angular limits) around an axis on the
plane of the mirror in response to an electrical signal. The laser
beam is made to reflect from this mirror. The mirror rotation de-
flects the reflected beam by a specified angle depending on the sig-
nal. Using a pair of such mirrors at right angles, we can steer the
beam within a desired rectangular cone. In our context, equipping
an FSO device with a GM enables us to target any receiver within
a pre-configured rectangular cone chosen offline. See Figure 4(b).

As proof of concept, we evaluate the response parameters of
GMs using an off-the-shelf GM [10] using the setup shown in Fig-
ure 4(b). The mirror rotation is controlled programmatically chang-
ing the applied voltage. Here, two detectors receive the reflected
beam from the mirror alternately as the mirror is fed by a square
wave (100 Hz) from a function generator. We measure the time
between the instant the voltage trigger is initiated (via the square
wave generator) and the time the mirror settles to its new position.
Figure 4(c) shows that the steering latency is linear w.r.t. the steer-
ing angle and < 0.5ms even for angles up to about +20°. We
measured the pointing error to be < 10 urad, which translates into
~1 mm positioning error at 100 m, which is well within the 6 mm
tolerance of the FSO link.

The GM is inexpensive (=$100) and small (few inches across).
But, off-the-shelf GMs have a somewhat higher average power con-
sumption (7 W measured) due to the use of an electro-mechanical
system. That said, MEMS-based scanning mirrors that provide the
same functionality as GMs are already being commoditized [6] and
can reduce the power to a few milliWatts.

3.3 Design Summary

In summary, the device roadmap we outlined will have: (1) a rough
form factor of 3"x6"; (2) a range of ~100m and a misalignment tol-
erance of 6mm; (3) a power footprint of 3W (most of this is in SFP,
assuming MEMS-based GMs); and (4) an estimated per-port cost
of $300 ($100 for the SFP and $200 for the FSO+steering when
produced in volume). The two steering mechanisms impose differ-
ent constraints and tradeoffs for the FireFly network design (dis-
cussed in §4). In particular, having k¥ SMs at an FSO can switch
the FSO beam between a set of k arbitrarily chosen but pre-aligned
receivers, while a GM on an FSO can steer the beam to any re-
ceiver within the coverage-cone that the GM has been pre-oriented
to target.

FSOs T
N e T2
v N
Rack-1 oz------ - Rack-3
: ~ §/\//:
Rack-2| « 7 (A7 ~ 1 |Rack-4

Figure 5: A PCFT with candidate links (solid and dashed).
The set of solid links represents one possible realizable topol-
ogy (71), and the set of dashed lines represents another (7).

4 Network Preconfiguration

At a high level, there are two network design problems in FireFly
that occur at different timescales:

e First, we need to provision the network hardware (e.g., how
many FSOs) and also pre-align/pre-orient the SMs/GM at each
FSO. This is done offline in a pre-configuration phase.

e Second, given a pre-configured network, we need to recon-
figure the network in near real-time to implement a runtime
topology suited for the current traffic.

We address the first problem of preconfiguration in this section,
and defer the second problem to the next section. Ideally, we want
to create a dense preconfigured network by placing a large number
of FSO devices on each rack, with each FSO device equipped with
several SMs or high-coverage GMs. In practice, we have physical
limitations, e.g., the size/cost of the FSO devices, size of SM, angle
of GMs etc. Our goal is to design a high performance DC network
working within these size and cost constraints.

4.1 Preliminaries and Objective

Consider a FireFly network, i.e., a set of FSOs on each rack with
pre-aligned SMs or pre-oriented GMs. We can establish a candi-
date (bi-directional) link between a pair of FSOs a and b if (i) a has
an SM aligned towards b and vice-versa or (ii) a is located in the
coverage-cone of the GM at b and vice-versa. At any instant, only
one candidate link per FSO can be an active link. For example, in
Figure 4(a), links (TX, RX-1) and (TX, RX-2) are candidate links,
and link (TX, RX-1) is active in Figure 4(a)(i) while (TX, RX-2) is
active in Figure 4(a)(ii). We refer to the set of all candidate links
as the pre-configured flexible topology (PCFT). Given a PCFT, we
refer to a set of candidate links that can be active simultaneously as
a realizable topology. Note that the only constraint on a set of links
to be active simultaneously is that each FSO has at most one active
candidate link incident on it, due to lack of wireless interference.
Thus, any realizable topology is a matching in the PCFT graph over
FSOs (Figure 5) and vice-versa.

Metric of Goodness. If we knew the expected set of traffic de-
mands, then we can design a customized PCFT that is optimal for
this set. However, DC workloads are variable and unpredictable [23].
Thus, we want a metric to quantify the performance of a PCFT
that is analogous to the traditional notion of high bisection band-
width that captures the throughput of a network for arbitrary traf-
fic patterns [32]. More formally, given a topology ¢ and consider-
ing all possible partitions P of ¢ into two equi-sized sets of racks,
the bisection bandwidth is defined as min,ep BW (¢, p), where
BW ((t, p) is the cut-size in ¢ corresponding to p. However, bisec-
tion bandwidth only applies to a static topology, and is not mean-
ingful for a flexible network. With flexible designs such as FireFly,
the topology t itself can be changed on demand, which the bisection
bandwidth metric fails to capture.

We introduce a new notion of dynamic bisection bandwidth (DBW)
as the metric of goodness to evaluate a PCFT. The dynamic bisec-
tion bandwidth of a PCFT II is defined as follows. Let 7" be the
set of realizable topologies of a given PCFT II. Then, the dy-
namic bisection bandwidth (DBW) for a PCFT II is defined as:
minpe p maxter BW(¢,p). Note that this reflects the ability to
choose the best realizable topology ¢ for each given partition p.

To illustrate this, consider the PCFT in Figure 5 again. If we
consider 71 (solid lines) as a static topology, its bisection bandwidth
is zero due to the partition {(2,3), (1,4)} of racks. Similarly, we can
see that the bisection bandwidth of 72 (dashed lines) is 2. However,
the DBW of the overall PCFT is 4, since 71 yields a bandwidth of 4
for all equi-partitions except for {(2,3), (1,4)}, for which 1 yields
a bandwidth of 4.

Constrained Optimization. Our goal is to design a PCFT that op-
erates within the given cost and physical constraints and optimizes
the DBW. For clarity, we focus on the SM and GM problems inde-
pendently and defer hybrid SM-GM combinations for future work.
In each case, we solve the overall budgeted PCFT selection prob-
lem in two steps. First, we develop techniques to design a PCFT
with maximum DBW for a fixed configuration (i.e., fixing #FSOs,
coverage angle, and #SMs per FSO). Then, given the price/size
constraints, we exhaustively search the space of feasible combina-
tions of these network parameters and pick a feasible PCFT with
the highest DBW. Since preconfiguration runs offline, this brute
force step is reasonable.

4.2 SM-PCFT Design Problem

Problem Formulation. Given the number of racks n, number of
FSOs m per rack, and the number of SMs k per FSO, the SM-
PCFT problem is determine the alignments of each SM such that
the resulting PCFT has maximum dynamic bisection bandwidth.

Said differently, we want a PCFT with maximum DBW, under
the constraint that the number of candidate links at each FSO is at
most k. From this view, the SM-PCFT problem falls in the class
of network design problems [25], but is different from prior work
due to the novel DBW objective. For instance, even the special
case of k = 1, the SM-PCFT problem reduces to constructing
an m-regular graph over n nodes with maximum (static) bisection
bandwidth. Even this simple case is harder than the well-studied
problem of determining an upper-bound on the bisection bandwidth
of m-regular graphs of size n, for which approximate results are
known only for very small values of m and n [36]

Random Graphs for SM-PCFT. One promising approach to con-
structing a SM-PCFT solution is to consider random regular graphs.
This is based on the intuition that graphs with (static) bisection
bandwidth are likely to have high DBW. (Because random graphs
have near-optimal spectral gap [21], they are good “expanders” and
have high static bisection bandwidth.) We can construct an n-node

regular graph of degree mk, and then group the mk edges on each
node into m sets of k£ edges each (corresponding to each of the m
FSOs). For every edge connecting a pair of FSOs (a, b), we align
one SM each of a and b towards each other. Because of the random-
ness, there is a small chance of some random instance performing
poorly; thus, we generate many different solutions, and pick the
one with the best DBW.®

4.3 GM-PCFT Design Problem

Problem Formulation. Given the DC layout, the number of racks
n, number of FSOs per rack m, and uniform coverage-angle (see
Figure 4(b)) of GMs, the GM-PCFT problem is to determine the
orientation of the GM on each FSO such that the resulting PCFT
has the maximum dynamic bisection bandwidth.

Note that we cannot directly use a random graph as a GM-PCFT
solution, since an FSO a’s neighbors in a PCFT must be colocated
in a coverage-cone of the GM at a. Thus, this problem imposes cer-
tain geometric constraints. In particular, for a pair (a, b) to form a
(bi-directional) candidate link in the resulting PCFT, the coverage-
cone of GM at ¢ must cover b and vice-versa. A naive approach is
to iteratively pick a pair of FSOs (a, b) at a time and orient their
GMs towards each other. However, this approach may create only
one candidate link per FSO/GM, and hence, could result in a sparse
PCFT with poor DBW.

Block-based Heuristic. To address the shortcomings of the above
strawman approach, we use a “block”-based approach. The intu-
ition here is to create a random graph at a coarser block granularity,
where each block is a group of nearby FSOs that fall within a GM’s
coverage cone.

The approach runs in m iterations, and in each iteration we fix
the orientation of the GM on the i*" FSO of each rack, as described
below. (The numbering of FSOs is arbitrary; we just need some
ordering.) In each iteration, we randomly partition the set of racks
into disjoint blocks. The only requirement here is that each block
of racks is colocated and small enough to be covered by a GM
(when oriented appropriately) on any FSO in the DC. That is, for
each block B and FSO a ¢ B, there exists an orientation of GM
at a such that all racks in B fall within its coverage cone. At first
glance, this partitioning requirement may seem complex, but we
observe that a simple grid-based partitioning scheme is sufficient
in practice. Next, we create a random block-level matching M;
over the blocks. Now, for each edge (B1, Bz2) € M;, we orient the
GM on each -FSO in each rack within block B; (correspondingly
Bs) towards B (B1). By construction, the partitioning algorithm
guarantees that a GM on any ¢-FSO in B; can cover (with some
orientation) all :--FSOs on racks in Bs.

The partitioning in each iteration ¢ can be different. In particular,
we can create random partitioning schemes: starting from the basic
grid, we can do a random offset to create a new partitioning scheme.
Finally, as in the case of SM-PCFT, we generate many randomized
GM-PCEFT solutions, and pick the best.

5 Real-time Reconfiguration

We consider two types of reconfigurations in FireFly: (1) periodi-
cally optimizing the network based on estimated demands; and (2)
triggered by certain network events (e.g., planned migrations or
elephant flows).

80ne subtle issue is even computing DBW is hard. To estimate
the DBW for a given random instance, we extend the Kernighan-
Lin [32] heuristic for estimating the bisection bandwidth. Our ex-
periments suggest this is within 5-7% of the true DBW. Due to
space constraints, we do not discuss the DBW estimation in depth.

maxz T; ;, subject to : [€)]
0]
Vb > <1 Va: > hkp<1 @
as.t(a,b)Er b s.t. (a,b)Er
Va,b: > £ <lgx CxE @3)

]

Vig k> Y fh= > SR @

a beFSOs(k) beEFSOs(k) d

Vi > D f=D> > f=Tiy ©

a€FSOs(i) b a beFSOs(j)
Vi,j: Tij < Dij ®
V(a,b) € k:lyp € {0,1}; Vi, j,a,b :f(j’{; >0 (7)

Figure 6: ILP formulation for periodic reconfiguration.

5.1 Periodic Reconfiguration

Given a PCFT and the prevailing traffic load, the periodic reconfig-
uration problem is to optimally select a runtime (i.e., some realiz-
able) topology and set up routes for the current traffic flows.

This constrained optimization is captured by the integer linear
program (ILP) shown in Figure 6.° Let & be the set of candidate
links in the PCFT, C be the (uniform) link capacity, F be the given
epoch size (say a few seconds), and D; ; be the estimated traf-
fic demand (volume) between a pair of racks (7, 7). This demand
can be obtained by using the measurement counters from the SDN
switches from previous epoch(s). We use the subscripts a, b, ¢, d to
refer to FSOs, and 4, j, k to refer to racks, and FSOs(k) to denote
the set of FSOs on the top of rack k.

There are two key sets of control variables: (i) The binary vari-
able I,,;, models topology selection and is 1 iff a candidate link
(a, b) is chosen to be active; and (ii) f;b captures the traffic en-
gineering (TE) strategy in terms of the volume of inter-rack traffic
between ¢ and j routed over the link (a, b). Let T} ; be the total
traffic volume satisfied for the flow (4, 7).

For clarity, we consider a simple objective function that maxi-
mizes the total demand satisfied across all rack pairs as shown in
Eq (1). Eq(2)ensures that each FSO can have at most 1 active link.
Eq (3) ensures that the total flow on each link (on average) does not
exceed the capacity. Eq (4) are flow conservation constraints for
each flow (,7) and arack k. Eq (5) captures the volume of the de-
mand satisfied using a constraint over the ingress and egress racks.
Eq (6) ensures that the volume satisfied for each rack pair is at most
the demand. Finally, we have bounds on the control variables.

Unfortunately, even state-of-art solvers like Gurobi or CPLEX
take several hours to solve this ILP (§8.4). Hence, we follow a
heuristic strategy and decouple the optimization into two stages.
First, we solve the “integer” problem to select the active links.
Then, given this runtime topology, we compute the flow routes.

Greedy Matching for Topology Selection. Recall from §4 that
a realizable topology is essentially a matching over FSOs in the
PCFT graph. Thus, a simple starting point is to select the maximum-
weighted matching, where each candidate link (a, b) is weighted
by the inter-rack traffic demand D; ; between the racks ¢ and j. In
effect, this maximizes the total demand that can be served using di-
rect links. However, this can be very inefficient if the given PCFT
does not have direct links between racks with high traffic demands.

This problem is harder than the optimization problem considered
in §2.1, since we were assuming arbitrary flexibility.

The high-level idea behind our heuristic is to extend the tradi-
tional Blossom algorithm for computing the maximum matching
to incorporate multi-hop traffic. Recall that the Blossom algorithm
improves the matching by computing an alternating path at each
stage. We define a new utility function that captures multi-hop traf-
fic and then pick the path with the highest benefit. Specifically, we
use the intuition that shorter inter-rack paths imply lower resource
usage and higher network throughput [45]. Thus, we define the
benefit of an alternating path L as the decrease in the weighted-
sum of inter-rack distances if L were used to modify the current
matching. Formally, given a current matching 7, the benefit of an
alternating path L that would modify the matching from 7 to 7/, is
the total reduction in the network footprint: 3=, Di ; (hi; — hi ;),
where h; ; and h; ; are the inter-rack distances between racks (i, j)
in 7 and 7’ respectively (when seen as graphs over racks).

We run this extended Blossom algorithm until there is no alter-
nating path that can improve the network footprint and then output
the final topology at this stage.

Flow Routing. Given a specific runtime topology (i.e., values of
la,b), the residual TE problem is theoretically solvable in polyno-
mial time as a multi-commodity flow (MCF) problem. However,
even this takes hundreds of seconds for 256/512 racks §8.4), which
is not acceptable as a near real-time solution. To address this, we
use a greedy algorithm to compute the values of these flow vari-
ables. Essentially, we extend the traditional augmenting-path ap-
proach for max-flow algorithms and greedily pick an augmenting
path for a currently unsatisfied commodity. We run the algorithm
until no more augmenting paths can be picked; i.e., the network is
saturated. From this solution, we use the “path stripping” idea [42]
to convert the values of the f;{, variables into end-to-end paths.

5.2 Triggered Reconfigurations

In addition to periodically reconfiguring the network, FireFly can
also run localized reconfigurations triggered by traffic events. Such
reconfigurations may be frequent but likely require minimal topol-
ogy and flow-route changes. We currently support two types of
triggers. First, if we detect elephant flows that have sent more than
10 MB of aggregate data [17], then we activate links to create a
shorter or less-congested path for this flow. Second, if traffic be-
tween a particular pair of racks exceeds some configurable thresh-
old, then we create a direct link between them, if this does not
require deactivating recently activated or high utilization links.

6 Correctness During Reconfigurations

A reconfiguration in FireFly entails: (i) addition and/or deletion of
(candidate) links from the given runtime topology, and (ii) corre-
sponding changes to the network forwarding tables (NFTs). This
flux raises natural concerns about correctness and performance dur-
ing reconfigurations. Our goal is to ensure that: (i) network re-
mains connected at all times, (ii) there are no black holes (e.g., all
forwarding table entries refer to available/usable links), and (iii)
packet latency remains bounded (and thus, delivery is guaranteed).

The main challenges in designing a correct data plane strategy
stem from two factors: (i) Activation or deactivation of candidate
links incur a non-zero latency (few msecs); and (ii) We may need
to execute reconfigurations concurrently if the triggers occur fre-
quently (e.g., for every elephant flow arrival). At a high level, these
are related to the problem of consistent updates [34,43]. The key
difference is that we can engineer simpler requirement-specific so-
lutions rather than use more general-purpose solutions proposed in
prior work.

Destination Destination Destination

@—»@—»A/

Figure 7: Packet (in-flight location shown by a square) contin-
ues to “swing” from B to A and back, due to a rapid sequence
of reconfigurations.

6.1 Handling sequential reconfigurations

We begin by focusing on correctness when we execute reconfigura-
tions serially and defer concurrent execution to the next subsection.

6.1.1 Avoiding Black Holes

To see why “black holes” may arise, consider a reconfiguration that
changes the network’s runtime topology by steering FSOs a and b
towards each other, and in the process activating the link (a, b) and
deactivating some link (a, c). Suppose the NFTs change from F to
F'. Now, there is a period of time (when GM/SMs at a is changing
state) during which neither (a, b) nor (a,c) is available. During
this period, irrespective of when the NFTs get updated (say, even
atomically) from F to F', some entries in the NFTs may refer to
either (a, b) or (a, ¢), inducing black holes in the network.

QOur Solution. To avoid black holes, we split a reconfiguration
into multiple steps such that: (i) link deletion is reflected in the
NFTs before their deactivation is initiated, and (ii) link addition is
reflected only after the activation is complete. Thus, a reconfigura-
tion that involves deactivation (activation) of a set of links 17 (A)
is translated to the following sequence of steps:

S1: Update the NFTs to reflect deletion of /.
S2: Deactivate 57 and activate A.
S3: Update the NFTs to reflect addition of links A.

One additional invariant we maintain is that every switch has a
default low priority rule at all times to reach every destination rack
via some active outgoing link. We do so to explicitly ensure that
packets can reach their destination, possibly on sub-optimal paths,
as long as the network is connected (see below).

6.1.2 Maintaining Connectivity

To ensure network connectivity at all times, we simply reject re-
configurations that might result in a disconnected network in step
S1 above. That is, we add a step SO before the three steps above.

S0: Reject the reconfiguration, if deletion of links 57 disconnects
the network.

To reduce the chance of such rejections, we also extend our re-
configuration algorithms to retain a connected subnetwork from the
prior topology. The high-level idea here is to construct a rack-level
spanning tree using the current graph, and explicitly remove these
links/FSOs from consideration during the greedy matching step.

6.1.3 Bounded Packet Latency

If reconfigurations occur at a very high frequency, then we may see
unbounded packet latency. Figure 7 shows a simple example where
a packet can never reach its destination because the links/routes are
being reconfigured quite rapidly.

Our Solution. The example also suggests a natural strategy to
avoid such cases—we can delay or reject reconfigurations to al-
low the in-flight packets to use one of the intermediate topologies
to reach its destination. We introduce a small delay of x units be-
tween two consecutive NFTs-updates, where = is the maximum
packet latency in a fixed realizable topology. This ensures that each

packet “sees” at most two configurations during its entire flight.
This, bounds the packet latency by (2x + z) where z is the total
NFTs-update time.

6.2 Handling Concurrent Reconfigurations

Computing and executing a reconfiguration can take a few tens of
msecs in a large DC. To achieve good performance, we may need
to reconfigure the network frequently; e.g. for every elephant flow
arrival in the network, which may happen every msec or less. Thus,
we need mechanisms that allow reconfigurations to be executed
concurrently. We could batch reconfigurations, but that merely de-
lays the problem rather than fundamentally solving it because a
batch may not finish before the next set of reconfigurations arrive.

We observe that to handle concurrent reconfigurations, we need
to extend the approach from §6.1 to handle two concerns.

e Connectivity: One concern is that each reconfiguration in iso-
lation may not disconnect the network but combining them
might. Thus, to ensure network connectivity, the controller
maintains an atomic global topology variable G, and uses this
variable to accept/reject in step SO. (G is also updated by ac-
cepted reconfigurations in S1 and S3.)

o Conflicting reconfigurations: In step SO, we also reject any re-
configuration that “conflicts” (in terms of link activations or
deactivations) with already-accepted but yet-unfinished recon-
figurations. That is, we follow a non pre-emptive strategy of
allowing outstanding reconfigurations to complete.

We note that no other changes are required to §6.1 to handle con-
currency. Black holes are still avoided since only non-conflicting
reconfigurations are executed concurrently and packet latency is
bounded since a minimum time-interval already precludes concur-
rent processing of different NFTs-updates.

6.3 Overall Scheme

Based on the previous building blocks, our overall scheme is as
follows. Each reconfiguration p that deletes and adds a set of links
v/ and A, is translated into the following four steps. Here, G is as
described in §6.2.

CO: Accept p if (i) deletion of links 57 does not disconnect G, and
(ii) p doesn’t conflict with any unfinished reconfigurations.

C1: Update G and NFTs to reflect deletion of 5.

C2: Deactivate 57 and activate A.

C3: Update G and NFTs to reflect addition of links A.

In addition, as discussed in §6.1, we ensure (a) default path rules,
and (b) a minimum time-interval (= maximum packet latency) units
between consecutive NFTs-updates.

We can analytically prove that the above overall scheme ensures
that (i) there are no black holes, (ii) network remains connected,
and (iii) packet latency is bounded by (2x + z), where z is the
NFTs-update time. This claim holds irrespective of how the NFTs
are updated across the network; i.e., we do not require atomic up-
dates. We refer readers to our technical report for the proof [27].

7 FireFly Controller Implementation

‘We implement the FireFly controller as modules atop the POX con-
troller. We chose POX/OpenFlow primarily for ease of prototyping.
We use custom C++ modules for the PCFT generation and recon-
figuration optimization algorithms. For reconfiguration, we imple-
ment heuristics to “dampen” reconfigurations by checking if there
is a significant (e.g., more than 10%) improvement in the objective
function from Figure 6. We use a simple translation logic to convert
the output of the optimization solver to OpenFlow rules where the

“flow” variables are mapped to prefix-range based forwarding en-
tries [49]. For elephant flows, we set up exact match flow rules [12].
We use existing OpenFlow measurement capabilities to estimate
the inter-rack demands and use the observed traffic from the pre-
vious epoch as the input to the controller. Our prototype does not
implement elephant flow detection [12, 17]; we currently assume
this information is available out of band.

8 Evaluation

We established the performance of individual steerable FSO links
in §3. In this section, we focus on:

. Performance w.r.t. other DC architectures (§8.1);

. Impact on performance during reconfigurations (§8.2);

. Optimality of the preconfiguration algorithms (§8.3);

. Optimality and scalability of reconfiguration (§8.4);

. Sensitivity analysis w.r.t. degree of flexibility and reconfigura-
tion latency (§8.5); and

6. Cost comparison w.r.t. prior DC architectures (§8.6).

DN B W -

For (1), we use a combination of detailed packet-level simu-
lations using htsim and augment it with larger-scale flow-level
simulations using a custom flow-level simulator. For (2), we use
a detailed system-level emulation using MiniNet. For (3) and (4),
we use offline trace-driven evaluations. For (5), we use the flow-
level simulation. Finally, for (6) we use public cost estimates and
projections from §3.

8.1 System Performance

Setup and Workloads. We consider three classes of architectures:
(1) FireFly (both SM and GM) with 10Gbps links, (2) (wired)
10Gbps full-bisection bandwidth networks such as FatTree [13],
and (3) augmented architectures such as c-Through [48] and 3D-
Beamforming (3DB) [52] with a 5Gbps (i.e., 1:2 oversubscribed)
core.'® (We do not compare Flyways [26] since it is subsumed by
3D-Beamforming.) By default, FireFly has 48 FSOs per rack with
each equipped with 10 SMs; we assume a rack size of 4’ x 2’, which
is sufficient to easily hold 48 FSO devices (§3.3). We also evaluated
Jellyfish [45], but do not show this for ease of visualization since
the result was close to FatTree (= 10% lower). We assume an
overall reconfiguration latency of 20 msecs for FireFly, and conser-
vatively use zero latency for c-Through/3DB. We use ECMP rout-
ing for FatTree and backbone cores of 3dB and c-Through, and
route the “overflow” traffic to their augmented links [52]. Finally,
for FireFly, we use the routing strategies described in §5.
Following prior work, we use synthetic traffic models based on
DC measurements [23,52]. As a baseline, we consider a Uniform
model where flows between pairs of racks arrive independently
with a Poisson arrival-rate A/s, with an empirically-derived flow
size distribution [23]. We use) as the knob to tune the level of net-
work saturation. Based on prior observations, we also consider the
Hotspot model [23], where in addition to the Uniform base-
line, a subset of rack pairs have a higher arrival rate A2 and a
fixed large flow size of 128MB [52]. For Uniform loads, we
use the label Uniform X where X is average load per server (in
Gbps) by choosing suitable A\. For Hot spot loads, we use the la-
bel Hotspot (Y, X) where Y is the % of racks that are hotspots
and X is the additional average load on each hotspot server; all
Hotspot workloads use Uniform 5 as the background traffic.

Performance Comparison. There are two key metrics here: (1)
the average throughput per server, and (2) flow completion time

%While a lower oversubscription would improve c-Through’s per-
formance, the cost increases almost proportionally—eventually be-
coming equal to FatTree at 1:1 oversubscription.

Firefly

8 3D Beamforming [N
FatTree

c-Thru 1

14 F
12
U)'10 .
el
G 6 é
L 4+
2| IARRUER
Hotspot Hotspot Hotspot Hotspot Uniform Uniform Uniform
(8,2.5) (8,5) (16,2.5) (16,5) 1 5 10
(a) Flow completion for long flows
0.01
m
E
= 0.001
O
[T
0.0001

Hotspot Hotspot Hotspot Hotspot Uniform Uniform Uniform
(8,2.5) (8,5) (16,2.5) (16,5) 1 5 10

(b) Flow completion for short flows

—_

Average per-server
throughput (Gbps)

O=NWHAUIONOWO©O

22
Vi

N N | BNV |

Hotspot Hotspot Hotspot Hotspot Uniform Uniform Uniform
(8,2.5) (8,5) (16,2.5) (16,5) 1 5 10
(c) Average throughput per server (Gbps)
Figure 8: Flow completion times (FCT) and average through-
put per-server using the ht sim simulator on a 64-node topol-
ogy for different workloads

(FCT). For ease of visualization, we do not show error bars over
multiple runs, since the results were consistent across multiple runs.
We also do not show FireFly-GM (with 40° coverage-angle GMs)
results, since they are similar to the default FireFly-SM.

As a starting point, we use htsim for a detailed packet-level
simulation. We extended ht sim to support short flows, arbitrary
traffic matrices, and route reconfigurations. Due to scaling limita-
tions of ht sim, even on a high-end server (2.6GHz, 64 GB RAM),
we could only scale to a 64-rack DC at our 10 Gbps workloads.
Figure 8(a) and 8(b) show a box-and-whiskers plot (showing max-
imum, minimum, median, 25%iles, and 75%iles) of the FCT for
long/short flows respectively for a 30 secs run. The result shows
that FireFly’s performance is close to the full-bisection bandwidth
network in both cases. c-Through and 3DB do not perform as well
because their augmented network is not sufficient to compensate
for the oversubscription. Thus, their tail performance for long flows
suffers. We also see that the FCT for short flows is similar across
FireFly and FatTree.

Figure 8(c) shows the effective average per-server throughput in
the 64-rack setup for different workloads. For the Uniformthe av-
erage is over all servers whereas for Hot spot the average is over
the hotspot servers. In short, we see that FireFly’s performance
is close to the full-bisection bandwidth network and roughly 1.5x
better than the augmented architectures.

To scale to larger DCs, we use a custom flow-level simulator.
We do so after confirming that these simulations roughly match
the packet-level simulations. In general, the flow-level simula-

10,1 10
.2 97 . ® 97
<o) <o)
> L > L
52 ° 5 °
52 7 >A(52 /[
) 6 Firefl g%’ 6 M} >4
=1 irefly S 0 Y Yoy
::g FatTree - :’._g X e
= 5 3D-Beam G =5
c-Thru - ‘ ‘
64 128 256 512 64 128 256 512

Number of racks Number of racks
(a) Hotspot(16,5) (b) Uniform10
Figure 9: Scalability evaluation using a flow-level simulator

tions overestimates the throughput 5-7% for all architectures since
it does not model packet-level effects. Since our goal is to compare
the relative performance of these architectures, these simulations
are still instructive. Figure 9 shows that the earlier performance
results continue to hold for the most saturating workloads even at
larger scales. The only drop is at 512 racks for Uniforml0; here
the number of SMs/FSO is slightly sub-optimal as the number of
racks grows. We revisit this in §8.5.

We also measured the packet latency (number of hops) statistics
and found that the average latency were 3.91 (FireFly), 4.81 (Fat-
Tree), and 3.9 (3dB, c-Through), while the maximum was 5 for
FireFly and 6 for the rest.

8.2 Performance during Flux

Because packet- or flow-level simulations do not give us a detailed
replay of the events at the FireFly controller and in the network,
we use Mininet for this evaluation [7]. Due to scaling limita-
tions, we scale down the DC size to 32 racks and the link rates to
10 Mbps, and correspondingly scale the workload down. Since our
goal is to understand the relative impact of reconfigurations w.r.t.
the steady state behavior, we believe this setup is representative.
In particular, note that the relative “penalty” of the reconfiguration
latency remains the same since we also scale down the workload
with the link rates.

For the following result, we consider a Hot Spot workload, with
seven distinct reconfigurations as elephant flows arrive. We poll the
virtual switches to obtain link utilization and loss rates and use a
per-rack-pair ping script to measure inter-rack latency. We divide
these measurements into two logical bins: (a) During reconfigura-
tions and (b) Steady state (i.e., no active reconfiguration). Figure 10
shows the distribution link utilization, loss rate, and inter-rack la-
tency for each bin. While there is a small increase in the tail values,
the overall distributions are very close. This suggests that the im-
pact on the network during reconfigurations is quite small and that
our mechanisms from §6 work as expected.

8.3 Preconfiguration Efficiency

#Racks | Normalized DBW w.r.t. upper bound

SM-PCFT | GM-PCFT
64 0.96 0.84
128 0.93 0.84
256 0.91 0.85
512 0.94 0.88

Table 1: Efficiency of the PCFT algorithms

As before, we use 48 FSOs per rack and 10 SMs per FSO for
SM-PCFT, and assume GMs with an coverage-angle of 40° for
GM-PCFT. We generate ~ 15n (n is the number of racks) random
instances and pick the best. We normalize the estimated DBW w.r.t

an upper bound of %.“ Table 1 shows that the SM-PCFT and
GM-PCFT solutions achieve > 91% and >84% of the upper bound
across different DC sizes. The lower performance of GM-PCFT
is likely because of less randomness due to a block-level construc-
tion. (This does not however impact the performance of the runtime
topology in practice for the workloads we consider.)

We also evaluate an incremental expansion scenario where we
want to retain most existing PCFT as we add new racks similar
to Jellyfish [45]. We find that incrementally constructed PCFTs
perform nearly identical w.r.t. a PCFT computed from scratch (not
shown). We posit that this stems from the incremental expandabil-
ity of random graphs [45].

8.4 Reconfiguration Efficiency

Racks Time (ms) Optimality Gap
Full-LP | Greedy-LP | FireFly two-step | (%)
32 138 110 27 2.8%
128 4945 208 54 2.6%
256 1.7x108 | 3.3x10% 60 1.3%
512 | 6.4x10% | 1.9%x107 68 2.8%

Table 2: Scalability and optimality of the FireFly reconfigura-
tion algorithm.

Table 2 shows the computation time and optimality gap of the
FireFly two-step heuristic from §5.1. We consider two points of
comparison: (a) Full-LP, a LP relaxation of Figure 6, which also
yields an upper-bound on the optimal, and (b) Greedy-LP which
uses greedy topology selection but solves the flow routing LP us-
ing Gurobi. Our approach is several orders of magnitude faster—
Full-LP and Greedy-LP simply do not scale for > 32 racks. This
is crucial as the FireFly controller may need to periodically reopti-
mize the network every few seconds. Moreover, the (upper bound)
on the optimality gap is < 2.8%. Finally, we note that triggered
reconfigurations (§5.2) incur only 5-10 msec (not shown). Most of
the time is actually spent in route computation, which can be run in
parallel to allow a high rate of concurrent reconfigurations.

8.5 Sensitivity Analysis

FSOs per rack
36 | 40 | 44 | 48
#SMs per FSO=10 | 5.14 | 6.07 | 7.47 | 8.83
#SMsper FSO=13 | 6.21 | 7.27 | 820 | 9.17
#SMsper FSO=15 | 645 | 7.54 | 831 | 9.25
G M -based network | 6.87 | 7.84 | 8.66 | 9.24

Table 3: Average throughput per-server on UniformlO for
varying network parameters.

Given that we are considering a new technology, we evaluate the
sensitivity w.r.t. key parameters: number of FSOs, number of SMs,
and the reconfiguration latency. Table 3 shows the average per-
server throughput on a range of FireFly instantiations. As before,
we use the configuration of 512 racks with 48 servers each. As
expected from the insights from §2.1, the performance decreases
almost linearly with decrease in the number of FSOs (i.e., flexible
ports) per rack. The performance degradation in GM-based net-
works is comparatively better. Note that the networks with fewer
FSOs also have almost-proportionally lower cost. However, in-
creasing the number of SMs per FSO does counter the degradation
to some extent, due to increase in flexibility. If FSO size is the
limiting concern, one way to get higher performance is to simply

! Any equi-sized partition of n racks with m FSOs can have at most
nm /2 active links (one per FSO) in a “cut”.

2 2
1] 1 & 1
8 5 5
c 087 5 0.99 gy = 08
= 8 farans a
5 0.6 | g 098 g 06 7
S 04y E o7t E o4t
§ 0.2 During reconfigurations g 0.96 During reconfigurations 2 02} E uring reconfigurations
w 0) Steady state .% 0.95) ___ Steady state i .% 0 >, ‘ Steady state
0 0.2 0.4 0.6 0.8 18 0 002 004 006 008 01 & 0 5 10 15 20
Link utilization Loss rate End-to-end delay (ms)

Figure 10: Comparing network performance during reconfigurations and in steady state

Equip Cable Power Total
Fiber | Cu | Fiber | Cu | Fiber | Cu | Fiber | Cu
FatTree | 22 15 | 8 2 1 2 31 20
3DB 13 9 5 2 1 1 19 12
cThru 13 9 5 2 1 1 19 12
FireFly 12 0 1 13

Table 4: Cost (in USD millions) of equipment, power, and ca-
bling assuming 512 racks with 48 servers/rack. Since these are
estimates, we round to the nearest million.

decrease the number of servers per rack; i.e., increase number of
racks for a fixed total number of servers (not shown).

Finally, with respect to reconfiguration latency, we observe that
varying the latency from 10msec to 50 msec has minimal (< 5%)
impact on FireFly’s performance (not shown). This is a positive
result that we can achieve pretty good performance even with un-
optimized steering delays and network update times.

8.6 Cost Comparison

As an instructive case, we consider a DC with 512 racks and 48
servers/rack to compute the equipment, power, and cabling costs
of different architectures in Table 4. We consider both copper- and
fiber-based realizations for the wired architectures.

We conservatively estimate the “bulk™ price of 10GbE network
switches to be $100 per port [11,50] and that of 10GbE SFPs at
$50 each; these estimates are roughly 50% of their respective retail
costs. Thus, fiber-based architectures (including FireFly) incur a
cost of $150 per-port, while copper-based architecture incur a cost
of only $100 per-port. FireFly uses a 96-port (10G) ToR switch
on each rack with 48 FSOs, the full-bisection FatTree needs 1536
96-port (10G) switches, while the 1:2 oversubscribed cores of c-
Through/3DB use roughly half the ports of FatTree. FireFly has
an additional cost for FSO devices (on half the ports), which we
estimate to be $200 per device including SMs or a GM (§3). For
3DB, we assume there are 8 60 GHz radios per rack with each as-
sembly costing $100. For c-Through, we conservatively assume
the 512-port optical switch to be $0.5M. We assume ceiling mir-
rors in FSO and 3DB have negligible cost. For cabling, we use an
average cost of $1 and $3 per meter for copper and optical-fiber
respectively, and use an average per-link length of 30m [40]. We
estimate the 5-yr energy cost using a rate of 6.5cents/KWHTr, and
per-port power consumption of 3W (fiber) and 6W (copper). We
ignore the negligible energy cost of SMs, 60GHz radios, and the
optical switches.

Overall, the total cost of FireFly is 40-60% lower than FatTree
and is comparable (or better) than the augmented architectures.
Note that the augmented architectures have worse performance com-
pared to FireFly, and copper wires have length limitations.

9 Discussion

Given our radical departure from conventional DC designs, we dis-
cuss a sampling of potential operational concerns and possible mech-
anisms to address some of these issues. We acknowledge that there
might be other unforeseen concerns that require further investiga-
tion over pilot long-term deployments.

Pre- and re-alignment. We will need external tools for pre-aligning
SMs/GMs. Fortunately, as this will be done infrequently, this mech-
anism does not need the stringent cost/size requirements and we
can repurpose existing mechanical assemblies. While our design
tolerates minor misalignment (§3), long term operation may need
occasional alignment corrections. Here, we can use the feedback
from the digital optical monitoring support available on optical
SFPs; GMs can directly use such feedback, but SMs may need ad-
ditional micro-positioning mechanisms (e.g., piezoelectrics).

Operational Concerns. Some recurrent concerns we have heard
include dust settling on optics, light scattering effects, reliability
of mechanical parts, and human factors (e.g., need for protective
eyewear for operators). We believe that these are not problem-
atic. Specifically, dust/scattering may reduce the signal but our
design has sufficiently high link margins (15dB), and the devices
can be easily engineered to minimize dust (e.g., non-interfering lids
or blowing filtered air periodically). While we studied an electro-
mechanical GM here, future MEMS-based scanning mirrors [6] are
expected to be very robust. Finally, the lasers we use are infra-red
and very low power which are not harmful to human eye.

Beyond 10 Gbps. Current long-range connector standards for 40/
100 Gbps (e.g., 40 or 100GBASE-LR4) use WDM to multiplex
lower rate channels on the same fiber, one in each direction. How-
ever, just like the 10 GbE standard that we have used, there are still
two optical paths (with two fibers) for duplex links. Single-fiber
solutions (as we have used for 1 GbE [9]) are not commodity yet
at these speeds as the market is still nascent. We expect, however,
this to change in future. Otherwise, we will need two optical paths
or custom single-path solutions.

10 Related Work

Static Wired Topologies. Early DCs used tree-like structures, which
have poor performance due to oversubscription. This motivated
designs providing full bisection bandwidth [13, 16,45], which are
overprovisioned to handle worst-case patterns. In addition to high
cost, such networks are not incrementally expandable [45]. In con-
trast, FireFly is flexible, eliminates cabling costs, and amenable to
incremental expansion. Other efforts proposed architectures where
servers act as relay nodes (e.g., [24]). However, they are not cost
competitive [40] and raise concerns about isolation and CPU usage.

Optical Architectures. High traffic volumes coupled with the power
use of copper-based Ethernet, has motivated the use of optical links.
Early works such as c-Through [48] and Helios [20] suggested hy-
brid electric/optical switch architectures, while recent efforts con-
sider all-optical designs [14,41]. The use of free-space optics avoids
the cabling complexity that such optical designs incur. Further-
more, by using multiple FSOs per rack, FireFly can create richer
topologies (at the rack level) than simple matchings [14,20,41,48].
Moreover, FireFly doesn’t need optical switching, thus eliminat-
ing concerns about cost/scalability. Finally, optical switching can
disconnect substantial portions of the optical network during recon-
figuration. While FireFly also has transient link-off periods, these
are localized—which enables us to avoid black holes and discon-
nections using simpler data plane strategies (§6).

Wireless in DCs. The FireFly vision is inspired by Flyways [26]
and 3D-Beamforming [52]. However, RF wireless technology suf-
fers from high interference and range limitations and limits perfor-
mance. The use of free-space optics in FireFly eliminates interfer-
ence concerns. Shin et al. consider a static all-wireless (not only
inter-rack) DC architecture using 60 Ghz links [44]. However, this
requires restructuring DC layout and has poor bisection bandwidth
due to interference.

Consistency during Reconfigurations. Recent work identified the
issue of consistency during network updates [34,43]. FireFly in-
troduces unique challenges because the topology changes as well.
While these techniques can also apply to FireFly, they are more
heavyweight for the specific properties (no black holes, connec-
tivity, and bounded packet latency) than the domain-specific solu-
tions we engineer. Other work minimizes congestion during up-
dates [30]. While FireFly’s mechanisms do not explicitly address
congestion, our results (§8.2) suggest that this impact is quite small.

11 Conclusions

In this work, we explore the vision of a fully-flexible, all-wireless,
coreless DC network architecture. We identified free-space optics
as a key enabler for this vision and addressed practical hardware
design, network provisioning, network management, and algorith-
mic challenges to demonstrate the viability of realizing this vision
in practice. Our work is by no means the final word. There remains
significant room for improvement in various aspects of our design,
viz., cost and form-factor of hardware elements, algorithmic tech-
niques for network provisioning and management, which should
further improve the cost-performance tradeoff.

Acknowledgments

We thank Yuvraj Agarwal, Daniel Halperin, and our shepherd Jiten-
dra Padhye for their feedback, and Hanfei Chen for GM measure-
ments. This research was supported in part by NSF grants CNS-
1117719 and CNS-0831791.

12 References

[1]1 A Simpler Data Center Fabric Emerges .
http://tinyurl.com/kaxpotw.
[2] Galvo mirrors. http://www.thorlabs.us/NewGroupPage9.cfm?
ObjectGroup_ID=3770.
htsim simulator.
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html.
[4] Kent optronics, inc.
http://kentoptronics.com/switchable.html.
Lightpointe flightstrata g optical gigabit link.
http://tinyurl.com/k8602vh.
[6] Mems scanning mirror. http:
//www.lemoptix.com/technology/mems—scanning-mirrors.
[7] Mininet. http://yuba.stanford.edu/foswiki/bin/view/
OpenFlow/Mininet.
[8] OpenGear out of band management. http://tinyurl.com/n773hg3.
[9] Single-fiber sfp. http://www.championone.net/products/
transceivers/sfp/single-fiber-single-wavelength/.
[10] Xinyu laser products. http://www.xinyulaser.com/index.asp.
[11] 10GBASE-T vs. GbE cost comparison. Emulex white paper, 2012. Available at
http://www.emulex.com/artifacts/cdclald3-5d2d-4ac5-
9ed8-
5ccda72bd561/elx_sb_all_1l0gbaset_cost_comparison.pdf.
[12] M. Al-Fares et al. Hedera: Dynamic flow scheduling for data center networks.
In NSDI, 2010.
[13] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center
network architecture. In ACM SIGCOMM, 2008.
[14] K. Chen et al. OSA: An optical switching architecture for data center networks
with unprecedented flexibility. In NSDI, 2012.
[15] E. Ciaramella et al. 1.28-Tb/s (32 x 40 Gb/s) free-space optical WDM
transmission system. IEEE Photonics Technology Letters, 21(16), 2009.

3

[5

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

(28]
[29]
[30]

(311

[32]

(33]
[34]

[35]
[36]

[37]

[38]
(391
[40]
[41]
[42]

[43]
[44]

[45]

[46]
[47]

(48]
[49]

[50]

[51]

[52]

C. Clos. A study of non-blocking switching networks. Bell System Technical
Journal, 32, 1953.

A. Curtis et al. DevoFlow: Scaling flow management for high-performance
networks. In ACM SIGCOMM, 2011.

A. Curtis, S. Keshav, and A. Lopez-Ortiz. LEGUP: Using heterogeneity to
reduce the cost of data center network upgrades. In CoONEXT, 2010.

H. L. Davidson et al. Data center with free-space optical communications. US
Patent 8,301,028, 2012.

N. Farrington et al. Helios: A hybrid electrical/optical switch architecture for
modular data centers. In ACM SIGCOMM, 2010.

J. Friedman. On the second eigenvalue and random walks in random d-regular
graphs. Combinatorica, 11(4), 1991.

S. Gollakota, S. D. Perli, and D. Katabi. Interference alignment and
cancellation. In ACM SIGCOMM, 2009.

A. Greenberg et al. VL2: A scalable and flexible data center network. In ACM
SIGCOMM, 2009.

C. Guo et al. BCube: A high performance, server-centric network architecture
for modular data centers. In ACM SIGCOMM, 2009.

A. Gupta and J. Konemann. Approximation algorithms for network design: A
survey. Surveys in Operations Research and Management Science, 16, 2011.
D. Halperin et al. Augmenting data center networks with multi-gigabit wireless
links. In ACM SIGCOMM, 2011.

N. Hamedazimi et al. FireFly: A reconfigurable wireless data center fabric
using free-space optics (full version). http:
//www.cs.stonybrook.edu/~hgupta/ps/firefly-full.pdf.
N. Hamedazimi, H. Gupta, V. Sekar, and S. Das. Patch panels in the sky: A case
for free-space optics in data centers. In ACM HotNets, 2013.

B. Heller et al. ElasticTree: Saving energy in data center networks. In NSDI,
2010.

C.-Y. Hong et al. Achieving high utilization with software-driven WAN. In
ACM SIGCOMM, 2013.

D. Kedar and S. Arnon. Urban optical wireless communication networks: The
main challenges and possible solutions. IEEE Communications Magazine,
2004.

B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell Systems Technical Journal, 49(2), 1970.

L. Li. CEO, KentOptronics. Personal communication.

R. Mahajan and R. Wattenhofer. On consistent updates in software defined
networks (extended version). In ACM HotNets, 2013.

P. F. McManamon et al. A review of phased array steering for narrow-band
electrooptical systems. Proceedings of the IEEE, 2009.

B. Monien and R. Preis. Upper bounds on the bisection width of 3- and
4-regular graphs. Journal of Discrete Algorithms, 4, 2006.

J. Mudigonda, P. Yalagandula, and J. C. Mogul. Taming the flying cable
monster: A topology design and optimization framework for data-center
networks. In USENIX ATC, 2011.

N. McKeown et al. OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM CCR, 38(2), 2008.

S. Orfanidis. Electromagnetic waves and antennas; Chapter 15, 19.
http://www.ece.rutgers.edu/~orfanidi/ewa/.

L. Popa et al. A cost comparison of datacenter network architectures. In
CoNEXT, 2010.

G. Porter et al. Integrating microsecond circuit switching into the data center. In
ACM SIGCOMM, 2013.

P. Raghavan and C. D. Thompson. Randomized rounding: a technique for
provably good algorithms and algorithmic proofs. Combinatorica, 7(4), 1987.
M. Reitblatt et al. Abstractions for network update. In ACM SIGCOMM, 2012.
J. Shin, E. G. Sirer, H. Weatherspoon, and D. Kirovski. On the feasibility of
completely wireless datacenters. In ANCS, 2012.

A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Networking data
centers randomly. In NSDI, 2012.

O. Svelto. Principles of Lasers. Plenum Press, New York, Fourth edition, 1998.
J. Turner. Effects of data center vibration on compute system performance. In
SustainlT, 2010.

G. Wang et al. c-Through: Part-time optics in data centers. In ACM SIGCOMM,
2010.

R. Wang, D. Butnariu, and J. Rexford. Openflow-based server load balancing
gone wild. In Hot-ICE, 2011.

Y. Yang, S. Goswami, and C. Hansen. I0GBASE-T ecosystem is ready for
broad adoption. Commscope/Intel/Cisco White Paper, 2012. Available at
http://www.cisco.com/en/US/prod/collateral/switches/
pPs9441/ps9670/COM_WP_10GBASE_T_Ecosystem_US4.pdf.

K. Yoshida, K. Tanaka, T. Tsujimura, and Y. Azuma. Assisted focus adjustment
for free space optics system coupling single-mode optical fibers. IEEE Trans.
on Industrial Electronics, 60(11), 2013.

X. Zhou et al. Mirror mirror on the ceiling: Flexible wireless links for data
centers. In ACM SIGCOMM, 2012.

