
BUZZ: Testing Context-Dependent Policies in Stateful Networks

Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, Vyas Sekar
CMU

Abstract

Checking whether a network correctly implements in-
tended policies is challenging even for basic reachabil-
ity policies (Can X talk to Y?) in simple stateless net-
works with L2/L3 devices. In practice, operators imple-
ment more complex context-dependent policies by com-
posing stateful network functions; e.g., if the IDS flags X
for sending too many failed connections, then subsequent
packets from X must be sent to a deep-packet inspection
device. Unfortunately, existing approaches in network
verification have fundamental expressiveness and scala-
bility challenges in handling such scenarios. To bridge
this gap, we present BUZZ, a practical model-based test-
ing framework. BUZZ’s design makes two key contri-
butions: (1) Expressive and scalable models of the data
plane, using a novel high-level traffic unit abstraction and
by modeling complex network functions as an ensemble
of finite-state machines; and (2) A scalable application of
symbolic execution to tackle state-space explosion. We
show that BUZZ generates test cases for a network with
hundreds of network functions within two minutes (five
orders of magnitude faster than alternative designs). We
also show that BUZZ uncovers a range of both new and
known policy violations in SDN/NFV systems.

1 Introduction
The security, performance, and availability of networks
depend on the correct implementation of critical policy
goals. Network operators realize these goals by configur-
ing and composing network appliances, such as switch-
es/routers, firewalls, and proxies.

Unfortunately, making sure that the network correctly
implements a given policy is challenging, error-prone,
and entails significant manual effort and operational
costs [20,59]. As recent advances in network verification
show, checking correctness is challenging even for sim-
ple reachability policies (Can X talk to Y?) in networks
with stateless switches and routers [44, 52, 53, 57, 75].

In practice, operators’ intended policies go well be-
yond reachability— operators implement a range of rich
context-dependent policies using stateful network func-
tions (NFs)1 to ensure traffic goes through the intended
sequence of NFs; e.g., if an intrusion detection system
(IDS) flags host X for generating too many connections

1An NF may be a switch/router or a middlebox (e.g., firewalls, load
balancers, intrusion prevention systems, or proxies). It may be realized
by a physical appliance or a virtual machine (VM).

(i.e., if traffic context is “alarm”), then reroute subse-
quent flows to a deep packet inspection (DPI) filter [23].
Such rich policies and stateful data planes are quite com-
mon (e.g., the number of stateful NFs in a network may
be comparable to the number of routers [70]). Looking
forward, software-defined networking (SDN) [60] and
network functions virtualization (NFV) [34] are poised
to enable even richer in-network traffic processing ser-
vices [22, 26, 29, 34, 42, 56].

What is critically lacking today is a principled way
to check whether a stateful data plane correctly imple-
ments intended context-dependent policies. Existing ap-
proaches [44,52,53,57,75] face fundamental expressive-
ness and scalability challenges in this regard. First, cur-
rent abstractions cannot capture stateful behaviors (e.g.,
how many connections host X has tried to establish)
or express context-dependent policies (e.g., on-demand
deep inspection). Second, trying to reason about stateful
behaviors results in state-space explosion; e.g., a naive
application of formal verification tools takes > 20 hours
even for a small network with 4-5 nodes (see §8).

We address these challenges and develop a principled
testing framework called BUZZ. BUZZ takes in intended
policies from the operator, and by exploring a model of
the data plane, it finds abstract test traffic (i.e., an input
that triggers policy-relevant states of a model of the data
plane). It then translates the abstract test traffic into con-
crete test traffic and injects it into the actual data plane.
Finally, it reports whether the observed behavior com-
plies with the policies. As an active testing framework,
BUZZ provides concrete assurances about the behavior
“on-the-wire” and can help operators localize sources of
violations [75] (§3).

In designing BUZZ, we make two key contributions:

• Expressive-yet-scalable data plane models (§5): We
introduce a novel abstraction for network traffic called
a BUZZ Data Unit (BDU). BDUs extend the notion
of located packets from prior work [52] in three key
ways: (1) it enables composition of diverse NFs span-
ning multiple protocol layers; (2) it simplifies mod-
els of NFs operating above L3 by aggregating a se-
quence of packets; and (3) it explicitly encodes traffic
processing history to expose policy-relevant contexts.
Second, we model individual NFs as FSMs that pro-
cess BDUs and explicitly embed the relevant contexts
into BDUs. A network then is simply a composition of
individual NF models. To build tractable models, we

decouple logically independent tasks (e.g., client-side
vs. server-side connections) or units of traffic (e.g.,
distinct TCP connections) within each NF to create an
ensemble of FSMs representation rather than a mono-
lithic FSM.

• Scalable test traffic generation (§6): To generate ab-
stract test traffic to explore the behaviors of the data
plane model, we develop an optimized symbolic exe-
cution (SE)-based workflow. To combat the challenge
of state space explosion [30,32], we engineer domain-
specific optimizations (e.g., reducing the number and
scope of symbolic variables). We also develop cus-
tom translation mechanisms to convert the output of
this step into concrete test traffic.

We have implemented BUZZ as an application over
OpenDaylight [14]. BUZZ provides both text-based
and graphical interfaces for operators to input policies
and receive test results through an automated workflow.
We have written a library of models for several canon-
ical NFs and implemented our SE optimizations using
KLEE [31]. We have also developed simple monitoring
and test resolution mechanisms (§7). BUZZ is open-
source, and our code, models, and examples can be found
at [1].

Our evaluation (§8) on a real testbed shows that
BUZZ: (1) effectively helps detect both new and known
policy violations within tens of seconds; (2) tests hun-
dreds of policies in networks with hundreds of switches
and stateful NFs within two minutes; (3) dramatically
improves test scalability, providing nearly five orders of
magnitude reduction in time for test traffic generation
relative to strawman solutions (e.g., model checking).

2 Motivation
In this section, we use a few illustrative examples to dis-
cuss why it is challenging to check the correctness of
context-dependent policies in stateful data planes.

Stateful firewalling: Today most firewalls capture TCP
semantics. A common usage is reflexive ACLs [5] as
shown in Figure 1, where incoming traffic is allowed
depending on its context. In particular, the context-
dependent policy here specifies that only traffic belong-
ing to a TCP connection initiated by a host inside the de-
partment (i.e., if traffic context is “solicited”) be allowed.

Prior work in network verification models each NF as
a “transfer” function T(hdr, port) whose input/output is
a located packet (i.e., a header, port tuple) (e.g., [52, 53,
62]). Unfortunately, even the simple policy of Figure 1
cannot be captured by this stateless transfer function. In
particular, it does not capture the policy-relevant state of
the firewall (e.g., SYN SENT) for a given connection.

Context-dependent traffic monitoring: In Figure 2,
the operator uses a proxy to improve web performance.

S1	

Is	firewall	allowing	solicited	and	
blocking	unsolicited	Internet	traffic?	

Internet	Department	

Stateful	
FW	

Intended	Policy	

traffic	from	Internet	
to	Department	 Stateful	

FW	 Allow	
unsolicited	T

CP	

solicited	TCP	
	Actual	Network	

Block	

Figure 1: Is firewall allowing solicited and blocking
unsolicited traffic?

She also wants to restrict web access; i.e., H2 (a host
in the department) cannot have access to XYZ.com.
Here the context-dependent policy specifies that both
cache hits/misses for H2 should be monitored. As noted
elsewhere [43], there could be subtle policy violations
where cached responses evade the monitor because (1)
the proxy hides traffic provenance (i.e., true origin), and
(2) the proxy’s response (i.e., hit vs. miss) depends on
the hidden policy-relevant state (i.e., the current cache
contents).

Internet&Department&
S1&

Mon&

S2&

Proxy&

Are&both&hit/miss&traffic&monitored&correctly?&

Intended&Policy&

web&traffic&from&
Department& proxy&

Block&
Allow&

XYZ.com&
hit/miss&

otherwise&
&Actual&Network&

Mon&
from&H2&

Figure 2: Are both cache hit/miss traffic monitored?

While there are mechanisms to fix this (e.g., [43]), op-
erators need tools to check whether such mechanisms are
implemented correctly. Again, a stateless transfer func-
tion [52, 53, 57] is insufficient, as it does not capture the
state of the proxy.

Multi-stage triggers: Figure 3 uses a light-weight in-
trusion prevention system (L-IPS) for all traffic, and
only subjects suspicious hosts (i.e., flagged by the L-
IPS due to generating too many scans) to the expensive
heavy-weight IPS (H-IPS) for payload signature match-
ing. Such context-dependent multi-stage detection can
minimize latency and reduce H-IPS load [42].

S1# S2#

L&IPS# H&IPS#

Internet#

Are#suspicious#traffic#sent#to#heavy#IPS?#

Department#

Intended&Policy&

traffic#from#
Department#

Block#

Allow#

bad#conn.##
aEempts#>=#10#

otherwise#
#

Actual&Network&

Heavy#IPS#

bad#signature#
found#

Light#IPS#

Figure 3: Is suspicious traffic sent to heavy IPS?
Again, we cannot check if such multi-stage policies

are enforced correctly using existing mechanisms [44,
52, 53, 75] because they capture neither policy context
(e.g., alarm/not alarm) nor data plane state (e.g., the
count of bad connection attempts on L-IPS). This exam-
ple also demonstrates that just capturing packet headers
(e.g., [52, 53, 57]) is not sufficient, as the behavior of the
H-IPS may depend on packet contents.

S1#

Is#Bro2#processing#flow#H1
#to#H2#exactly#the#

same#as#if#no#scale;out#happens?#

IPS1#

Intended&Policy&

traffic#from#
H1#to#H2#

IPS1#
!conn#establish

ed#

conn#established#

Actual&Network&

Block#data#

Allow#data#

IPS2#
!conn#established#

conn#established#

Block#data#

Allow#data#

H2#H1#

IPS2#

scaled'out+
instance+

state+
migra1on+

Figure 4: Does the scale-out mechanism honor the
stateful semantics of migration?

Dynamic NF deployments: NFV creates new opportu-
nities for elastic scaling of NFs [34]. However, ensuring
the correctness of policies in the presence of elastic scal-
ing is not easy. For example, in Figure 4, suppose IPS1
observes flow f1 established between the two hosts; later
f1 is migrated to the newly launched IPS2 for better load
balancing [68]. Due to the stateful semantics of the IPS,
IPS2 needs to know that f1 has already established a TCP
connection; otherwise, IPS2 may incorrectly block this
flow. While recent efforts enable state migration [46,68],
we need ways to check whether they do so correctly.

Similarly, in dynamic NF failure recovery [34], if the
main NF fails, the backup NF needs to be activated
with the correct state so that traffic is uninterrupted (e.g.,
see [69]). Again, we lack the ability to check whether
such mechanisms work as intended.

3 Overview
Our goal is to enable network operators to check
at human-interactive timescales whether their context-
dependent policies are realized in stateful data planes.
Next, we present a high-level view of BUZZ to meet this
goal and summarize key challenges in realizing it.

To put our work in perspective, we note that there
are two complementary approaches: (1) Static verifica-
tion uses network configuration files to check whether
the network behavior complies with the intended poli-
cies assuming the data plane behaves correctly (e.g.,
HSA [52], Veriflow [53], NOD [57], Batfish [44]); (2)
Active testing, on the other hand, checks the behavior
of the data plane by injecting test traffic into the net-
work [75]. While both are useful, we adopt an active
testing approach for two reasons. First, it provides prac-
tical assurances that things are actually working correctly
“on-the-wire”. Second, network behaviors in certain sce-
narios such as dynamic NF deployment (Figure 4) are
hard to capture with a purely static approach.

Due to context-dependent policies and complex state-
ful behaviors, naive attempts to generate test traffic, ei-
ther manually or via fuzzing [47,61], are ineffective. For
example, in Figure 3, in order to trigger the policy con-
text “L-IPS alarm” and check if traffic will actually go
to H-IPS, we need to carefully craft a sequence of pack-
ets that drive the count of bad connections on L-IPS to

Context-dependent	
policies	(δ4)	

monitoring	
logs	

Operator	
test	

results	

	
	
	
	
	stateful	data	plane	

test	traffic	
injec9on	

FW	 Proxy	IPS	

Library	of	NF	
models	(δ5.2)	

Success
	

Viola,o
n	

(δ7)	

3.	Test	
resolu9on	

2.	Test	traffic	
genera9on	(δ6)	

1.	Data	plane	model		
Instan9a9on	(δ5.3)	

Figure 5: High-level workflow of BUZZ.

≥ 10; achieving this via randomly generated packets is
unlikely. Our goal is to automate this process.

To bridge the gap between policies and the actual data
plane, we adopt model-based testing (MBT) [72], which
is useful when the blackbox behavior of a system needs
to be actively tested. The high-level idea is to (1) use a
model (or specification) of the system under test and a
search mechanism to systematically find test inputs that
trigger certain behaviors of the model, and then (2) com-
pare the behavior of the system under test to the behavior
of the model for each input [72].

Figure 5 shows the high-level workflow of BUZZ:
1. Model Instantiation: BUZZ instantiates a model of the

data plane using the intended policies (the only input
by the operator) and a library of NF models;

2. Test Traffic Generation: BUZZ generates abstract test
traffic to trigger policy-relevant behaviors of the data
plane model. BUZZ then translates it into concrete
test traffic, which is then injected into the actual data
plane;

3. Test Resolution: BUZZ monitors the actual data plane
and compares the observed behavior to the intended
policies. The result (i.e., success/violation) is reported
to the operator.
There are two challenges in realizing this workflow:
• Expressive-yet-scalable data plane models: To see

why this is challenging, let us consider some seem-
ingly natural candidates. A natural starting point
would be the transfer function abstraction [52, 62];
however, it is not expressive, as it offers no stateful
semantics and no binding to the relevant context. On
the other hand, using an NF’s implementation code
as its model is not tractable (e.g., Squid [18] has ≥
200K lines of code) and may suffer from other prac-
tical limitations (e.g., code may not be available, or
implementation bugs may affect test traffic).

• Scalable test traffic generation: Exploring data
plane’s behaviors is challenging even for simple
reachability policies in stateless data planes [75]. Our
setting is worse, as reasoning about stateful behaviors
requires addressing the challenge of state-space explo-
sion. Off-the-shelf mechanisms (e.g., model check-
ing) struggle beyond a few hundred lines of code
(see §6 and §8).

Listing 1: An abstract stateful NF.
1 //Input: packet inPkt on port inPort
2 〈outPkt,state〉 ← process(inPkt,state)
3 context ← stateToContextMap(state)
4 outPort ← applyPolicy(outPkt,context)
5 dispatch(outPkt,outPort)

We address these two challenges in §5 and §6, respec-
tively. Before doing so, in the next section (§4), we first
formalize our problem to shed light on the key require-
ments of modeling the data plane and generating test traf-
fic.

4 Problem Formulation
In this section, we formalize our model-based testing
framework to see what a data plane model should capture
and what test traffic needs to do. These inform our ap-
proach to modeling (§5) and test traffic generation (§6).

4.1 Intuition behind model and test traffic

What should the data plane model capture: First, we
give the intuition behind what an NF model needs to cap-
ture. As we saw in §2, data planes are stateful (e.g., the
bad connection attempts count in Figure 3). However,
being stateful is not sufficient for a data plane model to be
expressive. Specifically, to test context-dependent poli-
cies, the model needs to explicitly map each state to a
context. For example, if we want to trigger an alarm on
L-IPS in Figure 3 (e.g., to check if the traffic will actu-
ally go to H-IPS), we need to capture the mapping from
the bad connection attempts count (e.g.,≥ 10 or < 10) to
the context (e.g., alarm or not alarm).

To understand what an NF model should capture, we
consider the abstract NF shown in Listing 1 that shows
the NF model as running three logical steps: (1) It pro-
cesses an input packet and updates some relevant state
(e.g., an IPS updating bad conn attempts count)
(Line 2); (2) It extracts the relevant context for the
processed packet (e.g., alarm on an IPS based on
bad conn attempts count) (Line 3); (3) It applies the
corresponding policy (e.g., drop, forward) via function
applyPolicy(.) and then dispatches the packet to the
policy-mandated port (Lines 4-5).

What should test traffic do? At a high level, test traffic
for a given policy needs to drive the data plane to a state
corresponding to the context. In Listing 1, this means we
need to find a sequence of packets that drives the NF to a
state (Line 2) that maps to the intended context (Line 3).
If the NF is policy-compliant, the traffic at this point will
be sent to a policy-mandated port (Lines 4-5). For exam-
ple, to exercise the context of “L-IPS alarm” in Figure 3,
test traffic needs to make bad conn attempts count

to exceed 10; then, we check whether traffic at this point
actually goes to H-IPS.

4.2 Formal framework
Having seen the intuition behind state, context, and test
traffic, we formalize these to inform our design.

Context-dependent policies: Let context pkt
NFi

denote
the processing context corresponding to packet pkt
at NFi (Line 3 of Listing 1). Then, the con-
text sequence of the packet is the sequence of con-
texts along the NFs it has traversed; i.e., if pkt
has traversed NF1, . . . , NFi, its context sequence is
ContextSeqpkt = 〈context pkt

NF1
, . . . ,context pkt

NFi
〉.

Context-dependent policies are expressed as a set of
rules of the form:

Policy : TrafficSpec×ContextSeq 7→ PortSeq

Here, TrafficSpec is a predicate on the IP 5-tuple (e.g.,
source IP and transport protocol), ContextSeq is a context
sequence, and PortSeq is a sequence of network ports
Ports (interfaces).2 For example, in Figure 3, the policy
that mandates “if traffic triggers an alarm on L-IPS, it
must be sent to H-IPS” is specified as:

〈srcIP=Dept〉,〈alarmL−IPS〉 7→
〈L−IPS→ S1,S1→ S2,S2→ H−IPS〉

(Policies for dynamic NF deployments, such as Fig-
ure 4, are defined slightly differently—see §6.4.)

Stateful data planes: Contexts are convenient “short-
hands” to define policies. In reality, however, the data
plane operates in terms of the related but (possibly)
lower-level notion of state.

As we saw in Listing 1, a stateful NF takes an input
packet on one of its ports, processes it, goes to a new
state, and outputs a packet on one of its ports. A stateful
NF can be naturally expressed as a finite-state machine
(FSM) of the form NFi = (Si, Ii,Portsi,Ti), where Si is
the set of NFi states, Ii is the initial state of NFi, Portsi
is the set of ports of NFi (where Portsi ∈ Ports), and Ti :
Pkts×Portsi× Si 7→ Pkts×Portsi× Si is the stateful (as
opposed to stateless, e.g., [52]) transfer function of NFi.
We model intended packet drops as sending packets to a
virtual “drop port” on the NF . To model the entire data
plane, the topology function τ : Ports 7→ Ports captures
the physical interconnection of NFs. Finally, we define
the state of the data plane, SDP, as the conjunction of the
states of its individual NFs.

There are many levels of abstraction to write such an
FSM on, from low-level code variables to high-level log-
ical states (e.g., proxy cache state). Irrespective of this

2Without loss of generality, we assume policies are in terms of phys-
ical NF instances as opposed to logical types of NFs. This is more
precise because the semantics of stateful NFs (e.g., NATs) requires
that both directions of a flow pass the same NF instance.

granularity, to be expressive for testing the model needs
to provide a mapping from the states to the correspond-
ing traffic specification and context:

stateToContextMapi : 2Si 7→ TrafficSpec×Ci

where Ci denotes the set of all contexts of NFi.
To illustrate this, let us revisit Figure 3. Figure 6

shows two possible ways of modeling L-IPS as an FSM.
In both Figures 6a and 6b, each of the red states maps
to 〈srcIP=Dept〉,〈alarmL−IPS〉—these mappings make
the models expressive. (In §5, we will discuss other re-
quirements of an FSM-based NF model in addition to
expressiveness.)
coun%ng'IPS'per'host'modeling'

1'

<0,$0>$
<1,0>$ <0,1>$

<10,0>$

…
$

<10,1>$ <11,0>$…
$

<0,10>$
<0,10>$ <0,11>$

…
$

…
$

ini#al&state&

(a) Each state is of the form
〈badAttmpCntH1 ,badAttmpCntH2 〉

coun%ng'IPS'per'flow'modeling'

1'

<OK,OK,…,OK>'

…
'

<BAD,OK,…,OK>' <OK,OK,…,BAD>'…
'

<BAD,BAD,…,OK>' <BAD,'…,BAD,OK>'…
'

…
'

ini#al&state&

(b) Each state is of the form
〈connStatus f1 , . . . ,connStatus f20 〉

Figure 6: Two example FSM models of L-IPS of Fig-
ure 3 assuming a world with 2 hosts and 20 flows.
The states corresponding to alarm (i.e., at least 10 bad
connection attempts) are highlighted in red.

Test traffic: Test traffic needs to trigger the policy
context by driving the data plane to a state that cor-
responds the context (e.g., a red state in Figure 6).
Thus, trace = 〈pkt1, . . . , pktm, . . . , pktr〉 is a test trace for
policy : trafficSpec× contextSeq 7→ portSeq iff:
1. Each packet pkt ∈ trace satisfies trafficSpec, and
2. SDP does not correspond to contextSeq after injection

of each of packets 〈pkt1, . . . , pktm−1〉, and
3. SDP corresponds to contextSeq after injection and pro-

cessing each of packets 〈pktm, . . . , pktr〉.
After trace is injected into the actual data plane,

test resolution involves checking whether packets
〈pktm, . . . , pktr〉 actually traverse ports portSeq.

Takeaways: This framework suggests two key design
implications: (1) While an FSM is a natural starting
point to model a stateful NF , an expressive model should
bridge the gap between its states and policy-mandated
traffic specification and context (§5); and (2) Test traf-
fic should satisfy the traffic specification and drive the
data plane to a state that corresponds to the policy con-
text (§6).

5 Data Plane Model Instantiation
In this section, we discuss how to instantiate a model of
the data plane. Recall from §3 that this stage takes as in-
put a library of NF models and the policy. The challenge
in building such a library is to model each type of NF
(e.g., stateful firewall, web proxy) such that these models

are (1) composable, despite diverse types of NFs oper-
ating at different network layers; (2) expressive, despite
stateful behaviors and hidden context; and (3) scalable to
explore. After presenting our high-level approach (§5.1),
we introduce a new abstract data unit for modeling input-
output of NFs and describe how we create scalable NF
models via an ensemble-of-FSMs representation (§5.2).
Finally, we describe how we construct the network-wide
model composing individual models of NFs (§5.3).

5.1 High-level idea
A natural starting point to model an NF that is compos-
able is the transfer function from prior work [52, 62].
Each NF is modeled as: l p← T(l p). Here, the input/out-
put is a located packet l p = (pkt, port), an IP packet
(header) along with its location in the network. How-
ever, as we saw in §2, this is not expressive on several
fronts w.r.t. state and context. To see how we can make it
expressive, let us revisit our abstract NF from Listing 1
and contrast it with the transfer function. This highlights
two key missing elements: (1) there is no notion of state,
and (2) the located packet has no binding to the relevant
context.

Our formalism from §4 suggests two extensions: (1)
Instead of the (stateless) transfer function, we need to
move to an FSM-like abstraction that captures state and
the state-to-context mappings; and (2) We need some
way to logically bind a packet to its relevant context. To
this end, we extend the located packet abstraction so that
it carries the relevant context history as it traverses the
data plane model. Then, we can consider an NF as an
FSM that processes this extended located packet and ex-
plicitly includes the policy-relevant context in the out-
going packet. In a nutshell, this summarizes our basic
insight to create an expressive model.

Next, we discuss how we translate this insight into a
concrete realization. We also address the scalability re-
quirement of NF models, as a naive FSM model will
have too many states to explore.

5.2 Modeling individual NFs
The BUZZ Data Unit (BDU): We start by presenting
our approach to modeling the extended located packet
idea described above and explain how it enables com-
posability, expressiveness, and scalability. Concretely, a
BDU is a struct as shown in Listing 2 that extends a lo-
cated packet [52, 62] in three key ways:

1. Multi-layer abstraction with IP as the common de-
nominator: Unlike a located packet, a BDU can ex-
plicitly encode higher-layer semantics (e.g., HTTP
GET or responses). The key to achieving model com-
posability while enabling higher-layer semantics is
simple. Borrowing from the design of IP, we pick the
network layer as the narrow waist across diverse NFs.

Listing 2: BDU is the I/O unit of an NF model.
1 struct BDU{
2 // IP fields
3 int srcIP, dstIP, proto;
4 // transport
5 int srcPort, dstPort;
6 // TCP specific
7 int tcpSYN, tcpACK, tcpFIN, tcpRST;
8 // HTTP specific
9 int httpGetObj, httpRespObj;

10 // BUZZ-specific
11 int dropped, networkPort, BDUid;
12 // Each NF updates traffic context
13 int c-Tag[C_TAG_MAX]; //context tags
14 int p-Tag; //provenance tag
15 ...};

Each NF model processes only relevant fields of an
input BDU (e.g., an L2 switch ignores HTTP fields).

2. Tag fields for context and provenance: First, to ensure
a BDU carries its context as it goes through the net-
work, we introduce the context tag, or c-Tag, field,
which explicitly binds the BDU to its context (e.g.,
1 bit for cache hit/miss, 1 bit for alarm/no-alarm).
When the NF model receives an input BDU, it gen-
erates an output BDU with the updated c-Tag (e.g.,
a proxy may set the cache hit bit). Second, a BDU
preserves its provenance via its p-Tag field. This
field encodes the BDU’s original 5-tuple indicating
its TrafficSpec. This binding is needed because cer-
tain NFs (e.g., NATs, proxies) rewrite the original
IP 5-tuple of a BDU. We ensure the provenance field
p-Tag is left unchanged by NF models the BDU tra-
verses.

3. Aggregation for scalability: Each BDU can represent
a sequence of packets associated with higher-layer NF
operations. This aggregation helps shrink the search
space for finding test traffic (§6). For example, all
packets of an HTTP reply are captured by a single
BDU with the httpRespObj field indicating the re-
trieved object id; a proxy’s state (e.g., cache contents)
gets updated after receiving this BDU.
To design a BDU struct in practice, we need to iden-

tify the protocols that affect any context mentioned in the
policies. The struct’s fields are simply the union of the
policy-related headers of these protocols. For example, if
our policy involves a stateful firewall, then TCP SYN and
ACK should be part of the fields, as these are the fields
that denote connection establishment semantics. Since
each NF model processes only relevant fields of an in-
coming BDU, our BDU abstraction is future-proof. For
example, if we later need to add an ICMP field to the
BDU of Listing 2, existing NF models will remain un-
changed, as they simply ignore this new field.

Ensemble of FSMs representation: While there are
many ways to expressively model a stateful NF , not all
models may be scalable. To see why, consider model-
ing the state-space as the concatenation of state variables

we have identified (e.g., in a proxy this concatenation
may have three variables: per-host and per-server con-
nection states and per-object cache state). Taking this
approach means with var variables each with val possi-
ble values, such a monolithic FSM has valvar states (i.e.,
an exponential growth with the number of values). While
it may be tempting to reduce the state space by moving
to a layer-specific abstraction (e.g., a proxy model that
ignores TCP and purely works at the HTTP layer), this
is not viable, as the models of diverse NFs will not be
composable.

To build a scalable FSM without compromising com-
posability, we borrow insights from the design of actual
NFs. NF programs in practice are not monolithic; rather,
they independently track “active” connections, and dif-
ferent functional components of an NF are segmented;
e.g., client- vs. server-side handling in a proxy are sepa-
rate. This naturally suggests two opportunities:
1. Decoupling independent traffic units: Consider a

stateful firewall. If modeled as a monolithic FSM,
each state of the model involves states of individual
connections. While this is expressive, it is not scal-
able as the number of connections grow. By decou-
pling per-connection states, we model the NF as an
ensemble of FSMs. In general, this insight cuts the
number of states from |state||conn| to |conn| × |state|,
where |conn| and |state| denote the number of connec-
tions and states per connection, respectively.

2. Decoupling independent tasks: To illustrate this,
consider a proxy. The code of a real proxy
(e.g., Squid [18]) typically has three logical
modules in charge of managing client-side and
server-side connections and the cache. We de-
couple such logically independent tasks in the
model so that instead of a monolithic FSM model
with each state being of the “cross-product” form
〈client TCP state,server TCP state,cache content〉,
we use an ensemble of three smaller FSMs,
i.e., 〈client TCP state〉, 〈server TCP state〉, and
〈cache content〉. In general, if an NF has |T | inde-
pendent tasks with task i having Si states, this idea
cuts the number of states from ∏

|T |
i=1 |Si| to ∑

|T |
i=1 |Si|.

Putting it together: Taken together, our BDU abstrac-
tion as the traffic I/O unit and FSM ensembles as NF
models satisfy the three modeling requirements of com-
posability, expressiveness, and scalability (§5.1). As an
illustration, Listing 3 shows a code snippet of a proxy
model focusing on the actions when a client requests a
non-cached HTTP object and while the proxy has not es-
tablished a TCP connection with the server. Each NF
instance is identified by a unique id that allows us to
index into the relevant variables. Since the traffic I/O
of the model (Line 1) is a BDU, the model is com-

Listing 3: Proxy as an ensemble of FSMs.
1 BDU Proxy(NFId id, BDU inBDU){
2 ...
3 if ((frmClnt(inBDU)) && (isHttpRq(inBDU))){
4 if (!cached(id, inBDU)){
5 if(srvConnEstablished(id, inBDU))
6 outBDU=rqstFrmSrv(id, outBDU);
7 else
8 outBDU=tcpSYNtoSrv(id, inBDU); }}
9 //set c-Tags based on context (e.g., hit/miss)

10 outBDU.c-Tags = ...
11 ...
12 return outBDU;}

posable with other NF models. Second, instead of a
monolithic FSM, it is partitioned into these three dimen-
sions (i.e., client-, server-side connections and cache)
making the model scalable. The state variables of dif-
ferent proxy instances are naturally partitioned per NF
instance (not shown) and help track the relevant NF
states, and are updated by the NF-specific functions such
as srvConnEstablished.3 If the input inBDU is
an HTTP request (Line 3) and the requested object is
not cached (Line 4), the proxy checks the status of the
server TCP connection. If it has already been established
(Line 5), the output BDU is an HTTP request (Line 6).
Otherwise, the proxy initiates a TCP connection with
the server (Line 8). Finally, note that the proxy updates
c-Tags of the output BDU before sending it out.

5.3 Composing the data plane model
Next we discuss how to instantiate a model of the data
plane given the models of individual NFs. Listing 4 il-
lustrates this for the network of Figure 2. BUZZ uses
the policy to automatically concretize the relevant model
parameters (e.g., lines 3–4 specify which content/host to
watch). Lines 8–10 model the stateless switch, where we
model a switch as a static data store lookup [52]. Note
that a BDU captures its current location in the network
via its networkPort field, which gets updated as it tra-
verses the network. Function lookUp() takes an input
BDU, looks up its forwarding table, and creates a new
outBDU with its port value set based on the forwarding
table.

Similar to prior work [52,75], our network model pro-
cesses one-packet-per-NF at a time, without modeling
(a) batching or queuing inside the network, (b) parallel
processing inside NFs, or (c) simultaneous processing
of different packets across NFs. As a result, the data
plane model is a simple loop (Line 26); in each iteration,
a BDU is processed (Line 27) in two steps: (1) it is for-
warded to the other end of the current link (Line 28),
(2) it is then passed as an argument to the NF con-
nected at this end (e.g., a switch or firewall) (Line 29).
The output BDU is then processed in the next itera-

3The choice of passing ids and modeling state in per-id global vari-
ables is not fundamental but an artifact of using C/KLEE.

Listing 4: Data plane pseudocode for Figure 2.
1 // Symbolic BDUs to be instantiated (see §6).
2 BDU A[20];
3 int objToWatch = XYZ.com;
4 int hostToWatch = H2;
5 // Global state variables
6 bool Cache[2][100]; // 2 proxies, 100 objects
7 // Model of a switch
8 BDU Switch(NFId id, BDU inBDU){
9 outBDU=lookUp(id, inBDU);

10 return outBDU;}
11 // Model of a monitoring NF
12 BDU Mon(NFId id, BDU inBDU){
13 ...
14 outBDU = inBDU;
15 if (isHttp(id, inBDU)){
16 takeMonAction(id, inBDU);/* if inBDU
17 contains objToWatch destined to
18 hostToWatch, set outBDU.dropped to 1.*/}
19 ...
20 return outBDU;}
21 // Model of a proxy NF; See Listing 3
22 BDU Proxy(NFId id, BDU inBDU){...}
23 main(){
24 // Model of the data plane
25 initializeProvenanceTags(A[]);
26 for each injected A[i]
27 while (!DONE(A[i])){
28 Forward A[i] on current link;{
29 A[i] = Next_NF(A[i]);{
30 assert(
31 (!(A[i].p-Tag==hostId[H2]))
32 ||(!(A[i].c-Tags[cacheContext]==objToWatch));
33 }}}}

tion. The loop is executed until the BDU is “DONE”;
i.e., it either reaches its destination or is dropped by an
NF .4 Based on the policy, wee identify the Next NF
in line 29. (As an optimization, our implementation pre-
populates switches’ lookup() and Next NF() based
on shortest-path routing between policy-relevant NFs.)
The role of the assert statement will become clear
in §6, where we discuss test traffic generation.

6 Test Traffic Generation
In this section, we discuss how to generate test traf-
fic given the policies and the data plane model. First,
we highlight why we choose symbolic execution (SE)
as a starting mechanism to explore the data plane
model (§6.1). Then we present our domain-specific opti-
mizations to scale SE to generate abstract test traffic con-
sisting of BDUs (§6.2). Then, we show how to convert
this abstract test traffic into concrete test traffic (§6.3).
Finally, we present an extension to test dynamic NF sce-
narios (§6.4).

6.1 Why symbolic execution (SE)?
For BUZZ to be usable by operators at human interactive
timescales, it should generate test traffic within seconds
to a few minutes even for large networks. This is chal-
lenging on two fronts:

4NFs may be time-triggered (e.g., TCP time-out), so we capture
time using a BDU field. These “time BDUs” are injected by the net-
work model periodically to update time-related states.

• Traffic space explosion: Unlike prior work where an
IP packet header is an independent unit of test (hence
mandating a search only over the header space [51,
53,75,76]), we need to search over a very large traffic
space of all possible sequences of traffic units. While
BDUs, as compared to IP packets, improve scalability
via aggregation (§5.2), we still have to search over the
space of possible BDU value assignments.

• State space explosion: Even though using the FSM
ensembles abstraction significantly reduces the num-
ber of states (§5.2), it does not address state space ex-
plosion due to composition of NFs; e.g., if the models
of NF1 and NF2 can reach K1 and K2 states, respec-
tively, their composition will have K1×K2 states.
Unfortunately, several canonical search solutions (e.g.,

model checking [4,36] and AI planning tools [7]) do not
scale beyond 5-10 stateful NFs; e.g., model checking
took 25 hours for policy involving only two contexts.

As the first measure to address the search scalability
challenge, we choose symbolic execution (SE), which
is a well-known approach to tackle state-space explo-
sion [30]. At a high level, an SE engine explores pos-
sible behaviors of a program (in our case, the data plane
model) by assigning different values to its symbolic vari-
ables [32]. In our implementation, we use KLEE [31], a
popular SE engine.

6.2 Generating abstract test traffic
BUZZ employs SE as follows. For each
policy : trafficSpec× contextSeq 7→ portSeq, we con-
strain the symbolic BDUs to satisfy the TrafficSpec.
Then, to drive the SE engine to generate test traffic that
satisfies contextSeq = 〈contextNF1 , . . . ,contextNFN 〉, we
introduce the logical negation of contextSeq as an asser-
tion in the network model code. In practice, if contextSeq
involves contexts of N NFs context1, . . . ,contextN ,
BUZZ instruments the network model with an assertion
of the form ¬(context1 ∧ ·· · ∧ contextN), where each
term is expressed in terms of BDUs’ c-Tag sub-fields.
The assertion guides the SE engine toward finding a
“violation” of the assertion by assigning concrete values
to symbolic BDUs.5 In effect, SE generates abstract test
traffic by concretizing a sequence of symbolic BDUs.
The abstract test traffic will be then translated into
concrete test traffic (§6.3), which in turn, will be injected
into the actual data plane. The injected concrete test
traffic must traverse the sequence of ports specified in
portSeq; otherwise, the actual data plane violates policy.

To illustrate this, let us revisit Listing 4, where we
want a test trace to check cached responses from the
proxy to host H2. Lines 30-32 show the assertion to
get a sequence of i BDUs that change the state of the

5Note that an assertion of the form ¬(A1 ∧·· ·∧An), or equivalently
(¬A1 ∨·· ·∨¬An), is violated only if each term Ai is evaluated to true.

Listing 5: Assertion pseudocode for Figure 3 to
trigger alarms at both IPSes.

1 // Global state variables
2 int L_IPS_Alarm[noOfHosts];//alarm per host
3 int H_IPS_Alarm[noOfHosts];//alarm per host
4 ...
5 //A[] is an array of symbolic BDUs
6 ...
7 assert((!(A[i].c-Tags[L_IPS_Alarm]==1)) ||
8 (!(A[i].c-Tags[H_IPS_Alarm]==1)));

data plane such that the ith BDU in the abstract traffic
trace: (1) is from host H2 (Line 31), and (2) corresponds
to a cached response (Line 32). For example, the SE
engine may generate 6 BDUs: three BDUs between a
host other than H2 in the Dept and the proxy to estab-
lish a TCP connection (the 3-way handshake) where the
third BDU has httpGetObj = httpObjId (this ef-
fectively makes the proxy cache the object), followed
by another 3 BDUs, this time from H2 with the field
httpGetObj set to httpObjId to induce a cached
response. Similarly, Listing 5 shows an assertion in
Lines 7-8 to trigger alarms at both L-IPS and H-IPS of
the example from Figure 3.

While SE is significantly faster than other candidates,
it is not sufficient for interactive use. Even after a broad
sweep of configuration parameters to customize KLEE, it
took several hours for a small network (§8.3). To scale to
large topologies, we implement two optimizations:
• Minimizing number of symbolic variables: Making

an entire BDU structure (Listing 2) symbolic forces
KLEE to find values for every field. Instead, BUZZ
identifies the policy-related subset of BDU fields and
only makes these symbolic and concretizes the rest.
For instance; when BUZZ is testing a data plane with
a stateful firewall but no proxies, it makes the HTTP-
relevant fields concrete (i.e., non-symbolic) by assign-
ing a don’t care value ∗ (represented by -1 in our im-
plementation) to them.

• Scoping values of symbolic variables: The
trafficSpec scopes the range of values a BDU may
take. BUZZ further narrows this range using the
policy and protocols semantics. For example, even
though the tcpSYN field is an integer, BUZZ con-
strain it to be either 0 or 1.

Test coverage: Ideally, test traffic should cover the
space of all possible traffic, including (1) packet traces
of all possible lengths (in terms of number of packets in
the trace), and (2) enumerating all possible values of the
fields of each packet. However, this is impractical with
respect to both test traffic generation and injection over-
heads. That is why even in case of simple reachability
policies and stateless data planes in prior work [75], only
one sample packet out of an equivalence class of pack-
ets (i.e., the set of all packets that experience the same
forwarding behavior) is selected as the test packet. Sim-

ilarly, we define our test coverage goal as obtaining one
test trace to exercise each policy. In §8, we will show that
BUZZ (1) successfully satisfies this goal, and (2) can be
used to satisfy alternative coverage goals.

6.3 Generating concrete test traffic
The output of the SE step is a sequence of BDUs
BDUSeqSE. Since BDUs are abstract, we cannot directly
inject them into the actual data plane. Moreover, we can-
not simply do a one-to-one translation between BDUs
and raw packets and do a trace replay [3,75] because we
need to honor session semantics (e.g., for TCP or FTP) of
the policies—several parameters of such sessions (e.g.,
TCP seq. numbers) are outside of our control and are
chosen by the OS of the end hosts at run time.

To this end, we translate abstract test traffic into test
traffic injection scripts that are run on end hosts to inject
concrete test traffic. The translation algorithm uses a li-
brary of traffic injection commands that maps a known
BDUSeql into a script. For example, if a BDUSeq con-
sists of 3 BDUs for TCP connection establishment and
a web request, we map this into a wget with the re-
quired parameters (e.g., server IP and object URL). In
the most basic case, the script will be an IP packet. Using
our domain knowledge, we populated this library with
commands (e.g., getHTTP(.), sendIPPacket(.))
that support IP, TCP, UDP, FTP, and HTTP.

For completeness, its pseudocode is presented in Ap-
pendix A. Here we give the intuition behind our trans-
lation algorithm. We partition the BDUSeqSE based
on srcIP-dstIP pairs (i.e., communication end-points) of
BDUs; i.e., BDUSeqSE =

⋃
l BDUSeql. Then for each

partition BDUSeql, we do a longest-specific match (i.e.,
match on a protocol at the highest possible layer of the
network stack) in our test script library, retrieve the cor-
responding command for each subsequence, and then
concatenate these commands to form a traffic injection
script.

6.4 Testing dynamic NF deployments
Next we describe the extensions needed to handle dy-
namic NF deployment scenarios. Intuitively, the goal in
these scenarios is to ensure the change is transparent with
respect to stateful semantics of traffic. To be concrete, let
Policybefore and Policyafter denote the policies that the op-
erator intends to enforce before and after the “change”
occurs, where the change is captured by changeCond
(e.g., an NF’s scale-out, or failure). We define the correct
enforcement of a dynamic NF deployment policy as fol-
lows: For each data plane state s ∈ SDP, if changeCond
is triggered while the data plane is in s, then Policyafter is
enforced correctly.

In Figure 4, Policybefore is the top part of the pol-
icy graph (i.e., involving IPS1), Policyafter is the bot-

tom part of the policy graph (i.e., involving IPS2), and
changeCond is IPS1’s scale-out. Irrespective of the state
in which IPS1 scales out, IPS2 must start processing traf-
fic with the same state at which IPS1 has scaled out.

Abstract test traffic generation for dynamic NF de-
ployment scenarios is slightly different from what we de-
scribed in §6.1. At a high-level, for every data plane state
s ∈ SDP, BUZZ (1) generates test traffic to drive the data
plane to s, (2) triggers changeCond (e.g., by scaling-out
an NF), and (3) test if the data plane is compliant with
Policyafter. For completeness, we describe the full proce-
dure in Appendix B.

7 Implementation
BUZZ comprises ≈ 10,000 lines of code, including
NF models, code for test traffic generation, test res-
olution, extensions to KLEE, and the operator inter-
faces. The entire workflow of BUZZ is implemented
atop OpenDayLight [14]. The source code is avail-
able at [1].

Operator interface: Operators can enter policies us-
ing either a text-based or a graphical interface (example
screenshots in Appendix C). BUZZ then performs a set
of sanity checks on the policies and warns the operator
of any mistakes (e.g., an overlap between TrafficSpec of
two policies). This I/O is the only effort that BUZZ needs
from the operator. Once policies are entered, the work-
flow of BUZZ (Figure 5) is entirely automated.

NF models: We have written C models for switches,
ACL devices, stateful firewalls, NATs, L4 load balancers,
HTTP and FTP proxies, passive monitoring, and sim-
ple intrusion prevention systems (e.g., counting failed
connection attempts and matching payload signatures).
Our models are between 10 (for a switch) to 100 lines
(for a proxy cache) of C code. We reuse common tem-
plates across NFs; e.g., TCP connection sequence used
in both the firewall and proxy models. Note that model-
ing NFs is a one-time offline task and can be augmented
with community efforts [12]. We validated models by
inspecting call graphs visualization [9, 21] on extensive
manually generated input traffic to ensure the models are
correct.

Test traffic generation and injection: We use KLEE
with the optimizations discussed in §6.2 to generate
BDU-level test traffic (i.e., abstract test traffic), and then
translate it to test scripts that run at the injection points.

Test traffic monitoring and test resolution: We use
offline monitoring via tcpdump (with suitable filters).
BUZZ uses the monitoring logs to determine the test re-
sult. For completeness, we have provided the monitor-
ing and test resolution pseudocode in Appendix D. Here
we give the intuition behind this process. From the in-
put policy, BUZZ inspects the monitoring logs to check

whether traffic has traversed the policy-mandated ports.
If so, the test concludes with success. Otherwise, a pol-
icy violation along with the first violating port on which
traffic appeared is declared.

8 Evaluation
In this section, we show that:
1. BUZZ can help detect a broad spectrum of both new

and known policy violations (§8.1);
2. BUZZ works in close-to-interactive time scales (i.e.,

within two minutes) even for large topologies with
100s of switches and stateful NFs (§8.2); and

3. BUZZ’s design is critical for its scalability (§8.3).

Testbed and topologies: We use a testbed of 13 server-
grade machines (20-core 2.8GHz servers with 128GB
RAM) connected via direct 1GbE links and a 10GbE
Pica8 OpenFlow switch. On each server, with KVM
installed, we run injectors and software NFs as sepa-
rate VMs, connected via Open vSwitch. The specific
stateful NFs are iptables [8] as a NAT and a stateful fire-
wall, Squid [18] as a proxy, Snort [17] and Bro [65] as
IPS/IDS, Balance [2], and PRADS [15].

In addition to the example scenarios from §2, we use
8 randomly selected recent topologies from the Inter-
net Topology Zoo [19] with 6–196 nodes. We also use
two larger topologies (400 and 600 nodes) by extend-
ing these topologies. These serve as switch-level topolo-
gies; we extend them with different NFs to enforce poli-
cies. For the scalability experiments, we augment each
switch-level topology with stateful NFs (§8.2) by con-
necting each stateful NF to a randomly selected switch.
As a concrete policy enforcement scheme, we used prior
work to handle dynamic middleboxes [43]. (We reiter-
ate designing this scheme is not the goal of BUZZ; we
simply needed some concrete solution.)

8.1 BUZZ end-to-end use cases
First, we demonstrate the effectiveness of BUZZ in find-
ing both new and known policy violations.

Finding new violations: Using BUZZ, we uncovered
several policy violations in recent systems, a few of
which we present here:
• Violations due to reactive control in Kinetic [10]:

We set up a simple policy composed of an IDS fol-
lowed by a Kinetic dynamic firewall. By generating
malicious traffic, BUZZ found that the first few mali-
cious packets are wrongly let through. The root cause
of this violation is the delay between (1) the IDS’s de-
tection of malicious traffic and sending an “infected”
event to the controller, and (2) the controller’s recon-
figuration of the data plane to block malicious traffic.

• Incorrect state migration using OpenNF [46]: We
used the OpenNF-enhanced PRADS [15, 46] to en-

force the following policy: if a host spawns more than
Thresh TCP connections, its traffic should be sent to
a rate limiter. BUZZ revealed a violation due to the
incorrect state migration when we elastically scale a
PRADS instance. Specifically, BUZZ made a host es-
tablish n1 and n2 sessions with a server before and af-
ter migration, respectively, such that: n1, n2<Thresh,
but n1+n2>Thresh. BUZZ then found that traffic did
not go to the rate limiter. This is because OpenNF
does not migrate the session count (i.e., n1) from
PRADS1 to PRADS2.

• Faulty policy composition using PGA [66]: We used
PGA6 to compose two policies on traffic from H1 to
H2: it should pass a load balancer and a stateful fire-
wall (policy1), and if it is found suspicious, it then
should go to an IPS (policy2). After enforcing the
composition of the two policies, BUZZ found that the
test traffic exercising policy1 did not go through the
firewall. This is because the SDN switch rules corre-
sponding to policy1 took precedence over the switch
rules for policy2, rendering policy2 ineffective.

• Incorrect tagging using FlowTags [43]: BUZZ
helped us identify a bug in our FlowTags implementa-
tion in OpenDaylight [14]. In the scenario of Figure 2,
the controller code in charge of decoding tags (e.g., to
distinguish hosts behind the proxy) would assign the
same tag value to traffic from different hosts. Our test
traffic showed that the proxy’s cache hit replies by-
pass the monitoring device. BUZZ’s traffic trace in-
dicated that the tag values of cache miss/hit are iden-
tical; this gave us a hint as to focus on the controller
code in charge of configuring the tagging behavior of
the proxy.

Finding known violations: We used a “red team–blue
team” exercise, to evaluate the utility of BUZZ in finding
known policy violations. In each scenario, the red team
(Student 1) secretly picks one of the policies (at random)
from the set of policies that is known to both teams, and
creates a failure that causes the network to violate this
policy; e.g., misconfiguring L-IPS count threshold. The
blue team (Student 2) uses BUZZ to identify a violation
and localize the source of the policy violation.

Table 1 highlights the results for a subset of these
scenarios and the specific traces that BUZZ generated.
Three of the scenarios use the motivating examples from
§2. In the Conn. limit. scenario, two hosts are connected
to a server through an authentication server to prevent
brute-force password guessing attacks. The authentica-
tion server is expected to halt a host’s access after 3 con-
secutive failed log in attempts. Finally, in the asymmetric
routing scenario, upstream and downstream traffic tra-
verse different paths [55]. In all scenarios, the blue-team

6We used our implementation of PGA, as its code was unavailable.

“Red Team” scenario BUZZ test trace Violating
NF

Cascaded NATs using Click
IPRewriter [54] ; NAT2 incor-
rectly rewrites srcIP triggering
“assertion failure” on NAT1 [38]

H1 attempts to access to the
server

NAT2

Multi-stage triggers (Fig. 3); L-
IPS miscounts by summing three
hosts

H1 makes 9 scan attempts
followed by 9 scans by H2

L-IPS

Conn. limit.; Login counter re-
sets

H1 makes 3 continuous log
in attempts with a wrong
password

Login
counter

Conn. limit.; S1 missing switch
forwarding rules from Auth-
Server to the protected server

H2 makes a log in attempt
with the correct password

S1

Conflicting firewall rules: Rule
1, if internal connect to external
IP, allow IP to access any inter-
nal port; Rule 2, block external
access to internal port 443

A tcp connection from in-
ternal C1 to external S1 fol-
lowed by an access from S1
to C1 : port443

Firewall

Asymmetric routing; Client-to-
server TCP traffic goes through
Bro, but the response bypasses
Bro. Since Bro does not see
the SYN ACK packet, it (mis-
takenly) blocks the connection.

a tcp connection followed by
tcp data packets

switch
close to
dst.

Table 1: Example red-blue team scenarios.

successfully localized the failure (i.e., which NF or link
is the root cause) within 10 seconds.

It is useful at this time to reiterate that these types of
violations could not be exposed by existing debugging
tools such as ATPG [75], ping, or traceroute, as they do
not capture violations w.r.t. stateful/context-dependent
aspects. We also tried using fuzzing to generate test traf-
fic, using both Scapy [16] and a custom fuzzer. Across
all scenarios, fuzzing did not find any test trace within 48
hours. This is because we need targeted search to trigger
specific data plane states, which fuzzing is not suited for.

8.2 Scalability
Recall that we envision operators using BUZZ in an in-
teractive fashion; i.e., the time for test generation should
be within 1-2 minutes even for large networks with hun-
dreds of switches and stateful NFs.

We evaluate how BUZZ scales with topology size and
policy complexity. We define policy complexity as the
number of stateful NFs whose contexts appear in the pol-
icy. We consider a baseline policy that has 3 stateful NFs
(a NAT, followed by a proxy, followed by a stateful fire-
wall). The firewall is expected to block access from a
fixed subset of origin hosts to certain web content. To
create more complex policies, we linearly “chain” to-
gether repetitions of the baseline policy.

Figure 7 shows the average test traffic generation la-
tency for various topology sizes and policy complexi-
ties. There are two takeaways. First, BUZZ generates
test traffic in human-interactive time scales; even in the
largest topology with 600 switches and the most com-
plex policy it takes only 113 seconds. Second, BUZZ’s
test traffic generation latency only depends on the policy
complexity: if we increase the topology size without in-

1
10

100
1,000

1e+04
1e+05

 0 100 200 300 400 500 600

T
es

t
tr

af
fi

c
g

en
.

la
te

n
cy

 (
s)

Topology size (# of switches)

BUZZ, pol. complexity of 10% of topo. size
BUZZ, pol. complexity of 3
BUZZ, pol. complexity of 9

Model checking, pol. complexity of 3

Figure 7: Test generation latency of BUZZ.

crease the policy complexity, this will not add to the test
traffic generation latency. This is expected, as test traf-
fic generation involves a search over the data plane state
space, which naturally is a function of stateful NFs.

To put the traffic generation latency of BUZZ in per-
spective, Figure 7 also shows the traffic generation la-
tency of a strawman solution of using the model checker
CMBC [4]. Even on a small 9-node topology (6 switches
and 3 stateful NFs), it took 25 hours; i.e., on a 90× larger
topology, BUZZ is at least five orders of faster.

Test coverage: We have evaluated the test coverage of
BUZZ, and here, we discuss the three takeaways. First,
across all scenarios of §8.1 and §8.2, we explicitly enu-
merated all contexts, and observed that BUZZ provided
full coverage with respect to the coverage goal of §6.1
(i.e., one test case to trigger each context). Second, we
extended BUZZ to satisfy an alternative coverage goal
of generating > 1 test trace per context. We enabled
this through an iterative test generation process, where in
each iteration, we obtain a new test case by using asser-
tions such that a previously generated test case will not
be generated again. Finally, while, in general, using mul-
tiple test cases per context may reveal new violations, in
our experiments, we did not find new violations by doing
so.

8.3 BUZZ design choices
Next, we do a component-wise analysis to demonstrate
the effect of our key design choices and optimizations.

BDUs vs. packets: To see how aggregating a sequence
of packets as a BDU helps with scalability, we use BUZZ
to generate test traffic to test the proxy-monitor policy
(Figure 2), first in terms of BDUs and then in terms of
raw MTU-sized packets, on varying sizes of files to re-
trieve from the web. Figure 9 shows that on the topol-
ogy with 600 switches and 300 stateful NFs, in case of
packet-level test traffic generation, test traffic generation
latency increases linearly with the file size. On the other
hand, since the number of test packets is dominated by
the number of object retrieval packets, aggregating all
file retrieval packets as one BDU significantly cuts the
latency. (The results, not shown, are consistent across
topologies as well as using FTP instead of HTTP.)

Impact of SE optimizations: We examine the effect of
the SE-specific optimizations (§6.2) in Figure 8. To put

1

10

100

1,000

e+4

e+5

6 52 92 196 400 600

T
es

t
tr

af
fi

c
g

en
.

la
te

n
cy

 (
s)

Topology size (# of switches)

BUZZ
Min # of sym. vars.

No optimizations, smallest topology

Figure 8: Improvements due to SE optimizations.

these numbers in context, using KLEE without the opti-
mizations on a network of six switches and a policy chain
with three stateful NFs takes≥ 19 hours. We see that (1)
minimizing the number of symbolic variables cuts the
test generation latency by three orders of magnitude, and
(2) scoping the values yields a further > 9× reduction.

9 Related work
Network verification: There is a rich literature on
checking reachability [40, 44, 51, 52, 57, 58, 73, 74]. The
work closest to BUZZ is ATPG [75]. As discussed
earlier, these do not capture the stateful behaviors and
context-dependent policies.

Code verification: The work in [39] focuses on finding
Click [54] code faults (e.g., crash) as opposed to verify-
ing traffic processing policies (e.g., reachability). NICE
combines model checking and SE to find bugs in control
plane software [33]. BUZZ is complementary to these
efforts.

Modeling stateful networks: Joseph and Stoica formal-
ized middlebox forwarding behaviors but do not model
stateful behaviors [50]. The only work that also mod-
els stateful behaviors are FlowTest [41], Symnet [71],
and the work by Panda et al [64]. FlowTest’s [41] high-
level models are not composable and the AI planning ap-
proaches do not scale beyond 4-5 node networks. Sym-
net [71] uses models written in Haskell to capture NAT
semantics similar to our example; based on published
work we do not have details on their models, verification
procedures, or scalability. The work by Panda et al. is
different from BUZZ in terms of both goals (only reach-
ability policies) and techniques (static checking) [64].

Policy enforcement: There are several frameworks to
facilitate policy enforcement [10,43,46,63,66,67]. There
are also efforts to generate correct-by-construction SDN
programs [25, 27, 45]. Our work is complementary, as
it checks whether the intended behavior manifests cor-
rectly in the actual data plane.

Simulation and shadow configurations: Simula-
tion [13], emulation [6, 11], and shadow configura-
tions [24] are common methods to model/test networks.
BUZZ is orthogonal in that it focuses on generating test
traffic. While our current focus is on active testing,

1

10

100

1,000

e+4

e+5

e+6

T
es

t
tr

af
fi

c
g

en
.

la
te

n
cy

 (
s)

 10KB 100KB 1MB 10MB
 file size

BUZZ
Model I/O = packet

Figure 9: BDUs vs. packets for various request sizes.

BUZZ applies to these platforms as well. We also posit
that our techniques can be used to validate these efforts.

10 Discussion
Model synthesis: BUZZ uses hand-generated models
of NFs. A natural direction for future work is to use
program analysis to automatically synthesize NF models
from middlebox code (e.g., [35]) or logs (e.g., [28]).
Soundness vs. completeness: For “infinite-state” sys-
tems, it is not possible to simultaneously achieve both
guarantees [49]. BUZZ’s design favors soundness (i.e.,
if we report a violation, then the data plane actually has
that behavior) over completeness (i.e., if we do not find
a violation, then there are no bugs). In our setting, this is
a worthwhile trade-off as we can repeat tests for greater
coverage [49, 75] (e.g., see §8.2).
New use cases: Looking forward, we believe BUZZ
can be extended to systematically check interoperabil-
ity of new protocols with middleboxes [48]. As prelim-
inary evidence, we were able to replicate a known prob-
lem with a middlebox-cooperative TCP extension called
HICCUPS [37], where the protocol fails in the presence
of middleboxes that modify certain headers or if there are
multiple middleboxes on the path.

11 Conclusions
BUZZ tackles a key missing piece in network
verification—checking context-dependent policies in
stateful data planes introduces fundamental expressive-
ness and scalability challenges. We make two key contri-
butions to address these challenges: (1) Developing ex-
pressive and scalable network models; and (2) An opti-
mized application of symbolic execution to tackle state-
space explosion. We demonstrate that BUZZ is scalable
and it can help diagnose policy violations.

Acknowledgments
This work was supported in part by grant number
N00014-13-1-0048 from the Office of Naval Research,
NSF awards 1440056 and 1440065, and Intel Labs’ Uni-
versity Research Office. Seyed K. Fayaz was supported
by the VMware Graduate Fellowship and CMU Bertucci
Fellowship. We thank the anonymous reviewers and our
shepherd Kobus Van der Merwe for their suggestions.

References
[1] BUZZ. https://github.com/network-policy-

tester/buzz.

[2] Balance. http://www.inlab.de/balance.html.

[3] Bit-Twist. http://bittwist.sourceforge.net.

[4] CBMC. http://www.cprover.org/cbmc/.

[5] Cisco’s Reflexive Access Lists. http://bit.ly/1O8N5p2.

[6] Emulab. http://www.emulab.net/.

[7] Graphplan. http://www.cs.cmu.edu/˜avrim/
graphplan.html.

[8] iptables. http://www.netfilter.org/projects/
iptables/.

[9] KCachegrind. http://kcachegrind.sourceforge.
net/html/Home.html.

[10] Kinetic. http://resonance.noise.gatech.edu/.

[11] Mininet. http://yuba.stanford.edu/foswiki/bin/
view/OpenFlow/Mininet.

[12] Network Function Virtualization Research Group (NFVRG).

[13] ns-3. http://www.nsnam.org/.

[14] OpenDaylight project. http://www.opendaylight.
org/.

[15] PRADS. http://gamelinux.github.io/prads/.

[16] Scapy. http://bit.ly/1FiqZyK.

[17] Snort. http://www.snort.org/.

[18] Squid. http://www.squid-cache.org/.

[19] The Internet Topology Zoo. http://www.topology-zoo.
org/index.html.

[20] Troubleshooting the network survey. http://eastzone.
github.io/atpg/docs/NetDebugSurvey.pdf.

[21] Valgrind. http://www.valgrind.org/.

[22] High Performance Service Chaining for Advanced Software-
Defined Networking (SDN) . http://intel.ly/1ilX5PG,
2014.

[23] Tackling the Dynamic Service Chaining Challenge of NFV/SDN
Networks with Wind River and Intel. http://intel.ly/
1EFmEVQ, 2014.

[24] R. Alimi, Y. Wang, and Y. R. Yang. Shadow configuration as a
network management primitive. In Proc. SIGCOMM, 2008.

[25] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker. NetKAT: Semantic foundations
for networks. In Proc. POPL, 2014.

[26] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford. A
slick control plane for network middleboxes. In Proc. HotSDN,
2013.

[27] T. Ball, N. Bjorner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sa-
giv, M. Schapira, and A. Valadarskyi. VeriCon: Towards verify-
ing controller programs in software-defined networks. In Proc.
PLDI, 2014.

[28] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D.
Ernst. Leveraging existing instrumentation to automatically in-
fer invariant-constrained models. In Proc. ESEC/FSE, 2011.

[29] M. Boucadair, C. Jacquenet, R. Parker, D. Lopez, J. Guichard,
and C. Pignataro. Differentiated Service Function Chaining
Framework. https://tools.ietf.org/html/draft-
boucadair-service-chaining-framework-00,
2013.

[30] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic Model Checking: 10ˆ20 States and Beyond.
Inf. Comput., 98(2), 1992.

[31] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems
programs. In Proc. OSDI, 2008.

[32] C. Cadar and K. Sen. Symbolic execution for software testing:
Three decades later. Commun. ACM, 56(2):82–90, Feb. 2013.

[33] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford. A
NICE way to test openflow applications. In Proc. NSDI, 2012.

[34] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bu-
genhagen, W. Khan, M. Fargano, C. Cui, H. Deng, J. Ben-
itez, U. Michel, H. Damker, K. Ogaki, T. Matsuzaki, M. Fukui,
K. Shimano, , D. Delisle, Q. Loudier, C. Kolias, I. Guardini,
E. Demaria, R. Minerva, A. Manzalini, D. Lpez, F. Javier,
R. alguero, F. Ruhl, and P. Sen. Network Functions Virtualisa-
tion: An Introduction, Benefits, Enablers, Challenges & Call for
Action. http://portal.etsi.org/nfv/nfv_white_
paper.pdf, 2012.

[35] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Computer
Aided Verification, volume 1855. 2000.

[36] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT
press, 1999.

[37] R. Craven, R. Beverly, and M. Allman. A middlebox-cooperative
tcp for a non end-to-end internet. In Proceedings of the 2014
ACM conference on SIGCOMM, pages 151–162. ACM, 2014.

[38] M. Dobrescu, K. Argyarki, and S. Ratnasamy. Toward Pre-
dictable Performance in Software Packet-Processing Platforms.
In Proc. NSDI, 2012.

[39] M. Dobrescu and K. Argyraki. Software dataplane verification.
In Proc. NSDI, 2014.

[40] D. J. Dougherty, T. Nelson, C. Barratt, K. Fisler, and S. Krishna-
murthi. The margrave tool for firewall analysis. In Proc. LISA,
2010.

[41] S. K. Fayaz and V. Sekar. Testing stateful and dynamic data
planes with FlowTest. In Proc. HotSDN, 2014.

[42] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei: Flexi-
ble and elastic DDoS defense. In Proc. USENIX Security Sympo-
sium, 2015.

[43] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul.
Enforcing network-wide policies in the presence of dynamic mid-
dlebox actions using FlowTags. In Proc. NSDI, 2014.

[44] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govin-
dan, R. Mahajan, and T. Millstein. A general approach to network
configuration analysis. In Proc. NSDI, 2015.

[45] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rex-
ford, A. Story, and D. Walker. Frenetic: A network programming
language. SIGPLAN Not., 46(9), Sept. 2011.

[46] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella. OpenNF: Enabling innovation
in network function control. In Proc. SIGCOMM, 2014.

[47] P. Godefroid, M. Y. Levin, and D. Molnar. Sage: Whitebox
fuzzing for security testing. ACM Queue, 2012.

[48] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley,
and H. Tokuda. Is it still possible to extend tcp? In Proc. IMC,
2011.

[49] R. Jhala and R. Majumdar. Software model checking. ACM Com-
put. Surv., 2009.

[50] D. Joseph and I. Stoica. Modeling middleboxes. Netwrk. Mag. of
Global Internetwkg., 22(5), 2008.

[51] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown,
and S. Whyte. Real time network policy checking using header
space analysis. In Proc. NSDI, 2013.

[52] P. Kazemian, G. Varghese, and N. McKeown. Header space anal-
ysis: static checking for networks. In Proc. NSDI, 2012.

[53] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
verifying network-wide invariants in real time. In Proc. NSDI,
2013.

[54] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The click modular router. ACM Trans. Comput. Syst., 2000.

[55] F. Le, E. Nahum, V. Pappas, M. Touma, and D. Verma. Experi-
ences deploying a transparent split tcp middlebox and the impli-
cations for nfv. In Proc. HotMiddlebox, 2015.

[56] W. Liu, H. Li, O. Huang, M. Boucadair, N. Leymann, Z. Cao,
and J. Hu. Service Function Chaining (SFC) Use Cases. http:
//bit.ly/1JTVneh, 2014.

[57] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and
G. Varghese. Checking beliefs in dynamic networks. In Proc.
NSDI, 2015.

[58] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and
S. T. King. Debugging the data plane with anteater. In Proc.
SIGCOMM, 2011.

[59] N. McKeown. Mind the Gap: SIGCOMM’12 Keynote. http:
//bit.ly/1izyVld.

[60] N. McKeown et al. OpenFlow: enabling innovation in campus
networks. CCR, March 2008.

[61] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the
reliability of unix utilities. Commun. ACM, 1990.

[62] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.
Composing software-defined networks. In Proc. NSDI, 2013.

[63] S. Palkar, C. Lan, S. Han, K. J. amd Aurojit Panda, S. Ratnasamy,
L. Rizzo, and S. Shenker. E2: A framework for NFV applications.
In Proc. SOSP, 2015.

[64] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker.
Verifying Isolation Properties in the Presence of Middleboxes.
arXiv:submit/1075591.

[65] V. Paxson. Bro: A system for detecting network intruders in real-
time. In Computer Networks, pages 2435–2463, 1999.

[66] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang. PGA: Using graphs
to express and automatically reconcile network policies. In Proc.
SIGCOMM, 2015.

[67] Z. Qazi, C. Tu, L. Chiang, R. Miao, and M. Yu. SIMPLE-fying
middlebox policy enforcement using sdn. In Proc. SIGCOMM,
2013.

[68] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield.
Split/merge: System support for elastic execution in virtual mid-
dleboxes. In Proc. NSDI, 2013.

[69] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Ma-
ciocco, M. Manesh, J. a. Martins, S. Ratnasamy, L. Rizzo, and
S. Shenker. Rollback recovery for middleboxes. In Proc. SIG-
COMM, 2015.

[70] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar. Making middleboxes someone else’s problem: Net-
work processing as a cloud service. In Proc. SIGCOMM, SIG-
COMM, 2012.

[71] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. Symnet:
Static checking for stateful networks. In Proc. HotMiddlebox,
2013.

[72] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-
based testing approaches. Software Testing, Verification and Re-
liability, 22(5), 2012.

[73] G. Xie, J. Zhan, D. Maltx, H. Z. G. Hjalmtysson, and J. Rex-
ford. On Static Reachability Analysis of IP Networks. In Proc.
INFOCOM, 2005.

[74] L. Yuan and H. Chen. FIREMAN: a toolkit for FIREwall Mod-
eling and ANalysis. In Proc. IEEE Symposium on Security and
Privacy, 2006.

[75] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. Auto-
matic test packet generation. In Proc. CoNEXT, 2012.

[76] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McK-
eown, and A. Vahdat. Libra: Divide and conquer to verify for-
warding tables in huge networks. In Proc. NSDI, 2014.

Copyright 2016 Carnegie Mellon University. This material is based upon
work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development
center. NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN AS-IS BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WAR-
RANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNI-
VERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RE-
SPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT. This material has been approved for public release and un-
limited distribution. DM-0002799

A Translating abstract test traffic into test
traffic injection scripts

Figure 10 shows the pseudocode for the translation
mechanism (§6.3).

1 � Inputs:
2 #1: a sequence of BDUs from Symbolic Execution

BDUseqSE = 〈BDUn : n = 1,2, ...,N〉,
each BDUn has an abstract predd

3 #2: a cmd-BDUs library cmdlib = {〈cmd1,Seqcmd
1〉,

〈cmd2,Seqcmd
2〉, ...,〈cmdM ,Seqcmd

M〉}
4 #3: a set of end-hosts H = {Hk : k = 1,2, ...,K} to execute cmds
5 � Outputs:
6 #1: a number of scripts S = {scriptH1 · · ·scriptHK } to

be executed on end-hosts {Hk : k = 1,2, ...,K},
where scriptHk is a sequence of 〈· · ·cmd

Hk
i · · · 〉, such that

〈· · ·Seqcmd H1
i · · · 〉 is equivalent to BDUseqSE

7 � Sort cmd-BDUs library from cmds with most BDUs to
least BDUs

8 cmdlib = Sort(cmdlib)
9 � Decompose BDUseqSE sequence into subsequences

BDUsubseqSE of BDUs with same predicate pred
10 {BDUsubseqSE

predd
: d = 1,2, ...,D}= Decompose(BDUseqSE)

11 for each BDUsubseqSE
predd

in {BDUsubseqSE
predd

: d = 1,2, ...,D}
12 � Instantiate a scriptpredd to store cmd for BDUsubseqSE

predd
13 scriptpredd ← empty
14 � Match the BDUs in BDUsubseqSE

predd
with cmds in cmdlib

15 for each cmdm in cmdlib
16 for BDUn in BDUsubseqSE

predd
17 � if Seqcmd

m equals to a BDU substring of BDUsubseqSE
predd

started at BDUn
18 if Substring(BDUsubseqSE

predd
,BDUn, len(Seqcmd

m)) == Seqcmd
m

19 � add the matched cmdm and the first matched BDU’s index n
to scriptpredd

20 scriptpredd .add(cmdn
m)

21 � mark all BDUs in Substring(BDUsubseqSE
predd

,BDUn,

len(Seqcmd
m))

22 Mark(Substring(BDUsubseqSE
predd

,BDUn, len(Seqcmd
m)))

23 � remove all marked BDUs from BDUsubseqSE
predd

24 RemoveMarked(BDUsubseqSE
predd

)

25 if all BDUs in BDUsubseqSE
predd

are marked, then break
26 � Sort every cmdn

m in scriptpredd by its first matched BDU’s index n
27 scriptpredd = Sort(scriptpredd)
28 � Map abstract predd to real test host Hpredd and assign script to host
29 scriptHpredd

= scriptpredd

Figure 10: Pseudocode for translating abstract test
traffic into test traffic injection scripts.

B Abstract test traffic generation for
change management policies

Figure 11 shows the abstract test traffic generation pseu-
docode for change management policies (§6.4).

C Operator interface of BUZZ
Figures 12 and 13 show operator’s interface (§7).

D Test resolution
Figure 14 shows the pseudocode for test resolution (§7).

1 � Inputs:
2 #1: Policy1:pred1(5−tuple)×C1 7→Ports1 before migrate/rollback
3 #2: Policy2:pred2(5−tuple)×C2 7→Ports2 after migrate/rollback
4 � Outputs:
5 #1: a sequence of BDUseqSE = 〈BDUn : n = 1,2, ...,N〉 with two substrings,
6 BDUseqSE

be f ore and BDUseqSE
a f ter , which should satisfy:

7 BDUseqSE
be f ore exploits all possible context context in C1 before

migration/rollback happens.
8 BDUseqSE

a f ter test all possible context in C2 after the migration/rollback.
9 � Init BDU sequence

10 BDUseqSE = 〈BDUn : n = 1,2, ...,N〉
11 � note the values in BDUn for calculation by Symbolic Execution
12 makesymbolic(BDUn)
13 � exploits all possible context in C1
14 � BDUs processed sequentially by Policy1
15 for each BDUi in BDUseqSE

16 if BDUi is in BDUseqSE
be f ore

17 � process BDUi by Policy1 and update C1
18 C1 = Policy1(pred1(BDUi),C1,Ports1)
19 � do migrate/rollback and change service chain from Policy1 to Policy2
20 � map ports
21 Ports2 = g(Ports1)
22 � migrate/rollback context
23 C2 = C1
24 � test all possible context in C2
25 � BDUs processed sequentially by Policy2
26 for each BDU j in BDUseqSE

27 if BDU j is in BDUseqSE
a f ter

28 � process BDUi by Policy2 and update C2
29 C2 = Policy2(pred2(BDUi),C2,Ports2)
30 � generate BDU sequence with values assigned by Symbolic Execution
31 symbolicout put = 〈BDUn : n = 1,2, ...,N〉

Figure 11: Pseudocode for abstract test traffic gener-
ation for change management policies.

9/15/2015 Cy3 Import Demo

file:///Users/tianlongyu/Documents/Projects/PSIBuzz/Pipeline/BuzzGui/index.html 1/1

Nested Mode Click Mode

In_L_H_IPS.jsChoose File

#Traffic

10.1.0.1 10.2.0.1

#Enforcement

LightIPS_1 bad_conn>=Threshold HeavyIPS_1

LightIPS_1 !(bad_conn>=Threshold) Allow

HeavyIPS_1 bad_signature Block

HeavyIPS_1 !bad_signature Allow

#Customize

LightIPS_1:Threshold=10

Figure 12: Text-based interface to input policies (e.g.,
multistage-triggers policy in Figure 3).9/16/2015 Cy3 Import Demo

file:///Users/tianlongyu/Documents/Projects/PSIBuzz/Pipeline/BuzzGui/index.html 1/1

Nested Mode Click Mode

In_L_H_IPS2.jsChoose File

#Traffic

10.1.0.1 10.2.0.1

#Enforcement

LightIPS_1 bad_conn>=10 HeavyIPS_1

LightIPS_1 !(bad_conn>=10) Allow

HeavyIPS_1 bad_signature Block

HeavyIPS_1 !bad_signature Allow

#Customize

LightIPS_1:Threshold=10

Figure 13: Graphical interface to input policies (e.g.,
multistage-triggers policy in Figure 3).

1 � Inputs:
2 #1: packet traces pkttraceporti dumped at each porti in Ports
3 #2: policy Policy:pred(5−tuple)×C 7→Ports, where C includes all possible

contexts
4 � Outputs:
5 #1: The resolution result of each context contexti in C in terms of pass/fail
6 #2: The port of the NF that causes the failure
7 � perform resolution scheme for each context contexti in C
8 for each contexti in C
9 � Trace = 〈pktm, . . . , pktr〉 is the test packets for this context

10 for testpkt in 〈pktm, . . . , pktr〉
11 � calculate the logically correct ports test pkt should reach
12 Portslogical

test pkt = Policy(pred(test pkt)),contexti)
13 � find the real ports test pkt has reached
14 Portsreality

test pkt = search test pkt in each pkttraceporti

15 if Portsreality
test pkt == Portslogical

test pkt
16 contexti test pass
17 else
18 contexti test fail
19 � Compare the port of Portsreality

test pkt and Portslogical
test pkt and find the first

different port, which is the NF that causes the failure.
20 FailedNFPort = FirstDi f f Port(Portsreality

test pkt ,Portslogical
test pkt)

21 mark contexti as tested

Figure 14: Pseudocode for BUZZ test resolution.

