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1 Introduction
Web access on mobile platforms already constitutes a significant (>
20%) share of web traffic [3]. Furthermore, this share is projected
to even surpass access from laptops and desktops [11]. In con-
junction with this growth, user expectations for the performance
of mobile applications and websites is also growing rapidly [15].
Surveys show that 71% of users expect websites to load almost as
quickly as their desktops and 33% of annoyed users are likely to go
to a competitor’s site leading to loss of ad- and click-based revenue
streams [1].

However, the performance of the mobile web today is quite poor.
Industry reports show that the median web page takes almost 11
seconds to load over 3G networks even on state-of-art devices such
as iPhone5 and the Samsung Galaxy S3 [2]; LTE is only marginally
better at improving the latency. The key challenge here is that,
unlike traditional devices, mobile devices are fundamentally con-
strained in several ways in terms of networking, compute, and stor-
age capabilities that can cause high page load times [27, 26].

We are far from being alone or the first to identify these trends.
In fact, there has been renewed interest in optimizing web per-
formance focused specifically on mobile devices as evidenced by
the proliferation of: a) public measurement reports and repositories
(e.g., [7]), b) new optimized protocols (e.g., [13]), c) startups that
help providers to generate mobile-friendly web pages (e.g., [10])
and to increase mobile performance (e.g., [14]), d) proprietary op-
timizations (e.g., [4, 12]), and e) better browsers (e.g., [24, 28]).

Despite the growing realization and recognition of these issues,
surveys shows that over 90% of websites are not mobile friendly
today [8]. We speculate that this disconnect between the need to
customize for mobile devices and the actual adoption of proposed
solutions stems from two related factors. First, mobile-specific cus-
tomization seems to be expensive and often involves manual in-
tervention, thereby restricting its adoption only to high-end web-
site providers. For example, the fraction of websites with mobile-
optimized versions drops from 35% in the top 200 to 15% among
the top 2000.

The second, more fundamental, issue is that, the desire to de-
liver rich services (and associated ads and analytics) has, over the
last few years, dramatically increased the complexity of websites;
rendering a single web page involves fetching several objects with
varying characteristics from multiple servers under different ad-
ministrative domains [16]. This complexity leads to poor inter-
actions with mobile-specific constraints due to several factors such
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as the need to spawn many connections, high RTTs on wireless
links, and time to download large objects on low-bandwidth links.
Furthermore, this is accompanied by a corresponding increase in
the complexity of website generation (especially for dynamic con-
tent); thus, re-architecting them for mobile-friendly designs would
require complete overhauls or parallel workflows, further moving
the mobile web out of the reach of low-end website providers.

Our overarching vision is to democratize the ability to gener-
ate mobile friendly websites, enabling even small web providers to
support mobile devices without investing significant resources to do
so. While others have focused on automatically adapting web page
layouts for mobile devices [17] and on optimizing the load times of
Javascript-heavy websites [22], our focus is on reducing the high
load times seen on mobile devices for generic web pages. Given
the concerns surrounding website complexity and the need to avoid
overhauling existing content management workflows, we take a
pragmatic approach and cast the goal of customizing websites for
mobile devices as an utility maximization problem. Specifically,
we can view this as a problem of selecting a subset of high utility
objects from the original website that can be rendered within some
load time budget for user tolerance (say 2–5 seconds [18, 19]). We
can then either block or de-prioritize the loads of low utility objects
to reduce user-perceived page load times [9].

While this approach sounds intuitively appealing, there are three
high-level requirements that need to be addressed before the bene-
fits can be realized in practice:

• Structure-awareness: Given the complex inter-dependencies be-
tween objects in most web pages today, blocking or delaying
the load of one object may result in several other dependent ob-
jects also being filtered out or delayed, e.g., if a Javascript is not
fetched, neither will any of the images that the script would have
fetched. Thus, even though an object may not directly contribute
to the user experience (not visible to users), it may be critical for
downloading useful content.
• Utility-awareness: Indiscriminate filtering of objects from a web

page may prune out content critical to the website’s functionality
and render the mobile version of the web page useless. We need
mechanisms for predicting the expected utility that an user gets
from different objects on a given web page. Two concerns arise:
(1) we may not know the utility a user perceives in advance be-
fore actually downloading the object, and (2) users may differ in
their preferences, e.g., some users may dislike ads and images
but others may perceive value in these.
• Practical optimization: Object selection problems to maximize

some utility subject to budget/dependency constraints are typ-
ically NP-hard. Additionally, due to the complex policies in-
volved in how browsers parallelize the loading of objects on a
web page, it is hard to estimate the resulting page load time when
a particular subset of objects on a web page are loaded.

Corresponding to each of these requirements, we describe key
practical challenges and preliminary results from our current efforts
in designing a WebSieve prototype: (1) Naive solutions for depen-
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Figure 1: Page load times on sites with/without mobile versions.

dency extraction are unlikely to work in face of dynamic content
and needs systematic solutions to extract causal relationships, but a
practical “block-and-infer” strategy appears promising (§4); (2) We
report experiences from a user study suggesting that any framework
for assigning utilities to objects needs to account for user-specific
preferences (§5); and (3) Despite the theoretical intractability, we
can find practical near-optimal solutions in conjunction with ap-
proximate load time estimates (§6).

We do acknowledge that blocking low utility objects to reduce
page load times may affect the page’s functionality; e.g., a but-
ton may not be functional if an associated Javascript has not been
loaded or the layout may be undesirable if the CSS has not been
loaded. The main challenge here is the need to automatically cap-
ture the complex inter-dependencies that exist on today’s web pages.
While we discuss potential approaches here to reduce the likeli-
hood of breaking web page functionality, striking the right balance
between load time, utility, and functionality forms the crux of our
ongoing work.

2 Motivation
Opportunity to reduce load times: We consider a dataset of 2000
websites from Quantcast’s list of the top million websites—400
each, chosen at random, from the rank ranges 1–400, 400–1000,
2000–2500, 5000–10000, and 10000–20000. We identify which of
these websites have mobile-optimized web pages. Figure 1 com-
pares the load times 1 on the Sony Xperia smartphone for randomly
chosen subsets of 100 websites that have mobile versions and 100
websites that do not currently have mobile versions. (The measure-
ments were made over a 3G connection in a residential location at
Riverside.) First, we see that the sites that have mobile versions
have significantly lower load times compared to those do not. Sec-
ond, the load time distribution for websites that do not have mobile
versions is comparable to those for the normal/desktop version for
the websites that have mobile-optimized versions. In other words,
these unoptimized sites have not intentionally chosen to avoid cus-
tomizing their websites because their load times are already low—
there is significant room for reducing the load times. Third, 60%
of the mobile-optimized websites still take more than 10 seconds
to load, suggesting that even these could benefit from our proposed
optimizations. These results show that there is significant opportu-
nity for reducing the load times of web pages on mobile devices.

Website complexity causes high load times: A key contributing
factor to high page load times is the increasing complexity of web
pages. Our recent work [16] showed that, on average, loading a
web page requires the browser to fetch over 50 objects from more
than 10 servers. Such complexity is not restricted to top-ranked
websites, but it exists across web pages in all rank ranges—even
among sites in the 10000 to 20000 rank range. In fact, our prior
work showed that the number of objects on a page is the most cor-

1A page’s load time is the time at which the onLoad event is fired
when the page is loaded on the default Android browser.

Version % responses citing significant
loss of useful information

Set1 Set2 Set3 Aggregate
Flashblock 20 20 20 20
NoScript 0 20 70 40

Table 1: User study to quantify usability impact of naive customiza-
tion techniques. Numbers are reported with one significant digit
given dataset’s size.

related with load time [16, 27]. Therefore, in order to reduce page
load times on smartphones, a key step is to have a systematic solu-
tion to “tame” this web page complexity.

Naive approaches to tame complexity do not work: To reduce
the impact of a web page’s complexity on page load times, we need
to either load only a subset of the objects on the page or prioritize
the loads of “important” objects. A strawman solution is to filter
all objects of a particular type that users may consider to be of
low utility. For example, we can use browser extensions such as
Flashblock and NoScript to block all flash and script objects, and
all other objects that these cause to be loaded. To analyze how
well this would work, we ran a preliminary user study over several
websites. We chose three subsets of 10 websites from the top 1000
websites ranked by Quantcast—Set1 comprised 10 websites chosen
at random, Set2 was the top 10 sites based on the number of unique
origins contacted, and Set3 consists of 10 randomly chosen mobile-
optimized websites.

We conducted a survey across 33 participants by hosting the
website http://website-comparison.appspot.com. We asked users to compare
a screenshot of the default version of these 30 sites with screenshots
for two alternatives—those obtained with the Flashblock or the No-
Script extension enabled (We use the extensions with their default
configurations.) Table 1 shows that the use of either Flashblock
or NoScript would significantly impact user experience. While
users may not consider scripts included in a web page as impor-
tant, blocking those scripts impacts user experience since the ob-
jects fetched by executing those scripts are blocked as well. Thus,
to block or de-prioritize low utility content on a web page, we need
to take into account the role played by every object on that page as
well as the dependencies between objects.

On the other hand, though ads and objects related to analytics
may not be critical to the user experience, blocking these objects
can be detrimental to the interests of website providers. Therefore,
reducing web page complexity by blocking objects also needs to
take into account the implications of doing so on provider interests,
e.g., the impact on their revenue.

3 Vision and Roadmap
Next, we present a high-level overview of our envisioned WebSieve
architecture to instantiate the approach of reducing web page com-
plexity to reduce page load times on mobile devices. Our focus
here is primarily to achieve the right balance between page load
time, user experience, and website providers’ interests. We do not
focus on orthogonal problems in optimizing web pages for mobile
devices such as customizing the page’s layout to suit the screen
size, form factor, and UI capabilities of the devices [17].

The problem statement that lies at the heart of WebSieve is as fol-
lows. Given a budget on load time, our goal is to select a subset of
objects on a web page that will maximize the user experience while
satisfying the load time constraint. To keep the discussion simple,
consider for now that (1) there is only one type of client device, and
(2) that the website’s content does not significantly change over
time; we discuss how to address these issues in practice in Sec-
tion 7. Consider a web page W that has a set of objects O . Each

http://website-comparison.appspot.com
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Figure 2: Overview of WebSieve architec-
ture.

Figure 3: Quantifying change in objects
across page loads.
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Figure 4: Visualizing our intuition for
mapping objects.

object oi ∈ O takes time ti to fetch from the server and offers
utility Util i to users and website providers. Given a maximum al-
lowed load time of M (e.g., user studies suggest a tolerance around
2–5 seconds [19]), our goal is to select, from all subsets of objects
O ′ ⊆ O whose load time is less than the allowed maximum (i.e.,
≤ M ), the subset that maximizes the total utility

∑
oi∈O′ Util i .

WebSieve can then reduce the user-perceived load time for page
W either by loading only the selected subset of objects or by load-
ing this subset before other objects on the page.

This abstract view of the problem highlights three key design
challenges that we need to address.

• Dependencies: There are natural loading dependencies between
the objects in a web page. For example, many web pages down-
load images as a result of executing Javascripts on the client;
in this case, the script is a natural parent of the resultant im-
age. This means that we cannot select to load an object without
choosing to load its parent as well.
• Utility inference: The notion of utility perceived by users and

providers is a complex issue. For instance, objects in a web page
that are not “visible” may not directly contribute to the user expe-
rience but are indirectly critical to download interesting content.
Moreover, users may differ in their interest and tolerance to web
objects, e.g., some users may hate ads and images but others may
perceive value in these.
• Object selection: The algorithm to select a subset of objects

needs to be very efficient; otherwise the runtime of the algo-
rithm may be better spent loading more objects. A key challenge
here is that predicting the load time when a subset of objects is
fetched is itself non-trivial. In addition to the parent-child rela-
tionships described above, web browsers employ parallelization
techniques to accelerate page loads. For example, a default Fire-
fox desktop installation can maintain up to 16 connections in
parallel and at most 6 connections open to any particular host-
name. Consequently, the time to load a set of objects cannot be
simply modeled as a simple combination of the individual load
times. Furthermore, the load time also depends on the specific
device and operating conditions, e.g., 3G vs. WiFi connection.

Figure 2 depicts how these three components fit into WebSieve’s
architecture, which can be logically partitioned into a frontend and
a backend. For every web page, the backend generates a compact
fingerprint that summarizes the key properties of the page. This
fingerprint includes a) the dependency structure of the web page,
b) load time information for objects on the page, and c) the object
utilities as perceived by the website provider. Since these features
change infrequently, WebSieve’s fingerprint generation can be per-
formed offline. A website provider can host the backend for finger-
print generation of all pages on his site, or this task can be deferred
to any third-party server-side infrastructure. The frontend, which
customizes web pages on the fly, can be implemented either as a
browser extension or in a proxy that supports dynamic page rewrit-
ing and Javascript execution capabilities.

The typical steps involved in fetching and rendering a page with
a WebSieve-enabled client will be as follows. The client requests
the base HTML file for the web page via the frontend. Along with
the HTML file, the frontend also fetches in parallel the fingerprint
for the web page from the backend. By combining this fingerprint
with the utilities expressed by the local user, the frontend deter-
mines which subset of objects on the page it should load. When
the client’s browser issues subsequent requests for the remaining
objects on the page via the frontend, the frontend either sends an
empty response or defers the load for objects that are not in its se-
lected subset.

4 Dependency Extraction
As websites increasingly contain dynamic content loaded by scripts
and customizable widgets, a specific object can be identified and
downloaded only after its logical parents have already been pro-
cessed. Consequently, any attempt at choosing a high-value subset
of objects must account for these logical dependencies. Our goal
is to automatically infer the load dependency graph for any given
web page; manual specification of cross-resource dependencies by
the web page’s developer is impractical since 30% of the objects on
the median web page are fetched from third-party domains [16].

4.1 Strawman solutions
Consider a page W consisting of the set of objects OW = {o1 . . . on}.
Each object oi has a logical dependency on its parent pi . We con-
sider two intuitive solutions to infer this parent-child dependency
structure within a web page. Note that these dependencies cannot
be directly inferred from the document structure of the page, as
some objects may be loaded after executing dynamic scripts.

HTTP Referer: The first option is to rely on HTTP referer tags
to identify the causal relationships between object loads. We can
load the web page once, and then extract the referer tags during this
load to infer parent-child relationships. While this seems intuitively
simple, this is not robust. A dominant fraction of dynamic content
is loaded via Javascript which does not yield useful referer tags.

Structure inference via blocking: The high-level idea here is
to infer potential causal relationships by blocking objects in the
web page, similar to the idea proposed in WebProphet [21]. Sup-
pose that the set of objects on a page do not change across multiple
loads. For each object oi ∈ OW , we can load the webpage when
this object is blocked; we perform these page loads with individ-
ual objects blocked on a server using the Firefox browser (in its
default configuration) with an empty cache. If the page observed
when blocking oi is W−oi , then we know that every object in the
set difference between the object sets OW − OW−oi is a logical
descendant of this blocked object oi . Though this one step may not
be able to distinguish between immediate descendants and indirect
descendants, by repeating this experiment for every object, we can
reconstruct the exact dependency graph between objects.

In practice, however, web pages are not static even within a short
window of time; the set of objects loaded across back-to-back loads



of the same page can be different, e.g., because every refresh yields
a different ad or causes the website provider to return a different
banner image. For example, in our dataset of 2000 websites, Fig-
ure 3 shows that over 10% of objects on the page change across
page refreshes in 40% of sites. In our context, this implies that the
set of objects loaded after blocking oi will not be a strict subset of
the original set of objects OW . Specifically, some object from OW

could be missing from W−oi either because it is a logical descen-
dant of oi or because it was replaced with a different object when
we reloaded the page (see Figure 4). Because of this ambiguity, we
may potentially infer false dependencies (i.e., claim x is a parent of
y, even though they are unrelated) using the above approach.

4.2 Proposed approach
To handle the constant flux in a web page’s content, we propose
the following approach. As before, let OW be the set of objects
in the original webpage and the set of objects seen after blocking
oi be OW−oi . At a high-level, we want to distinguish between the
objects that are genuinely missing (i.e., descendants) vs. objects
that have been replaced.

As a simplifying assumption, we assume that the number of ob-
jects in the web page does not change over the period of time
it takes to infer the page’s dependency structure; our preliminary
measurements confirm that this is indeed the case. Then, we try to
infer a one-to-one mapping between the set of objects in OW−oi −
OW and OW − OW−oi ; note that this cannot be a bijection since
the sizes of the two sets are different. The intuition behind our ap-
proach is that, when we reload the page after blocking oi , some
of the objects in the original web page have been subsequently re-
placed by the content provider. These new objects are the ones in
OW−oi − OW . Our goal then is to match each such object with
a corresponding object in the original web page (i.e., without any
blocking). Once we have this matching, we know the true set of
“missing” objects as the ones that appear in OW − OW−oi but do
not match up with any object in OW−oi −OW . These are the true
descendants of oi .

We infer this correspondence between blocked objects and ob-
jects in the original web page with a two-step approach. The first
step is to find where the object appears in the source files down-
loaded and match with the object that originally appeared in its
place. In our measurements, we observe that this simple mapping
step is able to accurately match over 80% of objects that change
across page loads. Some objects remain unmapped after this step,
for example, because their URLs are generated algorithmically by
an embedded script. To address such cases, we map objects using
object attributes (e.g., file type and file size) with a simple nearest
neighbor like algorithm. With this two-stage approach, we obtain a
comprehensive procedure for mapping objects across page loads.

5 Utility Inference
Next, we focus on inferring the utility of individual objects in a
webpage. First, we consider the user-perceived utility of different
web objects. Ideally, for every object on a web page, we want to run
controlled user studies across a sufficiently large sample of users to
evaluate the expected value that users perceive from that object.

Since it is infeasible to do so for every single web object, we
explore the possibility of learning a classifier that can estimate util-
ities. Though the number of objects on the Web is potentially un-
bounded and growing, the utility of any object will likely depend
on a few important characteristic features of that object. For ex-
ample, some of the candidate features may include attributes such
as the location of the object on the web page (e.g., providers are
likely to place interesting objects on top), the type of object (e.g.,

advertisement vs. image), whether the object has a clickable link,
whether the object is visible on the page or hidden, and so on.

Our goal is to learn a predictive model that takes as input such
object attributes and estimate the potential utility. More formally, if
we have features F1 . . .Fj . . . (e.g., location, type) and we have an
object where the values of the features are 〈F1 = f i1 , f

i
2 . . . f ij . . .〉

(e.g., location=top-left, bottom-right) [25], the prediction model
Util({f ij }) takes as input the values of these features for a par-
ticular object and outputs the object’s utility score.

User study to infer utilities: To gain initial insights into the feasi-
bility of inferring such a predictive model, we ran a user study using
the website http://object-study.appspot.com. On this site, we show every
visitor snapshots of 15 web pages—the landing pages of 15 web-
sites chosen at random from our list of 2000 sites (see Section 2).
For each of these 15 web pages, we pick one object on the page at
random and ask the user: Would removing the ‘Object of Interest’
greatly impact a user’s experience on the website? We ask users to
report the perceived “value” of each object on a Likert scale from
-2 to 2, which correspond to an answer varying from “Strong No"
to “Strong Yes" in response to our question. We collect responses
to this survey from 120 users on Amazon Mechanical Turk.2 An
examination of the responses from our user study shows that sim-
ple heuristics such as categorizing all objects “below the fold" as
low utility do not work; irrespective of where we consider the fold
within the range of 600 to 900 pixels, we find that roughly 35% of
objects below the fold were marked as important.

Need for personalization: We use the responses from our user
study to train several types of classifiers (with five-fold cross val-
idation) such as decision tree, SVM, and linear regression. Each
sample of the training data comprises the features associated with a
particular object as the attributes and a user’s utility for that object
as the value. We associate every object with various features that
capture its size, its type of content, if it is an image, whether it is
part of a sprite, the object’s location on the page, whether it is vis-
ible and if so, whether it is in the foreground or the background of
the web page, and if the object has a link, whether that link points
to third-party content. However, we find that none of these features
are well correlated with the responses in our user study; as a result,
the best prediction accuracy that we were able to obtain is 62%.

Surprised by the low accuracy across all classifiers, we analyzed
the responses. Specifically, we looked at different types of object
features, and for each, we analyzed the user responses within that
specific feature (e.g., button, ad, location). It became immediately
evident that the problem was that we were trying to build a global
model across all users. We observed that there is considerable vari-
ability in user responses within each feature. For instance, 20% of
users felt background images were important while 60% did not,
while only 50% of users thought links on the bottom were impor-
tant. What was striking, however, was that any given user was con-
sistent in her responses. That is, across all websites, a user typically
rates over 80% of objects with a given feature as either important
or unimportant.

Hence, we foresee the need for personalization in WebSieve.
In other words, WebSieve needs to learn and use a classifier cus-
tomized for a specific user. For example, after a user first installs
the WebSieve frontend, the user can mark selected objects on any
web page she visits as low utility (say, whenever the page takes too
long to load); the Adblock browser extension similarly lets users
mark ads that the user wants it to block in the future. Based on

2 As a sanity check, we only pick respondents who pass our valida-
tion stage where we show 4 objects known to be extremely relevant
or irrelevant and filter out users who respond incorrectly.

http://object-study.appspot.com
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Figure 5: Each arrow represents a logical parent-child dependency.
We want to pick a subset of objects respecting the dependencies that
maximizes the utility given a bound on load time.

the user’s responses, we can then learn a classifier over time that is
specific to the user. However, a particular user’s utility of objects
with similar features may vary significantly across different types
of websites. For example, small objects with links are likely to be
important on a shopping website (e.g., the “shopping cart" button)
but not as important on news sites (e.g., the Like and +1 buttons).
Therefore, WebSieve may need to consider different categories of
websites, and even for a specific user, train a different classifier for
each website category. A natural question here is the trade-off be-
tween increased accuracy of inferred utilities and overhead for the
user as we need larger training sets.

Accounting for functional dependencies: If functional depen-
dencies between objects are not accounted for, blocking objects can
potentially break the web page’s functionality and re-ordering ob-
ject loads may not reduce user-perceived page load times even if
high utility objects are loaded upfront. For example, delaying the
load of a CSS object until after other high utility objects may re-
sult in a flash of unstyled content (FOUC) [6]. Similarly, if the
Javascript that has registered an event listener with a button is not
loaded, that button may not be functional. These are dependencies
that our proposed approach in Section 4 will fail to detect. Hence,
we directly account for such functional dependencies by associat-
ing CSS objects and Javascripts that have event listeners (which we
conservatively detect via static analysis of Javascript code) with the
highest utility. Based on our previous measurements [16], we esti-
mate that these objects typically account for a small fraction of the
objects on a web page.

Accounting for provider utilities: In addition to accounting for
user-perceived utilities, it is important to ensure that the interests
of website providers are preserved. Prioritizing only popular/useful
content can hurt business interests of web providers because analyt-
ics or ads may get filtered out. To take this into account, WebSieve
can allow for web providers to specify in any web page’s source
code the objects that are considered important by the provider of
that page. For example, these prioritization hints can be added via
META HTML tags. WebSieve can then take these priorities into ac-
count in combination with its estimates for user-perceived utilities.
Thus, WebSieve can ensure that the interests of web providers are
respected, while minimizing the burden on them for customizing
their web pages for mobile devices.

6 Optimal object selection
We describe the abstract formulation of the object selection prob-
lem to highlight the key parameters involved, discuss practical chal-
lenges, and present our roadmap to address these.

6.1 Problem Formulation
The object selection module in the frontend receives the fingerprint
from the backend which captures the dependency structure (§4) and
annotations to specify key object features (§5). Using these fea-
tures in conjunction with the user’s preferences, it can compute the

expected utility that each object provides. Combining these, it con-
structs a logical representation of the webpage as a tree where each
node in the tree is annotated with its utility, as shown in Figure 5.

Our goal is to select a suitable tree cut in this tree structure; i.e. a
cut that also satisfies the dependency constraints. Formally, we are
given as input the page tree dependency T for a website W and the
time budget M . If C denotes a cut, we want to select the cut C ∗

that, out of all cuts that can be loaded within time M , maximizes
the expected utility.

It is evident that we need a fast algorithm that can solve this
problem because object selection is on the critical path for loading
the webpage. If the optimization itself takes too much time, then it
defeats the purpose of reducing the page load time.

6.2 Practical Challenges
There are two key stumbling blocks. First, the dependencies be-
tween objects make this problem NP-hard.3 Second, any optimiza-
tion framework will need to model the time to load arbitrary sub-
sets of objects. It is difficult enough to model the LoadTime(C )
function even for a specific fixed subset of objects, let alone for
all possible subsets! This challenge arises from browser optimiza-
tions and the use of parallel connections in loading a web page.
In particular, it is challenging to find a closed form function for
LoadTime(C ). For example, some intuitive solutions like using
the sum of the load times or dividing this sum by the expected
number of parallel connections turn out to have very high (≈ 3–4
seconds) estimation errors. Thus, we have a chicken-or-egg prob-
lem here—in order to pick the optimal subset we need to estimate
the load time, but we cannot estimate this before picking a specific
subset. In other words, without explicitly enumerating all possi-
ble subsets and physically loading them, it appears we cannot solve
this optimization.

6.3 Proposed Approach
Dependency Modeling: To address the first problem of depen-
dencies, we propose to use compact integer linear programming
formulations. Let di be a {0, 1} variable that indicates if we have
selected the object oi . Let pi denote the logical parent of the object
oi in the page tree. Then the dependencies become a simple linear
constraint of the form: ∀i : di ≤ dpi .

Load time approximation: We see two practical approaches to
address the load time estimation challenge. The key idea in both
cases is to leverage the load time “waterfall” for the original web
page annotated with the finish time tfi for each object i . This infor-
mation can be included in the web page’s fingerprint.

The first approach is to obtain a conservative load time estimate.
Specifically, given a set of objects O , we can use the maximum
finish time: LoadTime(O) = maxi∈O tfi . This is conservative
because blocking some objects will have scheduled this max-finish-
time object much earlier. Given this context, we can write the page
tree cut as an compact integer linear program (ILP). We do not
show the full formulation due to space constraints. While we are
still solving a NP-hard discrete optimization problem, we can lever-
age efficient solvers such as CPLEX. We find that it takes ≤ 30ms
to solve the optimization with real dependency graphs for pages
with ≈ 100 objects (but with synthetic utilities). Thus, despite the
theoretical intractability, we have reasons to be optimistic.

The second, is to heuristically estimate the load time for a given
subset of objects by using the timeline of object loads. The main
idea is to look for “holes” in the waterfall after blocking and move

3We can formally prove via a reduction from the weighted knap-
sack problem, but do not present the reduction here for brevity.



all objects whose parents have already been loaded to occupy these
holes greedily. While this does not give a closed form equation, it
gives us a practical handle on estimating the load time for a subset,
and we find it works well (< 20% error). With this estimator tool,
we can use greedy “packing” algorithms; iteratively pick the object
with highest utility and select it along with its ancestors as long as
this choice does not violate the time budget.

We can also combine these two approaches to improve the op-
timality. For example, we can first run the ILP and then use the
greedy approach to exploit the residual time left because of the con-
servativeness of the max-estimator. A natural concern is how close
to the optimal solution our conservative ILP and greedy solutions
are. In particular, we need to come up with mechanisms for getting
tight upper bounds on the optimal solution given that the problem
is intractable. We plan to investigate these in future work.

7 Discussion
Website stability: A web page’s fingerprint needs to be regen-
erated as the set of objects on the web page and the structure of
the web page changes. To gauge how often this regeneration of a
web page’s fingerprint will be necessary, we performed a prelimi-
nary study with 500 websites (chosen at random from our dataset
of 2000 websites). We loaded the landing page of each of these
websites once every six hours for a week. Our analysis seems to
indicate that, though we saw previously that a significant fraction
of objects on a web page change across repeated loads, the subset
of stable objects and the dependencies between them appear to per-
sist for several days. Hence, it will likely suffice for WebSieve to
regenerate dependency information once a week. In practice, we
can consider an adaptive scheme based on information provided by
the website provider—refresh information more (less) frequently
for web pages that have more (less) flux in their content.

Extrapolating across clients: Apart from dependency informa-
tion, a web page’s fingerprint also includes object load time infor-
mation. The load times for individual objects however depend on
client device capabilities, e.g., mobile phones vs. tablets or differ-
ent versions of smartphone OS. For example, recent studies show
that page load times significantly vary based on the device’s stor-
age [20]. Since it is impractical to gather load time information
for every web page on every type of client device in every possi-
ble network condition, we need the ability to extrapolate load time
across clients. This algorithm should take two inputs: 1) load time
measurements on a reference device type in a specific network set-
ting, and 2) a characterization of a target device and its network.
Given these inputs, the algorithm should extrapolate measured load
times to the setting of the target device. At the time of loading a
web page, WebSieve’s frontend can then use this algorithm to ap-
propriately tailor load time information included in the web page’s
fingerprint for the local client.

Balancing user-provider utilities: One obvious issue here is the
tension between users and providers; e.g., users may not want ads
but providers do. Note that this problem is not intrinsic to Web-
Sieve and exists today with Adblock-like solutions [5] and track-
ing [23]. While we cannot speculate how this tussle will play out,
our utility maximization framework provides a technical solution
to deal with this tussle more explicitly, in contrast to today’s binary
measures that pick extreme points catering to only one side.

Other applications: While we have focused here on the prob-
lem of reducing web page load times on mobile devices, our ap-
proach also has other applications. For example, blocking low util-
ity objects can reduce the energy consumption associated with web
browsing on mobile devices. Similarly, blocking low utility objects

can help users of mobile devices cope with ISP-imposed caps on
the amount of data they can receive over the network.

8 Conclusions
Our common mode of access to the Web is slowly transitioning
from desktops/laptops connected to wired networks to mobile de-
vices connected with access to wireless networks. While this client-
side revolution is already under way, the ability to cope with this
change is currently restricted to the top websites.

Our overarching vision is to democratize the ability to gener-
ate mobile-friendly websites, enabling even small web providers to
transition to support mobile devices without investing significant
resources to do so. For this, we present the WebSieve architec-
ture, whose design is motivated by the observation that the Web
performance problems on mobile devices stem from the increasing
complexity of websites. To tame this complexity, the WebSieve
architecture takes into account the intrinsic dependency structure
of webpages and user-perceived utilities, and uses these to opti-
mally select a subset of objects to render on mobile devices given
a budget on the load time. While we have highlighted several open
issues that need to be addressed to translate our vision into reality,
our early approaches and results give us reasons to be hopeful.
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