
Network-Wide Deployment of Intrusion Detection and
Prevention Systems

Vyas Sekar∗, Ravishankar Krishnaswamy†, Anupam Gupta†, Michael K. Reiter††
∗ Intel Labs, Berkeley † Carnegie Mellon University †† UNC Chapel Hill

ABSTRACT

Traditional efforts for scaling network intrusion detection

(NIDS) and intrusion prevention systems (NIPS) have largely

focused on a single-vantage-point view. In this paper, we

explore an alternative design that exploits spatial, network-

wide opportunities for distributing NIDS and NIPS func-
tions. For the NIDS case, we design a linear programming

formulation to assign detection responsibilities to nodes while

ensuring that no node is overloaded. We describe a pro-

totype NIDS implementation adapted from the Bro system
to analyze traffic per these assignments, and demonstrate

the advantages that this approach achieves. For NIPS, we

show how to maximally leverage specialized hardware (e.g.,

TCAMs) to reduce the footprint of unwanted traffic on the

network. Such hardware constraints make the optimization
problem NP-hard, and we provide practical approximation

algorithms based on randomized rounding.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Op-

erations—network monitoring, network management; C.2.0

[Computer-Communication Networks]: General—Secu-

rity and protection

General Terms
Algorithms, Management, Security

Keywords
Intrusion Detection, Network Management

1. INTRODUCTION

Network intrusion detection (NIDS) and prevention sys-

tems (NIPS) serve a critical role in detecting and dropping

malicious or unwanted network traffic. These have been
traditionally deployed as perimeter defense solutions at the

boundary between a trusted internal network and the un-

trusted Internet. This deployment model has largely focused

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2010, November 30 – December 3 2010, Philadelphia,
USA.
Copyright 2010 ACM 1-4503-0448-1/10/11 ...$

on a single-vantage-point view with NIDS/NIPS placed at

manually chosen (or created) chokepoints to provide cover-

age for suspicious traffic.

Increasingly, however, the challenges of scaling this ap-

proach are becoming evident. As traffic volumes and the
types of analyses grow over time, the NIDS/NIPS place-

ments become a bottleneck. Approaches to scaling single-

vantage-point solutions have focused on building NIDS/NIPS

clusters (e.g., [38]). The cluster approach, however, faces
its own challenges: Since each packet might be relevant to

multiple analyses that may occur on different nodes, these

solutions need to replicate traffic across the cluster or share

the relevant analysis state. These overheads limit the per-

formance of these solutions or force coverage guarantees to
be relaxed (e.g., [34]). Furthermore, a single-vantage-point

view precludes opportunities for utilizing spare resources at

other network locations to offload some responsibilities un-

der high load. These limitations are further exacerbated in

the context of ISPs using NIDS/NIPS to provide security ser-
vices to its customers [3, 4].

In light of these challenges, we explore a different design

alternative. Instead of trying to scale processing at a few

chokepoints, our approach exploits the existing replication

of each packet along its forwarding path. In doing so, we
depart from the single-vantage-point strategy, and permit the

different nodes on a packet’s forwarding path to be candi-

dates for performing the analysis. As in the cluster solution,

stateful analysis will require that certain types of packets be

subjected to certain types of analysis at the same node —
e.g., connection-oriented analysis will process packets on

each direction of the connection at the same place. Rather

than explicitly replicating a packet or the derived state to

the nodes that need it for analysis, we partition the analysis

across locations where a packet can already be observed.
There are three key challenges in managing a network-

wide deployment of NIDS and NIPS:

• Resource constraints: NIDS/NIPS solutions are con-

strained by the processing and memory capabilities of

the underlying hardware. Additionally, some solutions

use specialized hardware (e.g., TCAMs [1, 2, 10, 39]) for
performance acceleration.

• Placement affinity: NIDS/NIPS are not monolithic sys-

tems: they consist of modules that analyze different traf-

fic patterns. In particular, the modules may have topo-

jaudelice
Typewritten Text

jaudelice
Typewritten Text

jaudelice
Typewritten Text
10.00.

jaudelice
Typewritten Text

logical constraints on where they will be most effective.

For example, outbound scans and inbound floods are best

detected close to network gateways.

• Network-wide objectives: Network administrators would

like to optimally use their existing infrastructure toward
their security objectives. For example, in the NIDS case

we want to ensure that all traffic is subjected to the ap-

propriate analysis. Similarly, we want to enable NIPS to

minimize the network footprint of unwanted traffic.

In the spirit of recent trends in network management [5,

7, 14, 32], we believe these challenges are best addressed by
taking a network-wide coordinated approach. We outline our

specific contributions next.

NIDS: We design a framework for partitioning NIDS func-

tions across a network to ensure that no node is overloaded.
This takes into account the resource footprint of each NIDS

component, the capabilities of different nodes, and place-

ment constraints for each function (e.g., ingress nodes for

scan detection). We implement a network-wide coordinated

NIDS using Bro [28]. Our extensions add low memory and
processing overhead. In an emulated network-wide deploy-

ment scenario our system reduces the maximum processing

load by 50% and the maximum memory load by 20%.

NIPS: For NIPS, we show how to maximally reduce un-
wanted traffic using specialized, but power- and capacity-

constrained hardware capabilities (e.g., TCAMs). We show

that this optimization problem is NP-hard and design prac-

tical approximation schemes based on randomized round-

ing [29]. Our algorithms provide near-optimal performance
on real ISP topologies, achieving ≥92% of the optimal per-

formance. We also demonstrate the promise of using tech-

niques from online learning to combat adversaries trying to

evade these defenses [18].

There are several efforts for scaling NIDS and NIPS (e.g., [6,
13, 21, 35, 38]) that focus on building better single-vantage-

point solutions. Because our work focuses on the network-

wide aspect it effectively complements these advances as it

enables administrators to optimally utilize their current hard-

ware infrastructure toward their security objectives.

2. NIDS DEPLOYMENT

We start by describing the constraints and requirements in

deploying NIDS functions throughout a network. Next, we

set up an optimization framework to assign NIDS respon-

sibilities across a network such that no single node is over-

loaded. We describe a prototype NIDS implementation and
evaluation using Bro [28].

2.1 System Model

Modern NIDS contain diverse modules that perform dif-
ferent types of traffic analyses such as scan detection, an-

alyzing HTTP traffic, tracking IRC traffic, finding malware

signatures, etc. We abstract these functions as classes, where

each class Ci is a specific type of analysis. Associated with

R1

R2 R3

R4

R5

h1

h2

h3

h4

h5

h6

h7

h8

Scan

Path1

Path2

Signature

Scan Scan

Scan

Signature

Signature

Signature

Signature

Figure 1: Example of network-wide NIDS configuration

each Ci is a specification Ti of the type of traffic that Ci

analyses. For example, if Ci is interested in port-80 traffic,

then Ti specifies all traffic to or from port 80.

Let {Tik}k=1... denote a partition of Ti into components

such that any packet matching Ti matches exactly one Tik .

We consider classes Ci for which Ti can be partitioned into
{Tik}k in such a way that for every k , all traffic matching

Tik can be observed by each member of a nonempty set Pik

of nodes; if node Rj ∈ Pik , then Rj can observe all traffic

that matches Tik (and can recognize it as such). We call each

Pik a coordination unit. Intuitively, Pik is the set of nodes
eligible for performing analysis Ci on traffic matching Tik .

Consider the example network in Figure 1. Suppose class

C1 called Signature applies malware signature analy-

sis to traffic T1. Now, T1 is partitioned into components

{T1k}k according to the end-to-end path it traverses; e.g.,
T11 specifies the traffic traversing Path1 and T12 denotes

traffic on Path2. Then, P11 = {R1,R3,R4} is the set of

nodes that can observe and recognize traffic matching T11,

and P12 = {R1,R3,R2} is the corresponding set for T12.

Similarly, consider the Scan module C2 that checks if any
of the hosts h1–h8 exhibit anomalous scanning activity. In

this case, the traffic T2 is partitioned into eight components

{T2k}k=1...8, corresponding to traffic initiated by each of

the eight hosts. Because each host’s ingress node is the

only node capable of observing all the traffic that a host
initiates, the ingresses are ideally suited for scan detection.

Thus, we define P21 = P22 = {R1} (for hosts h1 and h2),

P23 = P24 = {R2}, and so forth.

Note that because every node Rj ∈ Pik can observe all

traffic in Tik , it is possible to distribute the work of analyz-
ing traffic in Tik across them. For example, Figure 1 shows

enabling Signature on all the nodes on the network; as

we will see, we do so in a way that each node Rj ∈ Pik

analyzes a distinct subset of the Tik traffic.

We use T
pkts
i and T

pkts
ik to denote the total traffic volumes

in packets that matches Ti and Tik , respectively. Moreover,

each type of analysis Ci works at some level of traffic aggre-

gation (e.g., sources, destinations, or flows1). As such, we

use T items
i and T items

ik to denote the total traffic volumes,

expressed in the unit of aggregation appropriate for Ci (e.g.,

1A flow is a sequence of packets close in time that have the same
IP source and destination addresses/ports and protocol.

flows), that match Ti and Tik , respectively. We assume that

the classes Ci and traffic sets Tik are defined so that the cost

that node Rj ∈ Pik incurs in performing Ci -analysis on an

aggregate in Tik is independent of where other aggregates in

Tik are analyzed and, in particular, does not require Rj to
communicate with nodes analyzing other aggregates in Tik .

2.2 Problem Formulation

We envision that a centralized operations center period-

ically configures the NIDS responsibilities of the different
nodes to achieve the network’s security objective. For ex-

ample, ISPs typically collect traffic reports (e.g., NetFlow,

SNMP) every few minutes, and since NIDS configurations

would typically be driven from such reports, we envision
needing to reconfigure NIDS with roughly the same frequency.

Objective: Our goal is to guarantee complete coverage; a

network-wide deployment should be logically equivalent to

running a single NIDS on the entire traffic. In doing so, we

want to ensure that the processing/memory load is balanced
(for a suitable balancing function).

Control Variables: Let dikj denote the fraction of traffic

in Ci on coordination unit Pik that node Rj processes. We

consider a fractional split to provide more fine-grained op-
portunities for distributing the load across nodes.

Inputs:

• The classes {Ci}i and, for each Ci , its coordination units

{Pik}k . T
pkts
ik and T items

ik specify the volume of packets

and items (e.g., flows, sources) for Ci traversing Pik .
• For eachCi , the processing load (CPU seconds per packet)

is CpuReq i and the memory load MemReq i (e.g., bytes

per flow or per source).

• The CPU and memory capacityCpuCap j andMemCap j

of each node Rj . We consider a general model where net-
work elements have heterogeneous capabilities.

Note that these inputs are already available or can be in-
ferred from existing measurements. Network operations cen-

ters typically know the traffic matrix, routing policy, and

node hardware configurations [12]. Similarly, the resource

footprints of the NIDS modules can be obtained from offline

profiles [16].

Minimize max{CpuLoad ,MemLoad}, subject to

∀i , ∀k ,
∑

j :Rj∈Pik

dikj = 1 (1)

∀j , MemLoad j =

∑
i

∑
k MemReq i × T items

ik × dikj

MemCap j

(2)

∀j , CpuLoad j =

∑
i

∑
k CpuReq i × T

pkts
ik × dikj

CpuCap j

(3)

∀j , CpuLoad ≥ CpuLoad j (4)

∀j , MemLoad ≥ MemLoad j (5)

∀i , ∀k , ∀j , 0 ≤ dikj ≤ 1 (6)

Optimization problem: For concreteness, we focus on

minimizing the maximum processing/memory load on any

given node across the network, while guaranteeing complete

coverage for the different NIDS classes. This can be repre-

sented using the above linear programming formulation.
Eq (1) says that all the traffic in each coordination unit

for each class should be monitored. Eq (2) models the to-

tal memory load on each node, expressed as a fraction of its

memory capacity. As a first-order approximation, the mem-

ory load depends on T items
ik , the number of distinct items

corresponding to this analysis [16]. For example, this would

be the number of flows in per-flow analysis and the number

of distinct source addresses in per-source analysis. Eq (3)

models the processing load on each node expressed as a frac-
tion of its processing capacity in terms of the total volume of

packets of each class that the node is assigned [16]. Finally,

we model the maximum memory and processing load across

all the nodes, and minimize the max of these two measures.

Output: We solve the linear program to generate sam-

pling manifests that specify the NIDS responsibilities for
each node Rj . These responsibilities are specified in terms

of hash ranges for each coordination unit Pik .

The dikj values in the optimal solution can be converted

into hash-range based sampling manifests for each Pik using

the procedure in Figure 2. The main idea is to map these to
non-overlapping hash ranges to ensure that each node Rj ∈
Pik analyzes a distinct subset of the Tik traffic.

Given a sampling manifest, the algorithm on a node Rj is

shown in Figure 3. As each packet arrives, we find the set of

NIDS modules that need to analyze this packet. (In general,
the same packet may be analyzed by several modules; e.g.,

a packet on port 80 may be analyzed by the HTTP, malware

signature, and scan detection modules.) For each such mod-

ule, we check if Rj should analyze this packet. To do so, we
compute a HASH from the packet header using a lightweight

hash function. If the hash falls into the hash-range assigned

to node Rj for coordination unit Pik , then this packet is sub-

jected to analysis by class Ci at Rj . The hash may be com-

puted over different fields in the packet header depending on
the analysis. For example, for flow-based analysis, the hash

is over the unidirectional 5-tuple. For session-based anal-

ysis, the hash is over a bidirectional 5-tuple such that the

src/dst IP are consistent in both directions.

2.3 Implementation in Bro

We implement the above coordination functions in Bro [28].
Bro is logically divided into two parts (Figure 4): (1) an

event engine that converts a stream of packets into high-level

events and (2) a site-specific policy engine that operates on

the event stream.

Bro maintains a connection record for each end-to-end
session which is generated in the event engine and carried

into the policy engine. The connection record keeps the ba-

sic state information regarding the source/destination, appli-

cation ports, and other tags associated with the connection.

We modified the connection record to additionally carry hashes

of different combinations of the connection fields. Adding

these to the connection record increases the memory foot-

print slightly, but avoids having to recompute the hashes

within each policy script. We use the Bob hash function rec-
ommended by prior studies [26]. As an optimization, we add

a check in the basic connection processing step to avoid cre-

ating session state for traffic that falls outside the sampling

manifest for this Bro instance. (This occurs before running

the per-module checks in Figure 3.)
We consider two implementation alternatives for the sam-

pling checks in Figure 3 (i.e., line 5 for each i and k): (1) de-

laying the sampling checks until the policy engine stage and

(2) implementing the sampling checks in the event engine
as early as possible. The first approach has two advantages.

First, it requires minimal changes inside the event engine

(except adding the hashes to the connection record). Second,

it implements the coordination functions as site-specific ex-

tensions in the policy engine as intended in the Bro system
design. This may, however, impose high overhead for some

modules (Section 2.4). This is because the policy scripts are

executed by an interpreter and doing hash lookups/checks is

quite expensive. In (2) we run the sampling checks earlier

and only initialize a module if necessary. For example, we
initialize the HTTP module for a session only if the session

hash falls in the range assigned to this node for HTTP pro-

cessing. Fortunately, we do not need to modify each such

module to add these checks. We need to add this check only

at two places in the event engine, namely where application-
protocol modules (e.g., HTTP, IRC) and the signature-based

detection module are initialized.

For some modules, the only processing that occurs is in

the policy stage. For example, scan detection and TFTP pro-

cessing receive a raw event stream reporting connection in-
formation. In this case, our only option is to implement the

sampling check in the policy engine.

We extend Bro to implement the functions to process the

sampling manifests and associated configuration files. We

assume that our system has access to configuration files that
map each packet matching Tik to the corresponding Pik .

Specifically, these map IP prefixes to their ingress locations

and provide the routing paths for a given pair of IP prefixes.

2.4 Evaluation

First, we describe our evaluation setup. Then, we use stan-

dalone microbenchmarks to profile the resource footprints
of the different modules and measure the overhead of our

prototype. Finally, we describe a network-wide evaluation

that shows the benefits of our coordinated network-wide ap-

proach vs. a single vantage point approach.

Setup: We use a custom traffic generator that takes as in-
put a network topology, the traffic matrix (fraction of traf-

fic for each ingress-egress pair), routing policy (nodes on

each ingress-egress path), and a traffic profile (e.g., relative

popularity of different application ports). We use template

GENERATENIDSMANIFEST(d∗ = 〈d∗
ikj 〉)

1 foreach class Ci do

2 foreach coordination unit Pik do

3 Range ← 0
// the order of nodes does not matter

4 foreach j ,Rj ∈ Pik do

5 HashRange(i , k , j) ← [Range,Range + d∗
ikj]

6 Range ← Range + d∗
ikj

// Assignments across Classes and Coordination units

7 ∀j ,Manifest(Rj) ← {〈{i , k},HashRange(i , k , j)〉}

Figure 2: Translating the optimal solution into a sam-

pling manifests for each NIDS node

COORDINATEDNIDS(pkt ,Rj ,Manifest(Rj))

1 {Ci}i ← GETCLASS(pkt)
// Each packet may be analyzed by multiple modules

2 foreach class Ci do

3 k ← GETCOORDUNIT(pkt , i)
// HASH returns a value in [0, 1]
// Specific packet fields used for HASH

// depend on semantics of Ci

4 hpkt ← HASH(pkt, i)
5 if hpkt ∈ HashRange(i , k , j) then

6 Run class Ci for pkt

Figure 3: Coordinated NIDS algorithm on node Rj

sessions using real traffic captured for common protocols

like HTTP, IRC, and Telnet, and synthetically generate traf-

fic sessions for other protocols.
The goal of this evaluation is to compare the relative per-

formance (processing, memory load) of a network-wide co-

ordinated approach against a single-vantage-point approach.

By design, the network-wide approach provides equivalent

functionality. (We verified through manual inspection of Bro
logs and profiles that the aggregate behavior of the network-

wide and standalone approaches are equivalent.)

The performance benchmarks we present next were ob-

tained using Bro-1.4 on a dual-CPU Intel R© Pentium R© 3.4GHz

machine with 2GB RAM running Ubuntu 9.04.

Optimization time: We use CPLEX to solve the linear

program. In order to be responsive to traffic dynamics, we
may need to rerun the solver periodically to adapt to traffic

changes, e.g., every few minutes. It takes 0.42 seconds to

compute the optimal solution for a 50-node topology. This

suggests that the optimization step will not be a bottleneck.

Microbenchmarks: First, we perform a standalone evalua-

tion (i.e., with no network-wide coordination) of our proto-

type implementation and compare it with an unmodified Bro
system. We generate a single traffic trace with 100,000 traf-

fic sessions using a mixed traffic profile that stresses differ-

ent modules. We evaluate both implementation alternatives

described earlier: Bro with the coordination checks imple-

Network

libpcap

 Event

Engine

 Policy

Scripts

Packet Stream

Filtered Stream

Event Stream

Network

libpcap

Packet Stream

Filtered Stream

Event Stream

Network

libpcap

Packet Stream

Filtered Stream

Event Stream

Current Bro

Approach 1:

Delay coordination

until policy stage

Approach 2:

Do cooordination checks

as early as possible

HTTP

Basic

Login

HTTP Login

Scan

HTTP Login

Scan

Coord

IRC

IRC
Coord

Coord

IRC Coord

HTTP

Basic

Login

IRCCoord

HTTP LoginCoord Coord

IRC CoordBasic Coord

HTTP Login

IRCScan Coord

Figure 4: Implementing the coordination functionality in

Bro. The “coord” boxes indicate where we add in coordi-

nation checks. For some modules (e.g., Scan), the checks

have to be in the policy engine.

mented in the event engine wherever possible, and Bro with

all coordination checks in the policy scripts. The sampling

manifests in both cases are configured to specify that this

standalone node needs to process all the traffic. We config-
ure Bro to run each analysis module in isolation.

Our goal is to evaluate: (a) the processing overhead in-

duced by the coordination functions — finding the coordi-

nation unit identifier for each packet, computing the hashes

of various connection fields, and checking if the hash lies in
the sampling ranges; and (b) the memory overhead of adding

the hash values into the connection record. For each config-

uration, we perform 5 runs and report the mean, minimum,

and maximum overhead.

Figure 5(a) compares the processing overhead of our ex-
tended Bro implementations vs. the unmodified Bro system

(using the total CPU time used) for different modules. For

the Baseline, Signature, Blaster, and SYN-flood modules,

the overhead of coordination checks is around 2% on aver-

age for both implementations. For the scan and TFTP mod-
ules, the overhead of both coordinated versions is close to

10% since these involve more processing in the policy en-

gine. In these cases, both coordinated versions have very

similar overhead because the coordination checks occur in

the same place; either they cannot be offloaded to the event
engine (e.g., scan, TFTP) or they occur solely in the event

engine (e.g., Signature). However, in the case of HTTP, IRC,

and Login, there is significant overhead when we perform

the coordination checks in the policy engine.

Figure 5(b) shows that the memory overhead of the co-
ordinated versions is at most 6%. Recall that this overhead

arises because we augment the connection record to carry

hashes of different combinations of header fields.

Based on these observations, for a network-wide NIDS we

implement the coordination checks for the different modules
as early as possible. That is, for modules such as HTTP,

IRC, and Login, we add the checks in the event engine, and

for modules such as Scan, TFTP, Blaster, and SYNFlood we

add the checks in the policy scripts.

Baseline Scan IRC Login TFTP HTTP Blaster Signature SYNFlood
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
ro

ce
ss

in
g

ov
er

he
ad

PolicyEngine

EventEngine

(a) CPU

Baseline Scan IRC Login TFTP HTTP Blaster Signature SYNFlood
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
em

or
y

ov
er

he
ad

PolicyEngine

EventEngine

(b) Memory

Figure 5: CPU and memory overhead for different mod-

ules with the coordination-enabled Bro prototype.

Network-wide evaluation: Next, we consider a network-

wide evaluation setup. For this, we use the Internet2 topol-
ogy with 11 nodes distributed throughout the continental US

to represent a large enterprise network with several loca-

tions. We use a gravity model based on the city populations

to determine the traffic matrix [30]. We use shortest-path

routing based on link distances to determine the paths be-
tween each pair of locations. Our setup configures all lo-

cations to have the same processing/memory capabilities.

Given this topology and traffic information, we solve the lin-

ear program and assign NIDS responsibilities to minimize

the maximum CPU/memory load. We use the guidelines of
Dreger et al. [16] to obtain the CPU and memory footprints

for the different Bro modules.

We compare the network-wide coordinated deployment

against an edge-only deployment where each location in-

dependently runs a Bro instance on the traffic it sees. We
emulate a network-wide deployment as follows. From a

network-wide trace, we generate traces that each node sees.

For the coordinated case, this includes both traffic originat-

ing/terminating at a node and transit traffic. For the edge-

only case, these consist of traffic originating/terminating at
each node. Given each trace, we run Bro on the trace in

pseudo-realtime emulation mode. During each run, we pro-

file the CPU utilization and memory load using atop sam-

pled every 1 second. We report the CPU footprint as the

product of the utilization and the total execution time and the
memory footprint in terms of the maximum resident mem-

ory size. For each deployment scenario and node, we run

the experiment 5 times to report the mean, minimum, and

maximum value of these performance metrics.

8 10 12 14 16 18 20 22
100

110

120

130

140

150

160

Number of NIDS modules

M
ax

 M
em

or
y

U
se

 (M
B

)

Bro−Edge

Bro−Coordinated

(a) Memory

8 10 12 14 16 18 20 22
50

100

150

200

250

300

350

400

450

Number of NIDS modules

M
ax

 C
P

U
 u

se
: U

til
iz

at
io

n
x

Ti
m

e

Bro−Edge

Bro−Coordinated

(b) CPU

Figure 6: Maximum per-node memory and CPU usage

across the network as number of NIDS modules grows.

The total traffic volume is 100,000 sessions.

First, we consider the effect of adding more NIDS func-

tionality. For this experiment, we keep the traffic volume

fixed at 100,000 sessions, but add more NIDS modules. In
order to emulate adding more NIDS functions, we start with

the set of modules shown in Figure 5 and create duplicate

instances of HTTP, IRC, Login, and TFTP modules.2 Recall

that there were two types of modules: those where we could

move the coordination functions into the event engine and
others where we could not. We inspected 140 policy scripts

in the Bro distribution and found that a majority of them fall

in the former category. Thus, our duplicate instances are in-

dicative of how a NIDS like Bro would be augmented with

more modules in practice. Figures 6(a) and 6(b) show that
the coordinated approach scales better as we add more func-

tionality into the NIDS deployment.

Next, we vary the total number of end-to-end sessions

retaining the same traffic matrix structure and using all 21

NIDS modules from Figure 6. Figures 7(a) and 7(b) show
the maximum per-node processing and memory load across

the network as a function of the total traffic volume. We see

that coordination reduces the maximum memory footprint

by 20% and the maximum CPU footprint by 50%. The over-

all trend also shows that the network-wide approach scales
better as the workload increases.

Finally, to provide insights into how these performance

benefits arise, we show how the CPU and memory load met-

rics vary across the different network locations in Figures 8(a)

and 8(b). We show the result for the configuration corre-

2We used fake instances for convenience to avoid having to bench-
mark and modify scripts for other modules.

20000 40000 60000 80000 100000
0

20

40

60

80

100

120

140

160

Total traffic volume (#sessions)

M
ax

 M
em

or
y

U
se

 (
M

B
)

Bro−Edge

Bro−Coordinated

(a) Memory

20000 40000 60000 80000 100000
0

50

100

150

200

250

300

350

400

Total traffic volume (#sessions)

M
ax

 C
P

U
 u

se
: U

til
iz

at
io

n
x

T
im

e

Bro−Edge

Bro−Coordinated

(b) CPU

Figure 7: Maximum per-node memory and CPU usage

across the network as the total traffic volume increases.

The NIDS includes 21 modules.

sponding to 100,000 sessions and 21 NIDS modules from

the previous results. We see that in the edge-only deploy-
ment, the node marked 11 is most loaded. (This corresponds

to New York, which in a gravity model based traffic ma-

trix carries a significant volume of traffic.) The coordinated

deployment can offload NIDS responsibilities that were pre-

viously assigned to node 11 to other nodes where the same
analysis could have been performed. The figure shows that

some nodes (e.g., nodes 6 and 8) perform more NIDS pro-

cessing than in the edge-only setting.

2.5 Extensions

More fine-grained coordination capabilities: These re-

sults show that our prototype already provides significant

performance benefits in a network-wide setting. However,

there are some avenues to further improve the performance.
The basic unit of processing in Bro is a connection: an

end-to-end session between two hosts. While this provides

a general abstraction to implement many NIDS modules,

some modules may need only a subset of that information.

For example, Scan needs to observe only the first packet in
a connection to track the number of distinct destination IPs

that a source contacts. In our setup, because the ingresses

need to run the Scan module, they need to track all connec-

tions. This means that even though we can offload module-

specific processing, e.g., from node 11 to other nodes in
Figure 8, node 11 still needs to track all packets because

a connection is the smallest granularity of processing. Con-

sequently, we duplicate the baseline connection processing

and tracking work across the network.

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

M
em

or
y

us
ed

 (M
B

)

NodeId

Edge

Coordinated

(a) Memory

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300

350

400

450

C
P

U
 U

se
: U

til
iz

at
io

n
*

Ti
m

e

NodeId

Edge

Coordinated

(b) CPU

Figure 8: Memory and CPU load on each network node

for 100,000 sessions and 21 NIDS modules.

One direction of future work is to design NIDS that inher-

ently support fine-grained coordination capabilities – allow-

ing different granularities of connection information, provid-

ing interfaces for modules to subscribe to more fine-grained
events (e.g., first packet of a flow for Scan), and allowing

modules to specify how early they can implement coordina-

tion checks. Such capabilities would provide more opportu-

nities for distributing the load across a network.

Redundancy for reliability: In order to be robust to NIDS

failures, administrators may want enable each analysis mod-

ule at r or more distinct locations for each coordination unit.

We are specifically concerned about non-adversarial failure
modes, e.g., hardware or OS crashes. (If we are running the

same NIDS at all locations, we need other mechanisms to

protect against implementation bugs.)

Extending our model from Section 2.1, this means that we

have to divide the hash space for each coordination unit such
that: (1) each point in the space is covered r times and (2)

no node is responsible for the same point more than once.

The second clause ensures that we have r distinct nodes to

analyze each packet/connection.

One approach is to incorporate the notion of a “redun-
dancy level”; we can generalize the control variables dikj s to

new variables dikjl s that also indicate the redundancy level

each l corresponds to. However, it is intuitively hard to cap-

ture requirement (2) that the same node is never responsible

for the same point in the space more than once.
Fortunately, there is a simple extension to the LP for-

mulation to provide redundant coverage. The key is not to

treat replicated coverage in terms of levels, but as covering

a larger hash space. That is, instead of thinking of the prob-

lem in terms of covering the space [0, 1] r times, we think

of it as covering the space [0, r], while retaining the bound

dikj ≤ 1. We modify the RHS of Eq (1) to r instead of 1

and solve this new LP. While converting the LP solution into

sampling manifests (Figure 2), we proceed as before, except
that we wraparound the range every time it exceeds 1.

3. NIPS DEPLOYMENT

In this section, we describe our model to capture the con-

straints in deploying NIPS functions. We formulate the op-

timization problem and develop an approximation algorithm

based on randomized rounding because it is NP-hard to solve

the problem exactly. We evaluate our algorithm on a range
of real network topologies and system parameters. Finally,

we describe how we can extend the model to be robust to dy-

namic adversaries using techniques from online algorithms.

3.1 System Model

NIPS typically consist of filtering rules matching specific

traffic patterns. For example, firewall rules look at the packet

header fields; signature-based filters detect string/regular ex-

pression patterns in packet payloads. As in the NIDS case,
each rule (class)Ci is associated with two types of resources:

(1) CPU processing load CpuReq i per packet, and (2) mem-

ory load MemReq i if it needs to maintain any per-flow or

cross-packet state. For this discussion, we restrict our pre-

sentation to rules that operate a per-packet or per-flow gran-
ularity, since it is typical of most NIPS functions used today.

As such, we consider only coordination units that are end-

to-end routing paths; i.e., each Pik is a path of routers.

In order to operate at line rates, modern NIPS use special

purpose hardware such as Ternary CAMs (TCAM) for pat-
tern matching (e.g., [39, 40]). However, such hardware ca-

pabilities are expensive and power-intensive. Thus, there are

natural budget and technological limits on how many NIPS

rules can be active on each node. To address this concern,

we extend the model from the previous section to capture the
use of such special hardware capabilities.

3.2 Problem Formulation

The objective is to configure the NIPS modules to min-
imize the network footprint of unwanted traffic or equiv-

alently to maximize the reduction in the total footprint by

dropping unwanted traffic. We want to generate rule place-

ments specifying which rules are enabled on each NIPS node

and sampling manifests specifying what fraction of the traf-
fic the node should process for each enabled rule. Given the

rule placements, the processing responsibilities are split to

ensure that no node exceeds its memory/CPU capacity.

As a generalization, we consider the footprint of each packet

in terms of network distance. Let Dist ikj be the downstream
distance remaining on the path Pik from Rj . Dist ikj can be

measured in number of router hops, fiber distance, or rout-

ing weights. For example, if for Ci , the Pi1 = R1, R2, R3

in order, and we use router hops, Dist i11 = 3, Dist i12 = 2,

and Dist i13 = 1. Alternatively, to model the total volume of

unwanted traffic dropped, we set all Dist ikj to be 1.

Inputs:

• Each rule Ci is associated with three types of resources:

(1) CPU processing load CpuReq i per packet, (2) mem-

ory load MemReq i if it needs to maintain any per-flow
or cross-packet state, and (3) and the TCAM required

CamReq i per rule. Note that the CamReq is per-rule

rather than per-packet or per-flow.

• The capacity CpuCap j , MemCap j , and CamCap j of

each node Rj .

• The paths Pik , their traffic volumes T items
ik and T

pkts
ik ,

and the Dist ikj values for each node on the path.
• For each rule Ci , Mik denotes the fraction of traffic along

path Pik that matches and will be affected by this rule.

For example, if the rule Ci detects a specific malware

signature, Mik is the fraction of this malware traffic on

the path Pik . These can be estimated from NIDS alerts
or other sources (e.g., NetFlow feeds).

Max.
∑

i

∑

k

∑

j ,Rj∈Pik

T items
ik ×Mik × Dist ikj × dikj (7)

subject to

∀j ,
∑

i

CamReq i × eij ≤ CamCap j (8)

∀j ,
∑

k

∑

i

T items
ik ×MemReq i × dikj ≤ MemCap j (9)

∀j ,
∑

k

∑

i

T
pkts
ik × CpuReq i × dikj ≤ CpuCap j (10)

∀k , ∀i ,
∑

j ,Rj∈Pik

dikj ≤ 1 (11)

∀j , ∀i , ∀k , dikj ≤ eij (12)

∀k , ∀i , ∀j , dikj ≥ 0 (13)

∀i , ∀j , eij ∈ {0, 1} (14)

Optimization Problem: Let eij be a {0, 1} variable that

specifies if rule Ci is enabled on node Rj . dikj denotes the

fraction of traffic on path Pik for which node Rj applies the

filtering rule Ci .
Given this setup, we can formulate the NIPS deployment

problem using a Mixed Integer-Linear Program. The objec-

tive in Eq (7) models the total reduction in network foot-

print achieved by dropping unwanted traffic. For a specific

i and k , the total number of unwanted flows of this type is
T items

ik × Mik . Each node Rj that lies on Pik contributes

Dist ikj × dikj toward reducing the total footprint. Since we

split the sampling responsibilities across the Rj s on each Pik

by hashing (as in Figure 2), we can simply add up the con-

tributions across the different nodes.
Eq (8) models the constraint on the number of rules that

can be enabled in the constrained TCAM hardware on each

node. Eq (9) and Eq (10) model the aggregate memory and

processing load on each node. Eq (12) checks that a node

cannot apply a rule Ci unless it has been enabled and Eq (11)

ensures that the fraction of the traffic sampled on each path-

rule combination is never more than 1.

There are three implicit assumptions in this formulation.

First, we assume that attackers cannot craft traffic that can
avoid the sampling checks. That is, both legitimate and un-

wanted traffic patterns are distributed uniformly through the

hash space. In practice, administrators can use private keyed

hash functions to prevent adversaries from evading the hash

checks. Second, to rigorously model the load on each node,
we should take into account the traffic that has already been

dropped upstream. In that case, Eq (9) and Eq (10) become

non-linear constraints. Specifically, the LHS of these equa-

tions will have an extra factor (1 −
∑

j ′ dikj ′), where the
sum is taken over routers Rj ′ preceding Rj on path Pik , to

model the traffic that has already been dropped. We con-

servatively model the load in terms of the total volume (be-

fore any drops). Third, we assume that the rules are non-

redundant and the same packet/flow does not match multiple
rules. Our high-level goal is to obtain general guidelines for

configuring the NIPS modules. To this end, these are rea-

sonable assumptions.

The presence of the discrete eij variables in Eq (14) makes

the optimization problem NP-hard. We can show that this
problem is NP-hard via a reduction from the MAX-CUT prob-

lem. (Due to space constraints, we refer the reader to our

technical report for the proof of NP-hardness [31].)

3.3 Approximation via randomized rounding

Given that it is NP-hard to solve the optimization problem

exactly, we use an approximation algorithm using random-
ized rounding [29]. Figure 9 describes the steps involved in

our algorithm.

First, we relax the problem by replacing the discrete eij s

by continuous variables in the interval [0, 1] to create a linear

program. Then, starting from the solution to this linear pro-
gram, we generate a feasible solution to the original problem

for which the objective function is close to optimal.

As a first step, we would like to “round” the optimal frac-

tional value e∗ij in the LP solution to a binary value êij ,

by setting each êij independently and randomly to 1 with
probability e∗ij , and 0 otherwise. To decrease the chance

of violating the constraint Eq (8), we set êij to 1 only with

probability
e∗

ij

α
(line 5 of Figure 9). While this ensures that

most constraints in Eq (8) are satisfied, it could still vio-

late a few of them. To rectify this, we reset some of these
variables to zero (line 10) as necessary. To make sure that

we do not violate the constraints Eqs (9)–(11), we ensure

that the solution {êij }ij , {d̂ikj }ikj after the loop in lines 4–9

satisfies Eqs (9)–(11) to within some factor β logN , where
N = max{#nodes ,#rules}—see line 7. These constraints

will be satisfied when we rescale the d̂ikj s in lines 11–12.

(We can do this because the d̂ikj s are fractional quantities.)

RANDOMIZEDROUNDING

// Create LP relaxation

1 Replace “eij ∈ {0, 1}” in Eq (14) with “0 ≤ eij ≤ 1”.
2 Solve the LP relaxation to obtain {e∗ij }ij and {d∗

ikj }ikj
3 ∀k , i , j , ǫikj ← d∗

ikj /e
∗
ij

4 repeat

5 ∀i , j , Randomly set êij ← 1 with probability
e∗

ij

α
,

and êij ← 0 otherwise

6 ∀k , i , j , d̂ikj ← ǫikj êij
7 Check if any constraint in Eqs (9)–(11)

is violated by a factor more than β logN
8 If yes, call this trial a failure

9 until not failure

10 If for some j constraint Eq (8) is violated, arbitrarily

set few êij to 0 until all constraints Eq (8) are satisfied

11 ∀k , i , j , ǫikj ←
ǫikj

β logN

12 ∀k , i , j , d̂ikj ← ǫikj êij
13 Output êij and d̂ikj

Figure 9: Approximation algorithm for the NIPS deploy-

ment problem via randomized rounding.

Let OptLP denote the value of the objective function of

the optimal LP solution, i.e., Eqs (7)–(13), and with Eq (14)

replaced by the constraint eij ∈ [0, 1]. Let OptNIPS be the

objective value of the optimal solution to the original integer

formulation Eqs (7)–(14). We can prove that the algorithm in
Figure 9 outputs a feasible solution with objective function

at least
OptLP

O(logN) , where the constants in the big-oh depend

on the scaling factors α and β. (Due to space constraints, we

omit the proof and refer readers to our technical report [31].)

Since OptLP ≥ OptNIPS , this guarantees that the value of

our solution is at least
OptNIPS

O(logN) .

The algorithm in Figure 9 can be improved in two ways.

First, the scaling of d̂ikj (line 11) is likely to be too conser-
vative. A practical alternative is to solve the LP represented

by Eqs (9)–(14) after setting the values for êij obtained in

line 5 to be constants, and use the values for {d̂ikj }ikj re-

turned by this solution. Second, we may be conservative in

setting some êij s to zero (lines 10 and 5). To fix this, we

can greedily try to set êij s to 1 until no more can be set to

1 without violating Eq (8), and then solve the LP treating
these êij s as constants. These steps do not affect feasibil-

ity and can only improve the value of the objective function,

and the approximation guarantee holds on these extensions

as well.

3.4 Evaluation

For this evaluation, we use network topologies from ed-
ucational backbones (Internet2 and Geant) and tier-1 ISP

topologies inferred by Rocketfuel [36]. We construct ingress-

egress paths for each pair of nodes using shortest-path rout-

ing [25]. We use a gravity model traffic matrix based on city

0.05 0.1 0.15 0.2 0.25
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Rule capacity constraint

Fr
ac

tio
n

of
 L

P
 u

pp
er

bo
un

d

Abilene

Geant

AS 1221

AS 1239

AS 3257

(a) Rounding + LP solve

0.05 0.1 0.15 0.2 0.25
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Rule capacity constraint

Fr
ac

tio
n

of
 L

P
 u

pp
er

bo
un

d

Abilene

Geant

AS 1221

AS 1239

AS 3257

(b) Rounding + Greedy + LP solve

Figure 10: Performance of the approximation algorithms

with a uniform rule match rate distribution. There are

100 NIPS rules. Each node can enable 100× “rule capac-

ity constraint” of these rules.

populations [33]. To model the total volume, we start with

a baseline of 8 million flows and 40 million packets (per 5
minute interval) for Internet2 based on publicly available es-

timates. For the other networks (Geant, AS 1221, AS 1239,

AS 3257) we scale the total volume linearly as a function of

network size from this baseline estimate. Each node Rj has

a MemCap j of 400,000 flows and a CpuCap j of 2 million
packets that it can process in this 5-minute interval. We use

Dist ikj values measured in router hops.

We assume that there are a total of 100 NIPS rules, each

having a unit requirement of TCAM, packet processing, and

flow memory units; i.e., for all i , CamReq i = CpuReq i =
MemReq i = 1. We present results for the case when Mik

values are distributed uniformly in the range [0, 0.01]. For

the following results, we vary the CamCap j of each node

as a fraction of the total number of NIPS rules; this fraction

is called the “rule capacity constraint”. For each setting, we
generate 30 different Mik values. Then, we run 10 iterations

of the rounding-based algorithms and take the best solution

across these 10 runs.

Optimization time: As in the NIDS case, we may need

to rerun the algorithm as traffic profiles change. It takes

roughly 220 seconds to run our algorithm for a 50-node topol-

ogy. Given that we expect to periodically recompute the so-

lution every few minutes, this is a reasonable cost. Most of
the time is spent in solving the LP in Step 2 and the final

step where we solve a second LP. We can further reduce this

time by seeding the LP solver with starting solutions from

previous computations.

Optimality gap: As discussed in Section 3.3, the basic al-

gorithm in Figure 9 is conservative and can be improved in

two ways: (1) Solving an LP after the rounding stage instead

of scaling down the d̂ikj s and (2) greedily setting more êij s

to 1 after the rounding stage without violating the TCAM

constraints and then solving the LP as in (1).

Figure 10 presents the mean, minimum, and maximum

value obtained by these two rounding-based algorithms across
the 30 Mik scenarios as a fraction of OptLP .3 First, we see

that the performance our algorithms is much better than the

approximation ratio of 1
O(logN) as we get more than 70% of

OptLP . Second, the greedy step can significantly boost the

performance, achieving more than 92% of OptLP . These re-

sults are consistent across the different topologies and across
the values of the CamCap j constraint. These results hold

for other Mik distributions as well (not shown for brevity).

3.5 Online Adaptation

The above formulation considers a static scenario where

the match rates {Mik}s are known and fixed. However, an

adversary can control the sources and nature of the unwanted
traffic. For example, an attacker who controls a botnet can

modify the attack profile – the sources and destinations of

the malicious traffic and the attack mix. Our goal is to make

NIPS deployment robust to such adversaries.

To model the online or adaptive version of the NIPS de-
ployment problem, we leverage the framework described by

Kalai and Vempala [18] for modeling online linear optimiza-

tion problems. The general problem can be described as fol-

lows. We have to make a series of decisions O1, O2, . . .,
from some space of possible decisions O ⊂ ℜn. At each

step t, there is a cost Ot.St associated with making the de-

cision Ot, where St ∈ S ⊂ ℜn represents the state of the

world at time t, and ‘.’ denotes the dot product between the

two vectors Ot and St. However, the St is revealed only af-
ter the decision for the tth step Ot has been made; we do not

have access to the current St before making the decision Ot.

Next, we describe how to use this framework for adaptive

NIPS deployment. As a starting point, we consider a simpli-

fied version of the NIPS deployment problem where we do
not have the TCAM constraints. That is, we remove the dis-

crete eij variables and the associated constraints Eqs (8), (12),

and (14) from the formulation in Section 3.2.

To model the time-varying adaptation, we divide time into

epochs. In each epoch t, Ot is a vector of the sampling vari-
ables dikj s. The state of the world St at time t captures the

traffic profile in terms of the match rates for the different

rules. Specifically, each St is a vector of values, each of the

form T items
ik ×Mik ×Dist ikj . The size n of the decision and

state vectors is thus n = M ×N×L, where M is the number
of paths in the network (over which k ranges), N is the num-

ber of NIPS nodes (over which j ranges), and L is the total

3Since it is hard to find the true optimum, we use the LP upper
bound as a proxy. Note that this is a conservative estimate of the
true performance of our approximation algorithms.

number of NIPS rules/classes (over which i ranges). Each

“cost” term directly corresponds to a term in our objective;

i.e., dikj ×
(
T items

ik ×Mik ×Dist ikj
)
.4 An adversary can

change the different Mik values over time to vary the traf-

fic mix. Our goal is to adapt the NIPS deployment without
knowing the exact Mik values in each epoch.

The goal is to have a total cost over γ epochs,
∑γ

t=1 Ot.St,

that is close to mincostγ = minO∈O

∑γ
t=1 O.St. That is,

we want our cost to be comparable to the cost of the best

possible single solution in hindsight.5 The regret is defined
as

∑γ
t=1 Ot.St−mincostγ ; the difference between the costs

incurred by the online decision procedure and this single best

decision chosen in hindsight.

Kalai and Vempala [18] show how to convert a black-box
optimization algorithm for computing the best static solu-

tion into an online algorithm that minimizes the worst-case

regret. Given a procedure Λ that takes as input the state S
and returns argminO∈O O.S, they suggest a follow the per-

turbed leader (FPL) strategy, where at each time step t and
for some ǫ > 0:

1. Choose pt uniformly at random in [0, 1
ǫ
]n.

2. Use Ot = Λ(
∑t−1

q=1 Sq + pt).

Intuitively, to make the decision Ot at time t, the algo-

rithm uses as input to Λ a perturbed function of the historical

sum of the state vectors observed up to t− 1. The perturba-
tion term guards against adversaries who know our strategy.

If we chose Ot simply using the sum of S up to t − 1, an

adversary can generate values of St such that the regret will

be very high.

It can be shown that the FPL strategy has provably low
regret. In particular, if we define constants D, R, and A
such that,

• ∀O,O′ ∈ O, D ≥ |O−O′|1 (i.e., maximum L1 distance

between any two decision vectors)
• ∀O ∈ O, S ∈ S, R ≥ |O.S| (i.e., maximum possible

value of the cost function)

• ∀S ∈ S, A ≥ |S|1 (i.e., maximum possible L1-norm of

the state vector),

then, FPL with parameter ǫ =
√

D
RAγ

gives,

THEOREM 3.1.
E[cost(FPL(ǫ))−mincostγ]

γ
≤

√
DRA

γ
[18].

That is, the average regret goes to zero as γ increases.

The optimization procedure Λ in our case involves solv-
ing the linear program. To apply the theorem, we set the

constants D, R, and A as follows: D = M × N × L and

R = A =
∑

ik T
items
ik × maxdrop, where maxdrop is a

conservative upper bound on the maximum fraction of traf-

fic we expect to be dropped. Then, in each epoch t, we set

4Even though we describe the NIPS problem as a maximization,
we can think of the “cost” as the volume of unwanted traffic that
we let through.
5In general, it is not possible to provide guarantees with respect to
the best possible dynamic solution.

0 100 200 300 400 500 600 700 800 900 1000
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Epoch

A
ve

ra
ge

 n
or

m
al

iz
ed

 re
gr

et

Run 1

Run 2

Run 3

Run 4

Run 5

Figure 11: Result showing the normalized regret over

time for different runs of the online adaptation algo-

rithm. We normalize the regret by the objective value

of the best static solution.

Mik =
∑t−1

q=1
MObs

ik (q)

t−1 + pt

t×T items
ik

, where pt is computed as de-

scribed in the FPL procedure and where MObs
ik (q) is the ob-

served fraction of traffic on path Pik in epoch q that matched
Ci . (The normalization factors in the pt term arise because

the state variables S correspond to the product of the match

rate and traffic.)

Preliminary Evaluation: To evaluate this online adaptation

procedure, we use the same setup from Section 3.3 (without

the rule capacity constraints). We consider a dynamic set-
ting where the Mik s are drawn from a uniform match rate

distribution, but are revealed only at the end of each epoch.

The metric in which we are interested is the average nor-

malized regret as function of time:
∑γ

t=1
Obj

staticopt
t −ObjFPL

t∑γ

t=1
Obj

staticopt
t

,

whereObj denotes the value of the objective function achieved

by the different decision procedures. That is, we normalize

the total regret by the total objective value achieved by the
best possible static solution. Figure 11 shows this normal-

ized regret metric over time for 5 independent runs for the

Internet2 setup. Across the different runs, the regret is at

most 15% of the best single solution we could have cho-

sen in hindsight. (In some epochs, the regret is negative,
meaning that the online algorithm is actually better than the

best static strategy.) This preliminary result demonstrates

the promise of leveraging such online adaptation strategies

for robust NIPS deployment. Two directions of future work

are to evaluate the performance of this online algorithm in
the presence of strategic adversaries and to apply this frame-

work to the formulation from Section 3.2.6

4. RELATED WORK

Network management and monitoring: Many recent pro-

posals have argued the benefits of a coordinated approach for
network management [5, 7, 12, 14, 42]. Hash-based packet

selection to coordinate monitoring responsibilities has been

used in the context of Trajectory Sampling [9] and cSamp [32].

We build on this prior work. There have been efforts for au-

tomated configuration management for enterprise networks

6There are known extensions for the case where Λ is an approxi-
mation algorithm [18, 23].

to satisfy security and reachability policies [27]. However,

NIDS/NIPS deployment present unique constraints that we

address in this paper.

Monitor placement: Several efforts have studied the prob-

lem of placing network monitors to cover all routing paths

using as few monitors as possible [8, 37]. These show that
the problems are NP-hard and propose greedy algorithms.

Kodialam et al. [24] consider the problem of routing traffic

such that each end-to-end path passes through at least one

content filtering node. Our formulations differ in two key as-

pects. First, we model the problem as one of enabling mod-
ules with different sampling rates subject to resource con-

straints. Second, we operate within a given routing frame-

work and do not modify routing policies.

Scaling NIDS/NIPS: There are many proposals for scal-

ing NIDS/NIPS using parallelization (e.g., [6,13,21,35,38]),

hardware-assisted acceleration (e.g., [17]), better algorithms
(e.g., [20]), models for understanding their resource con-

sumption (e.g., [15,16]), and optimizing rule patterns (e.g, [1,

2,10,39]). Our work effectively complements these because

we exploit spatial opportunities for distributing NIDS and

NIPS functions across a network.

5. DISCUSSION

Traffic changes: Sections 2 and 3 formulate the problem in

a static setting. This raises concerns regarding traffic bursts,

changing traffic profiles, etc. Since our optimization mod-

ules interface with other network management tools (e.g.,

NetFlow), we can periodically rerun the optimizations to
adapt to long-term (e.g., timescales of tens of minutes) changes.

Our experiments show that the optimization procedures are

responsive enough to handle such recomputations. To han-

dle short-term bursts, we can use conservative values; e.g.,

95%ile values to account for bursty patterns and tradeoff
some loss in optimality for better robustness.

Routing changes: Network paths are largely stable on the

timescales for per-session analysis [41]. However, when

route changes do occur and we recompute the optimal so-

lutions, there is a concern that this may affect correctness.

Specifically, the new optimal solution may be such that a
node maintaining some specific connection state is no longer

responsible for monitoring that connection.

To ensure correctness in the presence of such dynamics,

we can ensure that nodes temporarily retain the old respon-

sibilities until existing connections in these assignments ex-
pire. That is, each node picks up new assignments imme-

diately but takes on no new connections in the old assign-

ments. This may result in some duplication, but provides

correct operation. However, it may be the case that new

packets for connections in the old assignment no longer tra-
verse the node as a result of the routing change. In this case,

we may have to transfer the current NIDS state associated

with these connections to the new node responsible for an-

alyzing these [34]. Adding redundant functionality as out-

lined in Section 2.5 can further reduce the impact of routing

changes.

Provisioning and Upgrades: We can also extend the for-

mulations from Sections 2.2 and 3.2 to describe what-if pro-

visioning scenarios: where should an administrator add more
resources (e.g., [38]) or augment existing deployments with

more powerful hardware (e.g., [17]).

Aggregated analysis: Certain kinds of analysis need ag-

gregated network-wide views (e.g., [11, 19, 22]). We be-

lieve that our models can be extended to such scenarios as

well, e.g., by explicitly incorporating communication costs
between NIDS instances.

6. CONCLUSIONS

In this paper, we provided systematic formulations for ef-
fectively managing NIDS and NIPS deployments. In doing

so, we used a network-wide coordinated approach, where

different NIDS/NIPS capabilities can be optimally distributed

across different network locations depending on the operat-

ing constraints – traffic profiles, routing policies, and the re-
sources available at each location.

Our models and algorithms enable administrators to opti-

mally leverage their existing infrastructure toward their se-

curity objectives. Moreover, by focusing on the network-
wide aspect, it effectively complements other efforts to scale

single-vantage-point NIDS and NIPS.

Acknowledgments

This work was supported in part by the National Science

Foundation under grants CNS-0756998, CNS-0831245, and

CCF-1016799, grant N000141010155 from the Office of Naval

Research, and the Alfred P. Sloan fellowship of A. Gupta.

7. REFERENCES
[1] S. Acharya, M. Abliz, B. Mills, T. F. Znati, J. Wang, Z. Ge, and A. Greenberg.

OPTWALL: A Traffic-Aware Hierarchical Firewall Optimization. In Proc.

NDSS, 2007.
[2] D. L. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett, and

J. Wang. Compressing Rectilinear Pictures and Minimizing Access Control
Lists. In Proc. SODA, 2007.

[3] Arbor networks. http://www.arbor.com.
[4] AT&T Enterprise Threat Management. http://www.business.att.

com/enterprise/Family/business-continuity-enterprise/

threat-management-enterprise/.
[5] H. Ballani and P. Francis. CONMan: A Step Towards Network Manageability.

In Proc. ACM SIGCOMM, 2007.
[6] C. Kruegel, F. Valeur, G. Vigna, and R. A. Kemmerer. Stateful Intrusion

Detection for High-Speed Networks. In Proc. IEEE Symposium on Security and

Privacy, 2002.
[7] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der

Merwe. Design and implementation of a Routing Control Platform. In Proc.

NSDI, 2005.
[8] G. R. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and P. Thiran.

Reformulating the Monitor Placement problem: Optimal Network-Wide
Sampling. In Proc. CoNeXT, 2006.

[9] N. Duffield and M. Grossglauser. Trajectory Sampling for Direct Traffic
Observation. In Proc. ACM SIGCOMM, 2001.

[10] E. W. Fulp. Optimization of network firewalls policies using directed acyclic
graphs. In Proc. Internet Management Conference, 2005.

[11] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion detection
framework. In Proc. IEEE Symposium on Security and Privacy, 2002.

[12] A. Feldmann, A. G. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True.
Deriving Traffic Demands for Operational IP Networks: Methodology and
Experience. In Proc. ACM SIGCOMM, 2000.

[13] L. Foschini, A. V. Thapliyal, L. Cavallaro, C. Kruegel, and G. Vigna. A Parallel
Architecture for Stateful, High-Speed Intrusion Detection. In Proc. ICISS, 2008.

[14] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Meyers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang. A Clean Slate 4D Approach to Network Control
and Management. ACM SIGCOMM CCR, 35(5), Oct. 2005.

[15] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational Experiences
with High-Volume Network Intrusion Detection. In Proc. ACM CCS, 2004.

[16] H. Dreger, A. Feldmann, V. Paxson and R. Sommer. Predicting the Resource
Consumption of Network Intrusion Detection Systems. In Proc. RAID, 2008.

[17] J. Gonzalez, V. Paxson, and N. Weaver. Shunting: A Hardware/Software
Architecture for Flexible, High-Performance Network Intrusion Prevention. In
Proc. ACM CCS, 2007.

[18] A. Kalai and S. Vempala. Efficient Algorithms for Online Decision Problems.
Journal of Computer System Sciences, 71(3), Oct. 2005.

[19] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature
distributions. In Proc. ACM SIGCOMM, 2005.

[20] V. T. Lam, M. Mitzenmacher, and G. Varghese. Carousel: Scalable Logging for
Intrusion Prevention Systems. In Proc. NSDI, 2010.

[21] A. Le, E. Al-Shaer, and R. Batouba. Correlation-Based Load Balancing for
Intrusion Detection and Prevention Systems. In Proc. SECURECOMM, 2008.

[22] X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan, W. Hong, and G. Iannaccone.
MIND: A Distributed Multidimensional Indexing for Network Diagnosis. In
Proc. IEEE INFOCOM, 2006.

[23] K. Ligett, S. Kakade, and A. T. Kalai. Playing Games with Approximation
Algorithms. In Proc. STOC, 2007.

[24] M. Kodialam, T. V. Lakshman, and Sudipta Sengupta. Configuring Networks
with Content Filtering Nodes with Applications to Network Security. In Proc.

INFOCOM, 2005.
[25] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Inferring Link Weights

using End-to-End Measurements. In Proc. IMW, 2002.
[26] M. Molina, S. Niccolini, and N. Duffield. A Comparative Experimental Study

of Hash Functions Applied to Packet Sampling. In Proc. International

Teletraffic Congress (ITC), 2005.
[27] S. Narain, G. Levin, S. Malik, and V. Kaul. Declarative infrastructure

configuration synthesis and debugging. Journal of Network and Systems

Management, 16(3), 2008.
[28] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time.

Computer Networks, 31(23–24):2435–2463, 1999.
[29] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for

provably good algorithms and algorithmic proofs. Combinatorica, 7(4), Dec.
1987.

[30] M. Roughan, M. Thorup, and Y. Zhang. Performance of estimated traffic
matrices in traffic engineering. In SIGMETRICS, 2003.

[31] V. Sekar, R. Krishnaswamy, A. Gupta, and M. K. Reiter. Network-Wide
Deployment of Intrusion Detection and Prevention Systems. Technical Report,
CMU-CS-10-124, Comp. Sci. Dept., CMU, 2010.

[32] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. Kompella, and D. G.
Andersen. cSamp: A System for Network-Wide Flow Monitoring. In Proc.

NSDI, 2008.
[33] M. R. Sharma and J. W. Byers. Scalable Coordination Techniques for

Distributed Network Monitoring. In Proc. PAM, 2005.
[34] R. Sommer and V. Paxson. Exploiting Independent State for Network Intrusion

Detection. In Proc. ACSAC, 2005.
[35] R. Sommer, V. Paxson, and N. Weaver. An Architecture for Exploiting

Multi-Core Processors to Parallelize Network Intrusion Prevention.
Concurrency and Computation: Practice and Experience, Wiley,
21(10):1255–1279, 2009.

[36] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies with
Rocketfuel. In Proc. ACM SIGCOMM, 2002.

[37] K. Suh, Y. Guo, J. Kurose, and D. Towsley. Locating Network Monitors:
Complexity, heuristics and coverage. In Proc. IEEE INFOCOM, 2005.

[38] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tierney. The
NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Commodity
Hardware. In Proc. RAID, 2007.

[39] F. Yu, R. H. Katz, and T. V. Lakshman. Gigabit Rate Packet Pattern-Matching
Using TCAM. In Proc. ICNP, 2004.

[40] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. H. Katz. SSA: A Power and
Memory Efficient Scheme to Multi-Match Packet Classification. In Proc.

ANCS, 2005.
[41] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the Constancy of Internet

Path Properties. In Proc. IMW, 2001.
[42] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast Accurate

Computation of Large-scale IP Traffic Matrices from Link Loads. In Proc.

ACM SIGMETRICS, 2003.

