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ABSTRACT 
Mainstream operating systems (and the hardware they run on) 
fail to purge the contents of portions of volatile memory when 
that portion is no longer required for operation.  Similar to 
how many file systems simply mark a file as deleted instead 
of actually purging the space that the file occupies on disk, 
Random Access Memory (RAM) is commonly littered with 
old information in unallocated space waiting to be reused.  
Additionally, RAM contains constructs and caching regions 
that include a wealth of state related information.  The 
availability of this information along with techniques to 
recover it, provide new methods for investigation. 
 
This article discusses the benefits and drawbacks of traditional 
incident response methods compared to an augmented model 
that includes the capture and subsequent analysis of a suspect 
system’s memory, provides a foundation for analyzing 
captured memory, and provides suggestions for related work 
in an effort to encourage forward progress in this relatively 
new area of digital forensics. 
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INTRODUCTION 
 

Techniques described here tend to follow a 
more historical thought process regarding 
forensic procedures: acquire first, then 
identify.  This may cause some privacy 
concerns when contrasted with some more 
modern approaches to e-discovery1 where the 
pertinent information is located first and then 
only that information is acquired.  This 
distinction is also pertinent when considering 
the classification of information.  
Traditionally acquired data will need to be 
classified at the highest classification level of 
any information found on the system.  
Theoretically, when using more selective 
methods of e-discovery, the acquisition could 
be limited to only acquire data of a certain 
classification level and thus not be subjected 
to the high watermark.  Both the historical and 
selective techniques have their benefits and 
drawbacks; such as completeness versus speed 
and storage advantages respectively.  This text 
does not debate these techniques. 
 
This article makes many hardware and 
software assumptions.  Intel i386 / IA-32 
architecture is assumed, along with a standard 
4K page size.  Only Microsoft Windows® 
operating systems are discussed, and for 
systems that support memory related boot 
switches such as /3G and /PAE it is assumed 
that these switches are not being used2. 
 
Even though the concept of object-reuse and 
related techniques for its mitigation have been 
known for decades [1], many operating 
systems use memory management techniques 
that have little or no safeguards against this 
threat.  A design decision to place a higher 
precedence on performance than security is 
not uncommon.  In the case of Random 
Access Memory (RAM), this design choice 
can be exploited in order to both further 
preserve and gain deeper insight into the state 
of a currently running machine. 

 
BACKGROUND 

 
Depending on the situation, upon arriving on 
scene, a responder has two core choices: either 
interact with the system or pull the plug.   On 
one side, it has been known for some time that 
normal user interaction is undesirable, even 
performing a clean shutdown would destroy 
potential evidence by changing timestamps 
and potentially overwriting information.  
Following this train of thought, it was 
suggested that pulling the plug of a machine 
will leave it in a more preserved state than 
powering it down gracefully [2] (albeit some 
subsystems, such as the file system, may not 
recover gracefully from abrupt removal of 
power).  On the other side, while pulling the 
plug does preserve the current contents of the 
hard disk drive, it allows little or no insight 
into what operations the system was 
performing at the time when the power was 
removed.  In light of this lack of knowledge, 
others have provided incident response steps 
to perform in order to gain insight about the 
state of the system [3 among others]. 
 
When concerned with the contents of RAM, 
neither choice is adequate.  Simply, pulling 
the plug can clear the contents of RAM (in 
most cases), and performing many incident 
response actions overwrites potential evidence 
in memory akin to creating new files on a 
suspect hard disk drive.  Two additional 
concepts need to be introduced into 
acquisition and analysis stages in order to take 
advantage of RAM contents: the acquisition of 
RAM, and the extraction of information from 
the RAM duplicate. 
 
For some time now, varying abilities of 
acquiring RAM contents have been available.  
A popular open source LiveCD called Helix 
has supported George Gartner’s dd tool in 
combination with the windows 
\\.\PhysicalMemory object since about 2004.  
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In many cases, this packaging of a tool with 
the memory object in a mostly graphical form 
can enable mainstream first responders to 
capture memory. 
 
Regardless of the method used to acquire 
memory, little effort has been devoted to the 
problem of what to do with the copy once is 
has been acquired.  The lack of analysis 
capability is likely why RAM content is not 
captured as a matter of course.  Prior to 2005, 
the primary method of analyzing a RAM copy 
was to perform a strings analysis.  In 2005, the 
Digital Forensics Research Workshop 
(DFRWS) held a Memory Analysis Challenge 
which will almost certainly be considered the 
beginning of the field of memory forensics.  
Two individuals were credited with winning 
the challenge (Garner and Betz) but neither 
publicly released their tools.  Since, others 
have created tools publicly (Vidas, Carvey, 
Burdach, Schuster [4-7]) and privately 
(Kornblum, Goldsmith).  Current tools have 
distinct drawbacks, but the future outlook 
looks promising.  
 

THE CASE FOR COPYING RAM 
 
For those that currently do not copy RAM as 
part of their acquisition procedures, a logical 
first question to ask is “Why copy RAM?”   
There are several reasons that a complete 
RAM capture may prove useful, most revolve 
around key differences between data stored in 
RAM and data stored on a hard disk drive.   
 
Volatile memory, e.g. RAM, is perceived to 
be more trusted than non-volatile memory, e.g. 
ROM, magnetic and optical storage.  When 
simply considering the data that is either not 
stored or somehow protected on a hard disk 
drive yet stored in plaintext when stored in 
memory, many data types immediately come 
to mind: passwords, financial transaction 
information, encryption keys, etc.  The 
existence of this type of information may not 

even be intentional, poorly written 
applications can leave information resident, or 
this type of information may even occur as a 
byproduct of malware.  Circa 1994, malware 
sophistication had grown to the point where a 
multipartite, stealthy virus [8] could slowly 
encrypt a hard disk drive unbeknownst to the 
user. 
 
Malware can be completely memory resident.  
Rather than debate the differences between 
viruses, worms, trojans, etc.  It is sufficient to 
say that malware can exist completely in 
RAM.  In such a situation the malware may 
not ever even touch the hard disk drive.  After 
removal of power from the system, no record 
of the malware would exist upon later 
examination.  Contemporary examples of this 
would include the widely publicized nimda 
and SQLslammer worms [9,10]. 
 
Memory is latent.  Much as a latent fingerprint 
is one that existed but was not readily evident, 
there is latent information available in 
memory.  Similar to how the recovery of 
deleted files became a widespread act early in 
the field of digital forensics, the recovery of 
prior (deleted) processes has become a focus 
of current research in memory forensics.  Due 
to file system caching, delayed writes, buffers, 
etc. it is even possible to extract full or 
fragments of files from memory, data that may 
have never been written to the hard disk drive.  
 
The hacker defense is becoming more 
common [11-17 among others].  Envision a 
suspect that has known contraband stored on 
their hard disk drive.  A defense mechanism 
may be to download some malware 
purposefully.  This malware need not even be 
related to the contraband data in any way.  A 
judge/jury may be convinced that due to the 
presence of malware and the inability to 
discern whether the malware could be at fault 
that a guilty suspect be deemed innocent.  The 
capture of memory can give the ability to both 
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determine if that the malware in question was 
actually executing and if so, it may be possible 
to distinguish the capabilities of the malware 
in order to meet this burden of proof. 
 
Executing code must actually exist somewhere.  
Malware routinely relies on obfuscation and 
other techniques to avoid detection and 
eradication.  However, all code executing on a 
processor has to actually exist in executable 
form somewhere.  In some cases memory 
acquisition may prove to be a useful way to 
perform malware analysis.  One example may 
be executable packing.  When executables are 
packed (binary obfuscation) they are 
inherently harder to understand.  In some 
situations unpacked versions of executables 
could be extracted directly from memory in 
order to avoid tedious and time consuming 
manual unpacking. 
 
Duplicating RAM has less impact to potential 
evidence than normal incident response.  
During incident response, in order to gain 
insight about system state one might issue 
several commands and catalog the responses.  
Typical response may include creating more 
than 30 processes [3].  The more detailed the 
responses the more accurate the portrayal of 
the system state, but the portrayal depends 
upon the granularity of the tools and the 
accurate recording and interpretation of the 
tool output.  When considering a copy of 
RAM as an alternative, the recording is 
complete, and the interpretation and 
granularity can be altered via subsequent 
examination of the copy, a leisure that is not 
possible via live response. 
 
Why wouldn’t you acquire RAM?  Even 
though under most circumstances the actual 
act of copying RAM will be shown to have a 
negative impact to potential evidence, the 
impact should be outweighed by potential gain.  
Good procedures and documentation should 
help minimized the effect of potential damage 

to evidence, and eventually RAM acquisition 
will become an industry best practice. 
 
It will be shown that similar to Windows Task 
Manager listing current processes, forensic 
tools can be (and have been) created that list 
not only processes active at the time of 
memory acquisition, but also show old and 
hidden processes. 
 

RAM ACQUISITION 
 
When creating a duplicate of a hard disk drive, 
ideally the drive is disconnected from the 
system and duplicated via a hardware write 
blocker.  Even though power is removed, the 
data stored on the drive is not lost because the 
store is non-volatile.  This is not the case with 
volatile memory such as RAM.  Due to 
physical architecture, once power has been 
removed for a certain amount of time the state 
of the data in RAM in unknown.  This 
prohibits the removal of RAM chips for 
duplication, and encourages live acquisition 
(while the system is running). 
 
The actual acquisition of RAM can be 
performed in different ways, each with 
benefits and drawbacks.  The biggest 
difference in technique is hardware vs 
software acquisition.  Currently there are three 
software based techniques and two hardware 
based techniques.   
 

Software Acquisition 
Software techniques are currently the most 
prevalent.  A tool (such as dd) can be used 
from a LiveCD (such as Helix) to copy 
RAM3:  
    dd if=\\.\Device\PhysicalMemory  
     of=e:\memoryimage.dd bs=4096  

 
In this case of software acquisition, some 
memory (potential evidence) will be over-
written because the copy utility itself will be 
instantiated as a process on the suspect system 
and the data that was in the portion of memory 
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that this new process occupies will be lost4.  
For this reason, the footprint of any 
acquisition tool should be minimal.  In the 
above example Helix was mentioned due to its 
prevalence in the field, however, the default 
configuration of Helix may not be conducive 
to acquisition needs.  Helix will start an 
autorun process called helix.exe when the 
CDROM is inserted into a running Windows 
system.  For memory acquisition purposes a 
less invasive tool would be preferred.  The 
actual duplicate could be stored on removable 
media or saved across a network.  At a 
minimum, introducing new hardware such as a 
mass storage device would affect the registry, 
while creating a new network connection will 
create associated structures in RAM. 
 
A second software technique involves the use 
a system crash.  The notorious “blue screen of 
death” can occur under certain conditions 
outside of the control of the user, or it can be 
forced by the user.   The user can force a crash 
either by using the built in 
CrashOnCtrlScroll [18] which requires a 
registry edit, or via a 3rd party utility such as 
NotMyFault.exe released by SysInternals 
(now owned by Microsoft).  In either case, if 
the systems is configured to create a FULL 
crash dump (as opposed to Mini, Kernel, or 
None – which is controlled again by the 
registry) then the contents of memory will be 
eventually saved to a file.  This save comes at 
the cost of losing the contents of the Pagefile, 
which when combined with the size of the 
subsequent file created upon reboot results in 
overwriting areas of the hard disk equal to or 
greater than twice the size of physical memory 
present in the system.  This negative impact to 
non-volatile evidence through the changing of 
registry values, overwriting of unallocated 
space and potential for reboot5 makes this 
method less preferred. 
 
When using virtualization software, a virtual 
machine may be paused and the virtual 

physical memory (that is the abstraction of 
physical memory presented to the virtual 
machine) can simply be copied unbeknownst 
to the virtual machine.  Of course, this 
software technique does not address the 
tangible physical RAM, and is mentioned 
primarily for completeness.   
 

Hardware Acquisition 
Hardware techniques are currently quite 
limited.  Firewire has shown some merit for 
acquisition, because Direct Memory Access is 
possible via the IEEE 1394 specification, and 
proof of concept code has been released [19].  
However, results of acquisition via Firewire 
vary widely.  This technique not only has 
specific hardware requirements, but has also 
been shown to be inconsistent [20] and in 
some cases causes hardware to malfunction. 
 
Hardware acquisition through dedicated 
hardware is the most desirable method. When 
using dedicated hardware the contents of 
RAM does not have to be altered in order to 
create the copy.  This method currently has 
two very distinct drawbacks: it requires pre-
meditation because the hardware must be in 
place prior to the incident, and there are no 
such products currently available to the 
consumer (but proof of concept has been 
created [21,22]).  Arguably, this is the only 
technique that can suspend a typical (non-
virtual) machine in order perform the 
acquisition. 
 
 

Time Sliding Window 
Since RAM is constantly in use, the contents 
of RAM are constantly changing.  The amount 
of change varies greatly based on hardware, 
software, and usage of the system, but the fact 
remains that if the system is being used, RAM 
is changing.  The fact that the contents are 
continuously changing paired with the 
necessity to acquire memory while the system 
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is running results in an inability to capture 
RAM at a precise point in time. 
 
All of the above techniques6 will exhibit a 
“time sliding-window” phenomenon where at 
least some portion of RAM was currently 
being altered at the time of the copy.  
Validation, such as an MD5 hash of original 
media before and of the duplicate after the 
copy, may work on unchanging stores like a 
hard disk drive, but one would expect it to not 
work on RAM (the contents of which are 
expected to have changed between hashing).   
 
A case could be made for validating similar 
copies.  Consider two RAM duplicates made 
as closely together as time allows, one created 
right after the other.  Temporal proximity 
would suggest that “not much” had changed in 
the RAM contents between the two copy 
operations or at the very least that less change 
will have occurred than if the machine was 
left to run for extended or particularly busy 
periods.  The amount of actual change could 
be quantified using a hash window equal to 
the page size.  Pages that did not change 
between the two copy operations would have 
identical hashes, altered pages would have 
different hashes. 
 

RAM ANALYSIS 
 

Even if it is shown that creating a duplicate 
does have less negative impact to evidence 
than performing common incident response 
steps, the requirement for the information 
obtained during these steps still remains.  The 
RAM duplicate serves little purpose without 
that ability to extract at least similar 
information that incident response tools can 
provide.  Ideally, even more information can 
be garnered from the RAM duplicate. 
 

Lack of Structure 
Today most host based forensic analysis 
revolves around the inspection and 

interpretation of files and file systems.  
Recovering files, analyzing time stamps, file 
carving, etc typically all rely on file system 
specific concepts such as the File Allocation 
Table, Master File Table, inodes, and even 
clusters.  This additional file system 
abstraction layer is not present when 
considering RAM.  When compared to many 
types of files, much of the data in RAM may 
appear structureless.    
 
The analysis of this raw data employs 
techniques from different areas such as kernel 
debugging and reverse engineering.  In fact, in 
order to aide the analysis of the volatile data, 
often information from a non-volatile may be 
required.  Consider employing a technique to 
find processes that is similar to using file 
headers for traditional file carving.  Just as 
particular byte sequences such as 
0xFFD8FFE0 or 0xFFD8FFE1 can be 
searched for at the beginning of a cluster on 
disk to identify possible JPEG headers, 
particular patterns can be sought at the 
beginning of a memory boundary (such as a 
page) in order to find possible structures such 
as a process.  In the case of a JPEG the file 
format is well known in order to facilitate 
broad use of the file type.  In the case of a 
process no format needs to be publicly 
available as the process structure was never 
intended to be disseminated to other systems.  
The lack of structure information is only 
compounded when considering closed-source 
operating systems.  In order to seek out these 
structures, the format of the structure must be 
known prior to the search.  A set of such 
structures can be calibrated using known 
systems.  For example, through kernel 
debugging, it is readily apparent that the size 
and structure of a process differs between 
many Windows operating systems depending 
on version and service pack level (see Table 1: 
Windows Data Structure Offsets). 
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Process Carving 
As late as 2005, strings [23] analysis was 
considered the best method available to 
extract information from a RAM 
duplicate [24].  Running strings on a RAM 
duplicate acquired from a cleanly installed and 
booted Windows operating system resulted in 
the average extraction of more then 30 MB of 
largely unusable text7 (see Figure 1: Strings 
found in a cleanly booted system).  Keep in 
mind that these are unmodified operating 
systems, fairly atypical in the wild and that 

even 30 MB of text would translate to roughly 
8000 printed 8.5” x 11” sheets of paper. 
 
A strings analysis will not be able to lend 
much insight about RAM specific structures 
such as processes.  Instead, a search for 
known patterns must be performed along with 
a validation process for potential structures.  
The signature of a process can be defined by 
inspecting known offsets (as obtained from 
calibration) for expected data.  For example, 
the offset related to process priority must be 
non-zero for all processes except the idle 
process, the offset related to the Page 
Directory Base (PDB) must be non-zero (a 
process must have a PDB) and the PDB must 
be on a page boundary (normally 4K), all the 
threads of a process must exist inside of the 
section of RAM dedicated to kernel memory, 
etc. 
 
Assuming that the operating system version 
and service pack level are known prior to the 
search (i.e. obtained by inspection of the hard 
disk drive), a search for processes in a forensic 
image of 512 MB RAM takes about 7 minutes 
to execute through a PERL interpreter on a 
modest system8.  This is a brute-force search 
that searches for structure signatures linearly.  
The fully commented proof of concept code is 
less than 1000 lines and a high success rate 
can be achieved implementing as few as five 
checks on known offsets. [25] 
 

Table 1 : Windows Data Structure Offsets 
 2000 XP XP 

SP2 
2003 Vista 

EP_PageDirBase 18 18 18 18 18 
EP_processors 34 34 34 34 34 
EP_T_Forward 50 50 50 50 50 
EP_T_Back 54 54 54 54 54 
EP_priority 62 62 62 62 64 
EP_T_Quantum 63 63 6f 63 * 
EP_T_Qant_dis 69 69 69 69 60* 
EP_exitStatus 6c 24c 1d0 24c 234 
EP_createTime 88 70 70 70 88 
EP_exitTime 90 78 78 78 90 
EP_PID(client 
Unique) 

9c 84 84 84 9c 

EP_WorkSetSize e4 20c 20c 214 208 
EP_WorkSetMin e8 210 210 1f8 1ec 
EP_WorkSetMax ec 214 214 1fc 1f0 
EP_AccessToken 12c c8 c8 c8 e0 
EP_PPID 1c8 14c 14c 128 124 
EP_name 1fc 174 174 154 154 
EP_size 290 258 260 278 268 
TH_size 248 258 258 260 278 
TH_createTime 1b0 1c0 1c0 1c8 1d0 
TH_exitTime 1b8 1c8 1c8 1d0 1d8 
TH_exitStatus 1c0 1d0 1d0 1d8 1e0 
TH_PID (client 
unique) 

1e0 1ec 1ec 1f4 1fc 

TH_TID (client 
unique) 

1e4 1f0 1f0 1f8 200 

TH_isTerminated 224 248 248 250 250 
TH_startAddr 230 224 224 22c 234 
      
EP denotes the Windows EProcess structure, TH 
denotes EThread. All values are base 16 (hex).  

Figure 1: Strings found in a cleanly booted system
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*Quantum related values for Vista do not fit the pattern 
of prior OSes, and need to be researched further. 
Values obtained via LiveKD and the Windows kernel 
debugger by issuing:   dt -a -b -v _EPROCESS 
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A handful of tools are now available for 
performing analysis similar to what is stated 
above.  Among them are procloc [4],  
Windows Memory Forensic Toolkit [6], 
Windows IR tools [5], and memparser [19] 
which was one of the original DFRWS 
submissions that was later released publicly.  
Each of these tools have their various benefits 
and drawbacks, mostly associated with project 
maturity.  For example, many tools do not 
have a good user interface and many only 
work on RAM from some versions of 
Windows.  As with other tools, be sure to 
adequately test these tools before using any of 
them in a non-academic sense. 
 

TRUST ISSUES 
 

Issues with trust arise in both the acquisition 
and analysis phases.  The most detrimental 
issue involves the acquisition of RAM 
contents.  This situation revolves around the 
problem of executing code on an untrusted 
system.  How can one be assured that the 
input to the copy operation is actually the 
contents of the systems RAM?  Techniques 
could be employed by malware to deny access 
to RAM or worse, to misrepresent the contents 
of RAM in order to elude detection.  Many 
rootkits already use similar techniques.  
However, in a situation involving such 
malware one could easily make the argument 
that this misrepresentation would also affect 
common incident response tools.  It is 
currently thought that the only way to 
completely mitigate this threat is to use 
dedicated hardware for acquisition9. 
 
Trust is also an issue during analysis.  For 
example, some of the above tools make use of 
assumptions about internal Windows process 
scheduling.  Windows maintains a doubly 
linked list of process structures, each process 
structure contains information on where the 
next and previous process structures are 
located.  If this information is trusted, it 

greatly speeds up the enumeration of 
processes.  However, if a process (thread) has 
become unlinked from this list it will not 
appear in the enumerated set.  This could be 
the case for processes that are no longer 
scheduled for execution (old processes) as 
well as hidden processes. 
 
A final trust issue is foundational to a core 
computer science concept:  RAM may not be 
as volatile as one might have thought.  It has 
been demonstrated that the contents of RAM 
can actually survive reboots and even short 
durations of power completely removed from 
a system [27].  This actually challenges term 
“volatile memory.”  Computing systems can 
not be trusted to provide RAM in a clean state 
initially, only an unknown state.  Further 
research must be performed in order to 
determine if this known ledge can be 
leveraged in the favor of a responder. 
 
 

FUTURE WORK 
 

For most purposes, the area of memory 
forensics can be considered to be less than 2 
years old, still in its infancy.  As with other 
budding areas of research memory forensics is 
ripe with possibilities for both unique research 
and refinement of existing research.  Below 
find suggestions for new research in addition 
to ideas on how to extend upon the concepts 
provided here. 
 
Compare the trusted process list with one 
obtained via brute force methods.  A brute 
force technique was described in this article.  
Others [6] use a list traversal approach.  
Comparing results from the two methods 
could flag outliers, such as hidden processes.  
 
One could employ virtual memory unification.  
Since the RAM duplicate being analyzed is 
never actually executed by the CPU, it does 
not have to obey typical memory management 
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rules, such as those related to paging.  For 
example, during analysis all pages could be 
“swapped in” from the pagefile extracted from 
a forensic duplicate of the hard disk drive. 
 
Operating system detection could be improved.  
The execution time mentioned for a brute 
force search assumes that the operating system 
version and service pack level are known.  If 
this information is not known (you have a 
RAM image but no hard disk drive image, or 
an encrypted hard disk drive) then the best 
case is to try all known operating system 
offsets until one search provides enough 
results to be deemed correct.  This increases 
the execution time 1 factor for every known 
operating system.  For example, instead of 7 
minutes, procloc could take 35 minutes to 
execute. 
 
One could automate the correlation with non-
volatile stores.  It was mentioned above that 
some information from a hard disk drive is 
very useful in the analysis of RAM.  
Operating system type and service pack level 
for example.  Other types of information are 
also very valuable.  Consider the need to link 
a process to a user account.  The process 
structure only stores the internal UID which 
must then be correlated with information in 
registry to obtain a username. 
 
Executables could be automatically or 
selectively extracted from the RAM duplicate.  
Assuming that outliers could be easily 
identified (as suggested by list comparison 
earlier), executables could automatically be 
created from the extracted information in 
order to automate analysis. 
 
Flag rogue structures by employing more 
checks.  It was shown in this article that 
accurate results could be achieved with as few 
as 5 checks.  Malware that is “aware” of these 
checks could attempt to spoof them in order to 
“fit in.”  Employing more checks and 

adjusting their strictness could in effect 
identify structures with varying levels of 
“correctness.” 
 
Account for all areas of memory by marking 
sections as structures are found.  Consider a 
mature field of memory forensics, where 
processes, threads, file caches, etc. all have 
reliable tools that allow inspection and 
extractions.  If each of these tools marked the 
areas of memory that it found to be a 
legitimate structure, then what do the 
unmarked areas represent?  This technique 
would be similar to code coverage procedures 
use in other discipline. 
 
Most current tools only support environments 
that are either easy to develop tools for, or 
represent a large user base. Future tools need 
to support fringe memory architectures such 
as those enabled by the /PAE and /3G boot 
switches, non-i386 support is needed, and of 
course tools need to keep up with current 
operating systems and add support as needed 
(such as Vista). 
 
 

CONCLUSION 
 

In exchange for a minimal negative impact 
(potentially as small as creating a single new 
process) to evidence during acquisition, a 
much greater depth and breadth of information 
concerning system state can be gained during 
analysis.  The ability to gather pertinent 
information from a RAM duplication often 
requires information to be gathered from a 
related non-volatile store prior to analysis, but 
may require little acquisition training and 
minimal additional hardware.  At the very 
least, RAM acquisition allows analysis to 
occur after first response and enables RAM 
data to be viewed as an additional static 
evidence item to which traditional 
preservation and duplicate validation 
techniques can be applied. 
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NOTES 
 
1.   Guidance software has sections of their website 

(www.guiadancesoftware.com) devoted to e-
discovery using their EnCase product line.  
Additionally there are many conference 
presentations and whitepapers on the subject, but no 
traditionally academic sources.  (e.g.  CSI Annual 
Computer Security Conference, CEIC, DoD Cyber 
Crime Conference)dnotes will go here when I figure 
out how to do this in Word. 

 
2.   /3GB and /PAE are options given at boot time for 

MS Windows based operating systems that alter the 
default behavior of memory.  Physical Address 
Extension (PAE) is heavily, if not completely, 
related to Intel IA-32 architecture  PAE (Pentium 
Pro and above) basically increases physical 
addresses to more than 32 bits.  3GB allows for 
applications to use 3 GB of virtual address space 
instead of the normal 2 GB.  [29,30] 

 
3.   The command should  be typed all on one line, not 

two lines as shown.  Notice the specified size of 4K 
which corresponds to the size of a memory page.  
Note that usermode access to the PhysicalMemory 
object has been removed by Microsoft in Windows 
Server 2003 SP1 and potentially in future operating 
systems.  \.\DebugMemory is being researched 
further.   

 
4.   It could be argued that this information is not lost, 

but will likely be swapped out.  This would depend 
if the portion of memory in question as allocated or 
not, and even if the portion was allocated that 
subsequently swapped out, some information in the 
swap file would be lost. 

 
5.    A crafty approach would be to invoke the crash 

dump which writes physical memory contents to the 
physical sectors of the hard disk where the pagefile 
is stored.  Then unplug the system after the dump is 
complete but before POST.  In this situation the 
contents of the pagefile are still lost, but the dump is 
not written as a file to the file system and the system 
did not actually reboot (changing timestamps and 
similar).  Using a write blocker the RAM contents 
could be extracted from a forensic duplicate in order 
to perform RAM analysis. 

 
6.   This may prove to not be the case with a dedicated 

hardware acquisition, but this cannot be tested as no 
such hardware readily exists. 

 
7.   Tested on systems with 512 MB of RAM. 

  
8.   Tested on a IBM Thinkpad R51, with 1.5 Ghz Intel 

Pentium 3m with 1 GB of RAM, running Windows 
XP SP2 and ActivePERL 5.8.7. 

 
9.   Which remains to be seen, not only is such 

hardware not yet available, but circumvention of 
such hardware have already been claimed [28] 
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