
Currently “In Submission” to JDFP
(some content may change before publication)

Timothy Vidas
Naval Postgraduate School
Monterey, CA

THE ACQUISITION AND
ANALYSIS OF RANDOM

ACCESS MEMORY

ABSTRACT
Mainstream operating systems (and the hardware they run on)
fail to purge the contents of portions of volatile memory when
that portion is no longer required for operation. Similar to
how many file systems simply mark a file as deleted instead
of actually purging the space that the file occupies on disk,
Random Access Memory (RAM) is commonly littered with
old information in unallocated space waiting to be reused.
Additionally, RAM contains constructs and caching regions
that include a wealth of state related information. The
availability of this information along with techniques to
recover it, provide new methods for investigation.

This article discusses the benefits and drawbacks of traditional
incident response methods compared to an augmented model
that includes the capture and subsequent analysis of a suspect
system’s memory, provides a foundation for analyzing
captured memory, and provides suggestions for related work
in an effort to encourage forward progress in this relatively
new area of digital forensics.

KEYWORDS: memory, random access memory, memory
analysis, digital forensics, Windows forensics, incident
response, best practices

Tim Vidas is a Research Associate at the Naval Postgraduate School. He
has been focusing research in the field of digital forensics for a few years
and is now primarily working on in the area of trusted operating systems
and kernels. In addition to research, he likes to teach and has a wide set of
IT related interests. He maintains several affiliations like ACM, CERT,
and Infragard and holds several certifications such as CISSP, Sec+ and
EnCE. Tim has a BS and MS in Computer Science. In his free time he
toys around with forensic competitions and CTF exercises.

A short version of this work was presented at the Third Annual ifip WG
11.9 International Conference on Digital Forensics in Orlando, Florida on
Jan 28-31, 2007.

Pre-publication copy

INTRODUCTION

Techniques described here tend to follow a
more historical thought process regarding
forensic procedures: acquire first, then
identify. This may cause some privacy
concerns when contrasted with some more
modern approaches to e-discovery1 where the
pertinent information is located first and then
only that information is acquired. This
distinction is also pertinent when considering
the classification of information.
Traditionally acquired data will need to be
classified at the highest classification level of
any information found on the system.
Theoretically, when using more selective
methods of e-discovery, the acquisition could
be limited to only acquire data of a certain
classification level and thus not be subjected
to the high watermark. Both the historical and
selective techniques have their benefits and
drawbacks; such as completeness versus speed
and storage advantages respectively. This text
does not debate these techniques.

This article makes many hardware and
software assumptions. Intel i386 / IA-32
architecture is assumed, along with a standard
4K page size. Only Microsoft Windows®
operating systems are discussed, and for
systems that support memory related boot
switches such as /3G and /PAE it is assumed
that these switches are not being used2.

Even though the concept of object-reuse and
related techniques for its mitigation have been
known for decades [1], many operating
systems use memory management techniques
that have little or no safeguards against this
threat. A design decision to place a higher
precedence on performance than security is
not uncommon. In the case of Random
Access Memory (RAM), this design choice
can be exploited in order to both further
preserve and gain deeper insight into the state
of a currently running machine.

BACKGROUND

Depending on the situation, upon arriving on
scene, a responder has two core choices: either
interact with the system or pull the plug. On
one side, it has been known for some time that
normal user interaction is undesirable, even
performing a clean shutdown would destroy
potential evidence by changing timestamps
and potentially overwriting information.
Following this train of thought, it was
suggested that pulling the plug of a machine
will leave it in a more preserved state than
powering it down gracefully [2] (albeit some
subsystems, such as the file system, may not
recover gracefully from abrupt removal of
power). On the other side, while pulling the
plug does preserve the current contents of the
hard disk drive, it allows little or no insight
into what operations the system was
performing at the time when the power was
removed. In light of this lack of knowledge,
others have provided incident response steps
to perform in order to gain insight about the
state of the system [3 among others].

When concerned with the contents of RAM,
neither choice is adequate. Simply, pulling
the plug can clear the contents of RAM (in
most cases), and performing many incident
response actions overwrites potential evidence
in memory akin to creating new files on a
suspect hard disk drive. Two additional
concepts need to be introduced into
acquisition and analysis stages in order to take
advantage of RAM contents: the acquisition of
RAM, and the extraction of information from
the RAM duplicate.

For some time now, varying abilities of
acquiring RAM contents have been available.
A popular open source LiveCD called Helix
has supported George Gartner’s dd tool in
combination with the windows
\\.\PhysicalMemory object since about 2004.

2 RAM FORENSICS Pre-publication copy

In many cases, this packaging of a tool with
the memory object in a mostly graphical form
can enable mainstream first responders to
capture memory.

Regardless of the method used to acquire
memory, little effort has been devoted to the
problem of what to do with the copy once is
has been acquired. The lack of analysis
capability is likely why RAM content is not
captured as a matter of course. Prior to 2005,
the primary method of analyzing a RAM copy
was to perform a strings analysis. In 2005, the
Digital Forensics Research Workshop
(DFRWS) held a Memory Analysis Challenge
which will almost certainly be considered the
beginning of the field of memory forensics.
Two individuals were credited with winning
the challenge (Garner and Betz) but neither
publicly released their tools. Since, others
have created tools publicly (Vidas, Carvey,
Burdach, Schuster [4-7]) and privately
(Kornblum, Goldsmith). Current tools have
distinct drawbacks, but the future outlook
looks promising.

THE CASE FOR COPYING RAM

For those that currently do not copy RAM as
part of their acquisition procedures, a logical
first question to ask is “Why copy RAM?”
There are several reasons that a complete
RAM capture may prove useful, most revolve
around key differences between data stored in
RAM and data stored on a hard disk drive.

Volatile memory, e.g. RAM, is perceived to
be more trusted than non-volatile memory, e.g.
ROM, magnetic and optical storage. When
simply considering the data that is either not
stored or somehow protected on a hard disk
drive yet stored in plaintext when stored in
memory, many data types immediately come
to mind: passwords, financial transaction
information, encryption keys, etc. The
existence of this type of information may not

even be intentional, poorly written
applications can leave information resident, or
this type of information may even occur as a
byproduct of malware. Circa 1994, malware
sophistication had grown to the point where a
multipartite, stealthy virus [8] could slowly
encrypt a hard disk drive unbeknownst to the
user.

Malware can be completely memory resident.
Rather than debate the differences between
viruses, worms, trojans, etc. It is sufficient to
say that malware can exist completely in
RAM. In such a situation the malware may
not ever even touch the hard disk drive. After
removal of power from the system, no record
of the malware would exist upon later
examination. Contemporary examples of this
would include the widely publicized nimda
and SQLslammer worms [9,10].

Memory is latent. Much as a latent fingerprint
is one that existed but was not readily evident,
there is latent information available in
memory. Similar to how the recovery of
deleted files became a widespread act early in
the field of digital forensics, the recovery of
prior (deleted) processes has become a focus
of current research in memory forensics. Due
to file system caching, delayed writes, buffers,
etc. it is even possible to extract full or
fragments of files from memory, data that may
have never been written to the hard disk drive.

The hacker defense is becoming more
common [11-17 among others]. Envision a
suspect that has known contraband stored on
their hard disk drive. A defense mechanism
may be to download some malware
purposefully. This malware need not even be
related to the contraband data in any way. A
judge/jury may be convinced that due to the
presence of malware and the inability to
discern whether the malware could be at fault
that a guilty suspect be deemed innocent. The
capture of memory can give the ability to both

T Vidas 3 Pre-publication copy

determine if that the malware in question was
actually executing and if so, it may be possible
to distinguish the capabilities of the malware
in order to meet this burden of proof.

Executing code must actually exist somewhere.
Malware routinely relies on obfuscation and
other techniques to avoid detection and
eradication. However, all code executing on a
processor has to actually exist in executable
form somewhere. In some cases memory
acquisition may prove to be a useful way to
perform malware analysis. One example may
be executable packing. When executables are
packed (binary obfuscation) they are
inherently harder to understand. In some
situations unpacked versions of executables
could be extracted directly from memory in
order to avoid tedious and time consuming
manual unpacking.

Duplicating RAM has less impact to potential
evidence than normal incident response.
During incident response, in order to gain
insight about system state one might issue
several commands and catalog the responses.
Typical response may include creating more
than 30 processes [3]. The more detailed the
responses the more accurate the portrayal of
the system state, but the portrayal depends
upon the granularity of the tools and the
accurate recording and interpretation of the
tool output. When considering a copy of
RAM as an alternative, the recording is
complete, and the interpretation and
granularity can be altered via subsequent
examination of the copy, a leisure that is not
possible via live response.

Why wouldn’t you acquire RAM? Even
though under most circumstances the actual
act of copying RAM will be shown to have a
negative impact to potential evidence, the
impact should be outweighed by potential gain.
Good procedures and documentation should
help minimized the effect of potential damage

to evidence, and eventually RAM acquisition
will become an industry best practice.

It will be shown that similar to Windows Task
Manager listing current processes, forensic
tools can be (and have been) created that list
not only processes active at the time of
memory acquisition, but also show old and
hidden processes.

RAM ACQUISITION

When creating a duplicate of a hard disk drive,
ideally the drive is disconnected from the
system and duplicated via a hardware write
blocker. Even though power is removed, the
data stored on the drive is not lost because the
store is non-volatile. This is not the case with
volatile memory such as RAM. Due to
physical architecture, once power has been
removed for a certain amount of time the state
of the data in RAM in unknown. This
prohibits the removal of RAM chips for
duplication, and encourages live acquisition
(while the system is running).

The actual acquisition of RAM can be
performed in different ways, each with
benefits and drawbacks. The biggest
difference in technique is hardware vs
software acquisition. Currently there are three
software based techniques and two hardware
based techniques.

Software Acquisition
Software techniques are currently the most
prevalent. A tool (such as dd) can be used
from a LiveCD (such as Helix) to copy
RAM3:
 dd if=\\.\Device\PhysicalMemory
 of=e:\memoryimage.dd bs=4096

In this case of software acquisition, some
memory (potential evidence) will be over-
written because the copy utility itself will be
instantiated as a process on the suspect system
and the data that was in the portion of memory

4 RAM FORENSICS Pre-publication copy

that this new process occupies will be lost4.
For this reason, the footprint of any
acquisition tool should be minimal. In the
above example Helix was mentioned due to its
prevalence in the field, however, the default
configuration of Helix may not be conducive
to acquisition needs. Helix will start an
autorun process called helix.exe when the
CDROM is inserted into a running Windows
system. For memory acquisition purposes a
less invasive tool would be preferred. The
actual duplicate could be stored on removable
media or saved across a network. At a
minimum, introducing new hardware such as a
mass storage device would affect the registry,
while creating a new network connection will
create associated structures in RAM.

A second software technique involves the use
a system crash. The notorious “blue screen of
death” can occur under certain conditions
outside of the control of the user, or it can be
forced by the user. The user can force a crash
either by using the built in
CrashOnCtrlScroll [18] which requires a
registry edit, or via a 3rd party utility such as
NotMyFault.exe released by SysInternals
(now owned by Microsoft). In either case, if
the systems is configured to create a FULL
crash dump (as opposed to Mini, Kernel, or
None – which is controlled again by the
registry) then the contents of memory will be
eventually saved to a file. This save comes at
the cost of losing the contents of the Pagefile,
which when combined with the size of the
subsequent file created upon reboot results in
overwriting areas of the hard disk equal to or
greater than twice the size of physical memory
present in the system. This negative impact to
non-volatile evidence through the changing of
registry values, overwriting of unallocated
space and potential for reboot5 makes this
method less preferred.

When using virtualization software, a virtual
machine may be paused and the virtual

physical memory (that is the abstraction of
physical memory presented to the virtual
machine) can simply be copied unbeknownst
to the virtual machine. Of course, this
software technique does not address the
tangible physical RAM, and is mentioned
primarily for completeness.

Hardware Acquisition
Hardware techniques are currently quite
limited. Firewire has shown some merit for
acquisition, because Direct Memory Access is
possible via the IEEE 1394 specification, and
proof of concept code has been released [19].
However, results of acquisition via Firewire
vary widely. This technique not only has
specific hardware requirements, but has also
been shown to be inconsistent [20] and in
some cases causes hardware to malfunction.

Hardware acquisition through dedicated
hardware is the most desirable method. When
using dedicated hardware the contents of
RAM does not have to be altered in order to
create the copy. This method currently has
two very distinct drawbacks: it requires pre-
meditation because the hardware must be in
place prior to the incident, and there are no
such products currently available to the
consumer (but proof of concept has been
created [21,22]). Arguably, this is the only
technique that can suspend a typical (non-
virtual) machine in order perform the
acquisition.

Time Sliding Window
Since RAM is constantly in use, the contents
of RAM are constantly changing. The amount
of change varies greatly based on hardware,
software, and usage of the system, but the fact
remains that if the system is being used, RAM
is changing. The fact that the contents are
continuously changing paired with the
necessity to acquire memory while the system

T Vidas 5 Pre-publication copy

is running results in an inability to capture
RAM at a precise point in time.

All of the above techniques6 will exhibit a
“time sliding-window” phenomenon where at
least some portion of RAM was currently
being altered at the time of the copy.
Validation, such as an MD5 hash of original
media before and of the duplicate after the
copy, may work on unchanging stores like a
hard disk drive, but one would expect it to not
work on RAM (the contents of which are
expected to have changed between hashing).

A case could be made for validating similar
copies. Consider two RAM duplicates made
as closely together as time allows, one created
right after the other. Temporal proximity
would suggest that “not much” had changed in
the RAM contents between the two copy
operations or at the very least that less change
will have occurred than if the machine was
left to run for extended or particularly busy
periods. The amount of actual change could
be quantified using a hash window equal to
the page size. Pages that did not change
between the two copy operations would have
identical hashes, altered pages would have
different hashes.

RAM ANALYSIS

Even if it is shown that creating a duplicate
does have less negative impact to evidence
than performing common incident response
steps, the requirement for the information
obtained during these steps still remains. The
RAM duplicate serves little purpose without
that ability to extract at least similar
information that incident response tools can
provide. Ideally, even more information can
be garnered from the RAM duplicate.

Lack of Structure
Today most host based forensic analysis
revolves around the inspection and

interpretation of files and file systems.
Recovering files, analyzing time stamps, file
carving, etc typically all rely on file system
specific concepts such as the File Allocation
Table, Master File Table, inodes, and even
clusters. This additional file system
abstraction layer is not present when
considering RAM. When compared to many
types of files, much of the data in RAM may
appear structureless.

The analysis of this raw data employs
techniques from different areas such as kernel
debugging and reverse engineering. In fact, in
order to aide the analysis of the volatile data,
often information from a non-volatile may be
required. Consider employing a technique to
find processes that is similar to using file
headers for traditional file carving. Just as
particular byte sequences such as
0xFFD8FFE0 or 0xFFD8FFE1 can be
searched for at the beginning of a cluster on
disk to identify possible JPEG headers,
particular patterns can be sought at the
beginning of a memory boundary (such as a
page) in order to find possible structures such
as a process. In the case of a JPEG the file
format is well known in order to facilitate
broad use of the file type. In the case of a
process no format needs to be publicly
available as the process structure was never
intended to be disseminated to other systems.
The lack of structure information is only
compounded when considering closed-source
operating systems. In order to seek out these
structures, the format of the structure must be
known prior to the search. A set of such
structures can be calibrated using known
systems. For example, through kernel
debugging, it is readily apparent that the size
and structure of a process differs between
many Windows operating systems depending
on version and service pack level (see Table 1:
Windows Data Structure Offsets).

6 RAM FORENSICS Pre-publication copy

Process Carving
As late as 2005, strings [23] analysis was
considered the best method available to
extract information from a RAM
duplicate [24]. Running strings on a RAM
duplicate acquired from a cleanly installed and
booted Windows operating system resulted in
the average extraction of more then 30 MB of
largely unusable text7 (see Figure 1: Strings
found in a cleanly booted system). Keep in
mind that these are unmodified operating
systems, fairly atypical in the wild and that

even 30 MB of text would translate to roughly
8000 printed 8.5” x 11” sheets of paper.

A strings analysis will not be able to lend
much insight about RAM specific structures
such as processes. Instead, a search for
known patterns must be performed along with
a validation process for potential structures.
The signature of a process can be defined by
inspecting known offsets (as obtained from
calibration) for expected data. For example,
the offset related to process priority must be
non-zero for all processes except the idle
process, the offset related to the Page
Directory Base (PDB) must be non-zero (a
process must have a PDB) and the PDB must
be on a page boundary (normally 4K), all the
threads of a process must exist inside of the
section of RAM dedicated to kernel memory,
etc.

Assuming that the operating system version
and service pack level are known prior to the
search (i.e. obtained by inspection of the hard
disk drive), a search for processes in a forensic
image of 512 MB RAM takes about 7 minutes
to execute through a PERL interpreter on a
modest system8. This is a brute-force search
that searches for structure signatures linearly.
The fully commented proof of concept code is
less than 1000 lines and a high success rate
can be achieved implementing as few as five
checks on known offsets. [25]

Table 1 : Windows Data Structure Offsets
 2000 XP XP

SP2
2003 Vista

EP_PageDirBase 18 18 18 18 18
EP_processors 34 34 34 34 34
EP_T_Forward 50 50 50 50 50
EP_T_Back 54 54 54 54 54
EP_priority 62 62 62 62 64
EP_T_Quantum 63 63 6f 63 *
EP_T_Qant_dis 69 69 69 69 60*
EP_exitStatus 6c 24c 1d0 24c 234
EP_createTime 88 70 70 70 88
EP_exitTime 90 78 78 78 90
EP_PID(client
Unique)

9c 84 84 84 9c

EP_WorkSetSize e4 20c 20c 214 208
EP_WorkSetMin e8 210 210 1f8 1ec
EP_WorkSetMax ec 214 214 1fc 1f0
EP_AccessToken 12c c8 c8 c8 e0
EP_PPID 1c8 14c 14c 128 124
EP_name 1fc 174 174 154 154
EP_size 290 258 260 278 268
TH_size 248 258 258 260 278
TH_createTime 1b0 1c0 1c0 1c8 1d0
TH_exitTime 1b8 1c8 1c8 1d0 1d8
TH_exitStatus 1c0 1d0 1d0 1d8 1e0
TH_PID (client
unique)

1e0 1ec 1ec 1f4 1fc

TH_TID (client
unique)

1e4 1f0 1f0 1f8 200

TH_isTerminated 224 248 248 250 250
TH_startAddr 230 224 224 22c 234

EP denotes the Windows EProcess structure, TH
denotes EThread. All values are base 16 (hex).

Figure 1: Strings found in a cleanly booted system

0
5

10
15
20
25
30
35
40
45

2003 SP1 2000 SP0 2000 SP1 2000 SP2 2000 SP3 2000 SP4 XP SP0 XP SP1a XP SP2

Operating System

MB

AVERAGE

*Quantum related values for Vista do not fit the pattern
of prior OSes, and need to be researched further.
Values obtained via LiveKD and the Windows kernel
debugger by issuing: dt -a -b -v _EPROCESS

T Vidas 7 Pre-publication copy

A handful of tools are now available for
performing analysis similar to what is stated
above. Among them are procloc [4],
Windows Memory Forensic Toolkit [6],
Windows IR tools [5], and memparser [19]
which was one of the original DFRWS
submissions that was later released publicly.
Each of these tools have their various benefits
and drawbacks, mostly associated with project
maturity. For example, many tools do not
have a good user interface and many only
work on RAM from some versions of
Windows. As with other tools, be sure to
adequately test these tools before using any of
them in a non-academic sense.

TRUST ISSUES

Issues with trust arise in both the acquisition
and analysis phases. The most detrimental
issue involves the acquisition of RAM
contents. This situation revolves around the
problem of executing code on an untrusted
system. How can one be assured that the
input to the copy operation is actually the
contents of the systems RAM? Techniques
could be employed by malware to deny access
to RAM or worse, to misrepresent the contents
of RAM in order to elude detection. Many
rootkits already use similar techniques.
However, in a situation involving such
malware one could easily make the argument
that this misrepresentation would also affect
common incident response tools. It is
currently thought that the only way to
completely mitigate this threat is to use
dedicated hardware for acquisition9.

Trust is also an issue during analysis. For
example, some of the above tools make use of
assumptions about internal Windows process
scheduling. Windows maintains a doubly
linked list of process structures, each process
structure contains information on where the
next and previous process structures are
located. If this information is trusted, it

greatly speeds up the enumeration of
processes. However, if a process (thread) has
become unlinked from this list it will not
appear in the enumerated set. This could be
the case for processes that are no longer
scheduled for execution (old processes) as
well as hidden processes.

A final trust issue is foundational to a core
computer science concept: RAM may not be
as volatile as one might have thought. It has
been demonstrated that the contents of RAM
can actually survive reboots and even short
durations of power completely removed from
a system [27]. This actually challenges term
“volatile memory.” Computing systems can
not be trusted to provide RAM in a clean state
initially, only an unknown state. Further
research must be performed in order to
determine if this known ledge can be
leveraged in the favor of a responder.

FUTURE WORK

For most purposes, the area of memory
forensics can be considered to be less than 2
years old, still in its infancy. As with other
budding areas of research memory forensics is
ripe with possibilities for both unique research
and refinement of existing research. Below
find suggestions for new research in addition
to ideas on how to extend upon the concepts
provided here.

Compare the trusted process list with one
obtained via brute force methods. A brute
force technique was described in this article.
Others [6] use a list traversal approach.
Comparing results from the two methods
could flag outliers, such as hidden processes.

One could employ virtual memory unification.
Since the RAM duplicate being analyzed is
never actually executed by the CPU, it does
not have to obey typical memory management

8 RAM FORENSICS Pre-publication copy

rules, such as those related to paging. For
example, during analysis all pages could be
“swapped in” from the pagefile extracted from
a forensic duplicate of the hard disk drive.

Operating system detection could be improved.
The execution time mentioned for a brute
force search assumes that the operating system
version and service pack level are known. If
this information is not known (you have a
RAM image but no hard disk drive image, or
an encrypted hard disk drive) then the best
case is to try all known operating system
offsets until one search provides enough
results to be deemed correct. This increases
the execution time 1 factor for every known
operating system. For example, instead of 7
minutes, procloc could take 35 minutes to
execute.

One could automate the correlation with non-
volatile stores. It was mentioned above that
some information from a hard disk drive is
very useful in the analysis of RAM.
Operating system type and service pack level
for example. Other types of information are
also very valuable. Consider the need to link
a process to a user account. The process
structure only stores the internal UID which
must then be correlated with information in
registry to obtain a username.

Executables could be automatically or
selectively extracted from the RAM duplicate.
Assuming that outliers could be easily
identified (as suggested by list comparison
earlier), executables could automatically be
created from the extracted information in
order to automate analysis.

Flag rogue structures by employing more
checks. It was shown in this article that
accurate results could be achieved with as few
as 5 checks. Malware that is “aware” of these
checks could attempt to spoof them in order to
“fit in.” Employing more checks and

adjusting their strictness could in effect
identify structures with varying levels of
“correctness.”

Account for all areas of memory by marking
sections as structures are found. Consider a
mature field of memory forensics, where
processes, threads, file caches, etc. all have
reliable tools that allow inspection and
extractions. If each of these tools marked the
areas of memory that it found to be a
legitimate structure, then what do the
unmarked areas represent? This technique
would be similar to code coverage procedures
use in other discipline.

Most current tools only support environments
that are either easy to develop tools for, or
represent a large user base. Future tools need
to support fringe memory architectures such
as those enabled by the /PAE and /3G boot
switches, non-i386 support is needed, and of
course tools need to keep up with current
operating systems and add support as needed
(such as Vista).

CONCLUSION

In exchange for a minimal negative impact
(potentially as small as creating a single new
process) to evidence during acquisition, a
much greater depth and breadth of information
concerning system state can be gained during
analysis. The ability to gather pertinent
information from a RAM duplication often
requires information to be gathered from a
related non-volatile store prior to analysis, but
may require little acquisition training and
minimal additional hardware. At the very
least, RAM acquisition allows analysis to
occur after first response and enables RAM
data to be viewed as an additional static
evidence item to which traditional
preservation and duplicate validation
techniques can be applied.

T Vidas 9 Pre-publication copy

NOTES

1. Guidance software has sections of their website

(www.guiadancesoftware.com) devoted to e-
discovery using their EnCase product line.
Additionally there are many conference
presentations and whitepapers on the subject, but no
traditionally academic sources. (e.g. CSI Annual
Computer Security Conference, CEIC, DoD Cyber
Crime Conference)dnotes will go here when I figure
out how to do this in Word.

2. /3GB and /PAE are options given at boot time for

MS Windows based operating systems that alter the
default behavior of memory. Physical Address
Extension (PAE) is heavily, if not completely,
related to Intel IA-32 architecture PAE (Pentium
Pro and above) basically increases physical
addresses to more than 32 bits. 3GB allows for
applications to use 3 GB of virtual address space
instead of the normal 2 GB. [29,30]

3. The command should be typed all on one line, not

two lines as shown. Notice the specified size of 4K
which corresponds to the size of a memory page.
Note that usermode access to the PhysicalMemory
object has been removed by Microsoft in Windows
Server 2003 SP1 and potentially in future operating
systems. \.\DebugMemory is being researched
further.

4. It could be argued that this information is not lost,

but will likely be swapped out. This would depend
if the portion of memory in question as allocated or
not, and even if the portion was allocated that
subsequently swapped out, some information in the
swap file would be lost.

5. A crafty approach would be to invoke the crash

dump which writes physical memory contents to the
physical sectors of the hard disk where the pagefile
is stored. Then unplug the system after the dump is
complete but before POST. In this situation the
contents of the pagefile are still lost, but the dump is
not written as a file to the file system and the system
did not actually reboot (changing timestamps and
similar). Using a write blocker the RAM contents
could be extracted from a forensic duplicate in order
to perform RAM analysis.

6. This may prove to not be the case with a dedicated

hardware acquisition, but this cannot be tested as no
such hardware readily exists.

7. Tested on systems with 512 MB of RAM.

8. Tested on a IBM Thinkpad R51, with 1.5 Ghz Intel

Pentium 3m with 1 GB of RAM, running Windows
XP SP2 and ActivePERL 5.8.7.

9. Which remains to be seen, not only is such

hardware not yet available, but circumvention of
such hardware have already been claimed [28]

REFERENCES

1. DEPARTMENT OF DEFENSE TRUSTED
COMPUTER SYSTEM EVALUATION
CRITERIA (TCSEC) DOD 5200.28-STD. US
Department of Defense. December 1985.

2. United States Secret Service. Best Practices for

Seizing Electronic Evidence. Second Edition. 2002.

3. Nolan, O’Sullivan, Branson, Waits. First
Responders Guide to Computer Forensics.
Carnegie Mellon University 2005.

4. Tim Vidas. Procloc.

http://nucia.unomaha.edu/tvidas/. Accessed Feb 8,
2007.

5. Harlan Carvey. Windows IR/CF Tools.

http://sourceforge.net/projects/windowsir/.
Accessed Feb 8, 2007.

6. Mariusz Burdach. Windows Memory Forensic

Toolkit. http://forensic.secure.net. Accessed Feb. 8,
2007.

7. Andreas Schuster. PTFinder.

http://computer.forensikblog.de/en/. Accessed Feb 8,
2007.

8. McAfee VIL database. OneHalf virus. Accessed

Feb. 8, 2007.
http://us.mcafee.com/virusInfo/default.asp?id=alpha

9. McAfee VIL database. Nimda worm. Accessed Feb.

8, 2007.
http://us.mcafee.com/virusInfo/default.asp?id=alpha

10. McAfee VIL database. SQLslammer worm.

Accessed Feb. 8, 2007.
http://us.mcafee.com/virusInfo/default.asp?id=alpha

11. Goodwin, Bill. High-tech crime is put on trial.

ComputerWeekly.com. Jan 27, 2007. Accessed

10 RAM FORENSICS Pre-publication copy

Apr 30, 2007.
http://www.computerweekly.com/Articles/2007/01/
27/221526/high-tech-crime-is-put-on-trial.htm

12. United States vs O’Keefe. D.C. Docket No. 04-

0001 Cr-WLS-1. No 05-11924. Georgia App. Ct.
Aug 22. 2006.
http://www.ca11.uscourts.gov/opinions/ops/200511
924.pdf

13. St. of AZ vs Brandy. S-0700-CR-2005014635.

Arizona Sup. Ct. Nov. 11 2005.

14. Auditor Acquitted – Uses Computer Virus Defense.

Aug 28 2003. Accessed Mar 28, 2007.
http://www.accountingweb.com/cgi-
bin/item.cgi?id=98024

15. United States vs Michael Shawn McCourt. District

Court for the western district of Missouri. 06-1018.
Nov 24, 2006.
http://www.ca8.uscourts.gov/opndir/06/11/061018P.
pdf

16. Matthew David Bounds v The Queen. HCA 39.

July 20, 2006.
http://www.austlii.edu.au/au/cases/cth/high_ct/2006
/39.html

17. Altheide, Cory. Forensic analysis of Windows

hosts using UNIX-based tools. Journal of Digital
Investigation. Vol 1, Num 1. Feb 2004.

18. KB 244139: Windows feature allows a Memory

dump file to be generated with the keyboard
http://support.microsoft.com/kb/244139/en-us

19. Adam Boileau. Hit By A Bus: Physical Access
Attacks With Firewire. Ruxcon 2006

20. GM Garner. Memory image differences in Firewire

acquisition. http://www.storm.net.nz/projects/16

21. Carrier, Grand. A hardware-based memory

acquisition procedure for digital investigations.
Digital Investigation Journal. Issue 1, p 50-60. Feb
2004.

22. Petroni, Fraser, Molina and Arbaugh. Copilot – a

Coprocessor-based Kernel Runtime Integrity
Monitor. Proceedings of the 13th USENIX Security
Symposium. Aug 9-13, 2004.

23. Strings man page. (Fedora Core 4, 2006).

24. Stover S., Dickerson M. Using Memory Dumps in
Digital Forensics. ;Login: magazine. Volume 30,
Issue 6. December 2005.

25. Vidas, Timothy. Starting a Framework for the

Analysis of Volatile Data Stores. Third Annual ifip
WG 11.9 International Conference on Digital
Forensics. Orlando, Florida. Jan 28-31, 2007.

26. Chris Betz. Memparser.

http://sourceforge.net/projects/memparser/.
Accessed Feb 8, 2007.

27. Chow, Pfaff, Garfinkel, Rosenblum. Shredding

Your Garbage: Reducing Data Lifetime Through
Secure Deallocation. 14th USENIX Security
Symposium. July / August 2005.

28. Joanna Rutkowska. Beyond the CPU: Defeating

Hardware Based RAM Acquisition Tools. Will be
given at Black Hat DC 2007.
http://blackhat.com/bh-dc-07/bh-dc-07-
speakers.html#Rutkowska. Accessed Feb 8, 2007.

29. Memory Support and Windows Operating Systems.

Feb 9, 2005. Accessed March 28, 2007.
http://www.microsoft.com/whdc/system/platform/se
rver/PAE/PAEmem.mspx

30. Intel 64 and IA-32 Architectures Software

Developer’s Manual: Volume 3A: System
Programming Guide Part 1. Intel Corp. November
2006.

T Vidas 11 Pre-publication copy

	1. DEPARTMENT OF DEFENSE TRUSTED COMPUTER SYSTEM EVALUATION CRITERIA (TCSEC) DOD 5200.28-STD. US Department of Defense. December 1985.

