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Abstract. Unpredictability in COTS-based systems often manifests as
occasional instances of uncontrollably-high response times. A particular
category of COTS systems, fault-tolerant (FT) middleware, is used in
critical enterprise and embedded applications where predictability is of
paramount importance. Our prior empirical study, which used a client-
server microbenchmark, suggested that hard bounds for the maximum
latency are hard to establish a priori, but that the unpredictability may
be confined to less than 1% of the requests. In this paper, we present
empirical data, from 7 different three-tier, FT-middleware applications,
that shows strong evidence supporting this “magical 1%” hypothesis.
We conducted a controlled experiment with 7 teams of students from a
graduate-level course at Carnegie Mellon University. Each team, starting
from a common three-tier architecture, independently implemented and
evaluated an original application using middleware (either CORBA or
EJB) and a custom-implemented fault-tolerance mechanism (relying on
either state-machine or primary-backup replication) for the middle-tier
server. This experiment shows that unpredictability may not be avoid-
able, even in the absence of faults, and that, in some cases, the random
latency outliers are larger than the time needed to recover from a fault.
The data also reveals a statistically-significant result that, across all 7 ap-
plications, unpredictability is confined to the highest 1% of the recorded
end-to-end latencies and is not correlated with the request rate, the size
of messages exchanged or the number of clients. This suggests that strict
predictability is hard to achieve in FT-middleware systems and that de-
velopers of critical FT applications should focus on guaranteeing bounds
for statistical measures, such as the 99th percentile of the latency.

1 Introduction

Fault-tolerant (FT) middleware incorporates a collection of mechanisms, which
usually rely on commercial off-the-shelf (COTS) operating systems, middleware
libraries and replication toolkits, for fortifying distributed applications against
failures and outages. In addition to establishing a common programming abstrac-
tion across different platforms, FT middleware aims to provide transparency with
respect to failures, recovery and replication [1]. Typically used in the most crit-
ical enterprise and embedded systems, FT middleware has higher predictability
requirements than most technologies for platform interoperability. We naturally



expect that faults, which are inherently unpredictable, will have a disruptive
effect on the performance of the system. However, FT middleware is usually
assumed to behave in a predictable manner in the fault-free case.

In order to enforce the timeliness or other quality-of-service goals of a dis-
tributed application, the response times of the distributed application must be
bounded and predictable for a given configuration of the system. However, recent
studies have independently reported that the maximum end-to-end latencies of
both CORBA and Fault Tolerant CORBA (FT-CORBA) middleware can be
several orders of magnitude larger than the average latencies and might not fol-
low a visible trend — even in the absence of faults [2,3]. This problem has been
observed in many systems, especially when combining several third-party COTS
components [4].

In our previous work [5], we sought to isolate this uncontrollable behav-
ior and to determine its root cause by studying the behavior of a client-server
micro-benchmark that uses the middleware [6]. While we have determined that
unpredictability comes from multiple sources and cannot be easily eliminated,
we show that it is limited to a very small number of remote invocations, and
we suggest a simple rule of thumb called “the magical 1%”: After discarding the
highest 1% of the measured latencies, the mazimum latency can be correlated
with the configuration parameters of the middleware and follows observable and
predictable trends. This suggests that unpredictability is confined to a few (less
than 1%), very large outliers and that we can easily establish bounds for the
99th percentile of the latency. This simple statistical technique enables us to
guarantee, with a high level of confidence, bounds for percentile-based quality of
service (QoS) metrics, which dramatically increase our ability to tune and control
a middleware system in a predictable manner. The notion of a percentile-based
approach is not far-fetched and is commonly used for specifying QoS guarantees
in the IT industry [7].

In this paper, we investigate whether the magical 1% occurs in three-tiered
enterprise systems as well, and we provide more conclusive evidence of the
magical 1% hypothesis. We compare the behavior of seven realistic, three-tier
applications developed during a semester-long (15-week) graduate course at
Carnegie Mellon University. The applications were developed and tested inde-
pendently by different teams. We collect data from experiments conducted in
a local-area network setting to emphasize that unpredictability in FT middle-
ware occurs even without the (expected) asynchrony of wide-area networks. We
discover that, despite differences in the middleware (CORBA or EJB), repli-
cation mechanism (state-machine or primary-backup), message sizes, request
rates or database-access patterns, all applications except one have unpredictable
maximum-latencies that can be up to three orders of magnitude higher than the
average latencies. For all seven applications, we also find a statistically-significant
result that the 99th percentile latency cannot exceed the average latency by a
factor of more than 20, which allows us to establish upper bounds based on the
middleware’s configuration parameters. In addition, fault-injection experiments
suggest that, for stateless middle-tier servers, the fault-induced high latencies



may be comparable to the maximum latencies from the fault-free case. This
result suggests that strict predictability is hard to achieve in COTS-based, FT-
middleware and that developers of fault-tolerant applications should focus on
statistical measures such as the 99th percentile of the latency.

2 Problem Background

The Fault Tolerant CORBA (FT-CORBA) standard [8] specifies ten parame-
ters that can be tuned to achieve the required levels of performance and fault-
tolerance for every application object. However, the standard remains silent on
how these parameters should be set or re-tuned over the application’s lifetime [1].
Even for a static configuration with fixed values of these parameters, the end-
to-end latencies are hard to bound because they exhibit skewed and sometimes
bimodal distributions [3]. For the CORBA Component Model, it has been noted
that a small number of outliers (typically less than 1%) causes maximum laten-
cies to be much larger than the average latencies [2]. Thaker [4] reports that,
even during fault-free experiments, many systems produce a few numbers of
outliers several orders of magnitude larger than the average values. This result
has been reproducibly borne out across a plethora of operating systems (Linux,
Solaris, TimeSys Linux), transport protocols (UDP, TCP, SCTP), group com-
munication systems (Spread), middleware and component frameworks (TAO,
CIAO, JacORB, JDK ORB, OmniORB, ORBExpressRT, Orbix, JBoss EJB,
Java RMI), and even our own own MEAD fault-tolerant middleware system.

In our effort to understand the sources of unpredictable behavior in fault-
tolerant middleware, we have previously reported a phenomenon called “the
magical 1%” [5]. This study was performed with a two-tier client-server micro-
benchmark of our own design and implementation. While analyzing the behavior
of the system in the fault-free case, we discovered strong empirical evidence that
the system’s unpredictability arose from merely 1% of the remote invocations.
Our study showed that the occurrence of very high latencies could not be regu-
lated through parameters such as the number of clients, the replication style and
degree or the request rates and could not be isolated to any single component
of the system. However, once we filtered out a selective “magical 1%” of the raw
latency measurements, the end-to-end latency became bounded and predictable.

We have since sought to understand whether the magical 1% effect was a uni-
versal phenomenon for a larger class of fault-tolerant middleware applications.
Typical three-tier, enterprise systems have a front-end, a middle-tier implement-
ing the business logic and a back-end database. These applications incur latencies
on the order of seconds and tens of seconds, due to the back-end database and
the computationally-intensive middle-tier. If the response times of the database
and the middle tier are usually predictable, the overall system will also be more
predictable because these two components dominate the end-to-end latency. In
this paper, we examine whether the “magical 1%” phenomenon extends to three-
tier, enterprise middleware-based systems.



3 Experimental Method

In the Spring 2006 (January-May 2006) semester, 35 students enrolled in the
“Fault-Tolerant Distributed Systems” graduate class at Carnegie Mellon Univer-
sity were asked to design and implement, from scratch, a realistic three-tier en-
terprise system and to collect data to analyze the system’s behavior. The goal of
this course is to teach students the use of state-of-the-art practices in middleware,
fault-tolerance patterns (such as replication, transactions, high performance op-
timizations) and software engineering, with the ultimate aim of teaching them
how to develop reliable distributed systems.

The students formed 7 teams, each team focusing on a different application of
their own choice and design. The projects varied in size (6-12 kSLOC), in scope
and in the application domain (online game, e-commerce) that each respectively
targeted. No effort was made to influence the students to favor one kind of appli-
cation over another. To eliminate bias, the students were deliberately informed
that their objective was not to prove or disprove the magical 1% effect for their
respective system, but that they should simply report their observations as-is.

3.1 Common Architectural Considerations

To provide some common architectural ground across all the applications, the
teams were required to adhere to a three-tier architecture, to use a middleware
platform (either CORBA or EJB), and to render the middle-tier fault-tolerant
through the use of replication (either state-machine or primary-backup replica-
tion). In addition, the empirical practices for measurement, data collection and
statistical analysis were common across all of the teams, e.g., all teams mea-
sured end-to-end latency in a similar way. Despite this enforced commonality,
the teams had significant freedom in their design choices for replication style,
middleware platform, programming language, etc. Even the mechanisms for en-
suring consistent replication were left to the students to design and implement.

To expose the students to state-of-the-art practices, teams were required
to model their replication infrastructure after a commercially available fault-
tolerance standard, namely the Fault-Tolerant CORBA standard [8]. As shown
in Figure 1, the clients connect to a server (middle tier), which performs all the
business-logic processing and uses a database in the backend to store all of the
critical state. Effectively, the middle-tier servers are stateless, which is advanta-
geous for checkpointing and recovery. The clients and servers communicate using
CORBA or EJB middleware. A Replication Manager controls the mechanisms
used for replicating the middle-tier servers: It creates the servers, registers them
with either the CORBA Naming Service or the Java Naming and Directory In-
terface (JNDI), maintains a list of available replicas, provides a reference to a
functioning replica for failover after a fault and re-launches the crashed replicas.
A Fault Detector monitors the heartbeats of all the server replicas and notifies
the Replication Manager when a fault occurs. The clients use the Replication
Manager and the Naming Service for bootstrapping to obtain an initial reference
to a server.
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Fig. 1. Common architectural theme for the 7 developed applications.

Warm-passive (primary-backup) replication [9] is most commonly used in
enterprise middleware systems. The clients become aware of a replica crash after
receiving an exception or a fault-notification, the latter from the Replication
Manager. Then, they query the Replication Manager for a new server replica
and re-send their request. Alternatively, the systems could use the active (state-
machine) replication style [10]. In this case, the client sends the request to all
the server replicas, and receives replies from all of them. In case of a replica
crash, the client continues to work with the subset of replicas that are still
running. The trade-off between these approaches is that active replication has
shorter fault-recovery times, while warm passive replication uses less resources
(e.g., bandwidth, CPU time) [11]. Because the middle-tier servers are effectively
stateless, the issue of state restoration does not arise as a trade-off between
state-machine and primary-backup replication.

Sufficient knowledge and guidelines were provided to the students to enable
them to implement consistent replication. For example, students exercised care
in ensuring that duplicate operations were not processed by replicas. The repli-
cation of a server naturally gives rise to duplicate messages entering and leaving
the replicas. Duplicate messages by themselves do not affect consistency, it is the
duplicate processing of them at a client or a server replica that can threaten con-
sistent replication. Consider a request that increments a value in the database
by a fixed amount. If this request is processed by two different server replicas
— e.g., by both the new and the old primary replicas after a failover in warm-
passive replication or in active replication — the final result will be incorrect. To
address this issue, all requests are uniquely numbered and, before processing an
invocation, each server replica verifies whether the result of the current request
is already stored in the database. When there are multiple clients, yet another
identifier uniquely representing each client is embedded into each request to dis-
tinguish different clients may legitimately try to invoke the same server method.



To allow the students to remain focused on the fault-tolerance of the middle-
tier server, the students were allowed to make a number of assumptions. For
instance, they could assume that the Replication Manager, the Naming Service
and the database would never fail. Students were encouraged not to cache data
in the middle tier because this would violate the statelessness assumption of the
middle-tier servers, thereby introducing state-management problems.

To ensure that all of the projects were evaluated in the same environment, all
experiments were performed so that each entity in the system (clients, servers,
database) ran on a different machine in a cluster connected by a local-area
network (LAN). The machines used for the experiments were dual-processor
Pentium 4s at 2.8 GHz with 2GB memory, running SUSE Linux (kernel 2.6).

The students defined their projects by specifying the requirements of their
applications, choosing the appropriate middleware for their system (CORBA or
EJB) as well as the replication style. They were also free to choose between the
Java and C-++ programming languages for implementing their systems; how-
ever, all the 7 teams in this case elected to use Java. The students were not
informed about the data-analysis requirements until after the systems were fully
implemented. This helped us to eliminate any bias or incentive to report artificial
data, rather than the observed output of the applications.

Differences from our Prior Work [5]. The results we previously obtained
arose from a micro-benchmark that did not employ a database in the back-
end. The servers were stateful, and used both active and passive replication.
In contrast, the study presented in this paper uses stateless middle tiers that
store their persistent state in a database. In our previous work, we tested our
own MEAD middleware [6], which implements transparent replication, giving
the clients the illusion that they are still using regular CORBA invocations.
The replication mechanisms from the 7 projects are not transparent and require
application support. In MEAD, we use group communication and membership
for coordinating among server replicas; the Replication Manager is distributed
to avoid a single point of failure. The 7 projects make simplifying assumptions
(as is to be expected of a 15-week course endeavor) about the fault model and
use a centralized Replication Manager. We did not use the Naming Service in
our previous experiments, although MEAD has this capability. MEAD and its
micro-benchmark are written in C-++, while all the 7 projects here used Java.
Most importantly, our previous micro-benchmark involved a test application of
our design and with which we were intimately familiar. The advantage of this
multi-team study is that we were largely observers and analyzers of the data
that the students collected, and were, thus, able to be more objective and fair
across all applications.

3.2 Project Descriptions

The seven projects were implemented in Java, using CORBA (two projects) or
EJB (five projects) middleware. Each project has a three-tier architecture, with
a client issuing all the requests, a stateless middle tier implementing the business



Table 1. Comparison of the seven projects implemented for the Fault-Tolerant
Distributed Systems course (Spring 2006). The students were free to choose
the application, the programming language, the middleware and the replication
mechanism. All the teams chose to program in Java.

Project Replication Request Reply DB

(Members) Middleware Style Size  Size Access
1: Su-Duel-Ku (5) EJB Warm Passive 4b  ~200b 100%
2: Blackjack (5) EJB Warm Passive ~30b =56b 100%
3: FTEX (5) EJB Warm Passive  ~30b =&50b 100%
4: eJBay (6) EJB Warm Passive 116 b 98 b 100%
5: Mafia (4) EJB Warm Passive =~41b  4b 100%
6: Park’n Park (5) CORBA Warm Passive 3b 4b 75%
7: Ticket Center (5) CORBA Active ~16 4b 100%

logic and a MySQL database that stores the persistent state. The middle tier
is replicated for fault-tolerance, using active (one project) or warm-passive (six
projects) replication. Each project team had between 4 and 6 members. The
characteristics of the seven projects are summarized in Table 1.

Su-Duel-Ku. Team 1 has implemented an online game where two or more
Sudoku players can pit their intelligence against each other. Sudoku is a puzzle-
solving game designed for one player; Su-Duel-Ku allows up to five players to
work concurrently on the same board, while the server ranks the players and
determines the winner of each confrontation. This application allows clients to
create a new Sudoku board, to solve a board and to list all existing boards.
and warm-passive replication to preserve the game continuity. The names of the
players and the boards are stored in the database; the middle tier uses stateless
entity beans. Due to its original idea, the project was mentioned in a local
newspaper [12].

Blackjack. Team 2 has implemented a gaming application where users play
Blackjack online. Users can create online profiles (stored in the database), place
bets and play against the house.

FTEX. Team 3 has implemented the infrastructure for an electronic stock ex-
change (e.g., NASDAQ, Island, Archipelago). Users can create online profiles,
list the current orders for a stock and place buy and sell orders (either market-
price or limit); the application matches buy and sell orders automatically. The
user profiles and the details of all the transactions are stored in the database.

eJBay. Team 4 implemented a distributed auctioning system, similar to eBay,
that allows users to buy and sell items in an auction plaza. The application
allows posting items for sale and bidding for them; the user profiles and the
information related to auctions (including text-file descriptions) are stored in
the database.

Mafia. Team 5 implemented an online version of the popular “Mafia” game,
where users create character profiles and communicate through instant messag-
ing. The application stores the persistent state of the game in the database.

7
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Fig. 2. Lifetime of a request in a 3-tier application. We record the time elapsed
during all the different stages of the request to construct the latency profile of
each application.

Park’n Park. Team 6 implemented a system for managing parking lots. The
application keeps track of how many spaces are available in the lots and recom-
mends alternative locations when a lot is full.

Ticket Center. Team 7 has implemented an online ticketing application for
express buses, allowing users to search schedules and available seats, buy and
cancel tickets and check reservation status.

3.3 Data Collection and Analysis

Figure 2 shows all the stages in the traversal of an end-to-end invocation in a
three-tier system: The client issues a request and sends it to the server. In turn
the server, depending on the semantics of the invocation, decides if it is necessary
to contact the database to complete the request. After processing and receiving
the information needed from the database, the server sends the reply back to
the client. For closely monitoring the behavior of the applications, we defined
the following seven probe points for monitoring the flow of requests:!

P; : Time (in us) when each request is issued (client-side);
P, : Time (in ps) when each reply is received (client-side);
P3 : Name of each invocation (client-side);

P, : Time (in ps) when each request is received (server-side);

! Since Java does not provide a method for accurate time measurement, the times-
tamps were recorded using a Java Native Interface (JNI) invocation of the
gettimeofday () system call. This Linux system call provides a very accurate timer,
based on the CPU cycle counter, allowing us to record timestamps with microsecond
precision. We pre-allocate buffers in memory to store the probe data and to flush
these buffers to the disk only at the end of each experiment in order to minimize the
interference from the experimental harness.



P5 : Time (in us) when each reply is completed (server-side);
P : Name of each invocation (server-side);
P7 : Time (in us) when each request is received (server-side).

We compute the end-to-end latency of each request by calculating the difference
between the timestamps recorded by probes P, and P; for that request. By ex-
amining the difference between Ps and P4, we further decompose the latency
into two components: middleware(), representing the time spent inside the mid-
dleware layer and network delay between client and middle tier, and server(),
representing the response time of the database and of the business logic. For
each request i:

latency(i) = Py(i) — Py (i)
server(i) = Ps(i) — Py(i)

middleware(i) = latency(i) — server(i)

Each team selected a representative workload for its project and measured
the end-to-end latency for these workloads. There is a significant spread between
observations recorded in each experiment, with latency ranges? up to 200s. How-
ever, we need a method for comparing the latencies of different applications that
does not depend on the scale of these observations, i.e., we would like to assess the
number and the magnitude of the high latencies from each experiment whether
these latencies are measured in seconds or milliseconds. We therefore compute
the standard deviation o for each sample® and we characterize each measure-
ment in terms of the number of standard deviations away from the mean. This
measure is called the z-score:*

latency(i) — latency
z =

g

We determine the extreme latencies using the 3o statistical test: any obser-
vation that deviates from the mean with more than 3¢ is considered an outlier
(i.e., all outliers have z > 3). 30 is a statistical test widely used in engineering
for quality control or for identifying measurement errors [13]. The 3o test helps
us detect unlikely values in our measurements: if the recorded latencies followed
a normal distribution, only 0.1% of the observations would fail the 3o test. Note
that this does not mean that all the outliers are unacceptably high or that they
indicate an incorrect operating mode; this test simply helps us isolate the very
large latencies for further analysis.

2 The range of a measurement sample is the difference between the largest and the
smallest observation. This measure of data spread depends on the scale in which the
measurements are made and on the number of observations.

n 11327 x 2
% o is the non-biased standard deviation error:o[X] = 4/ %

4 The z-score of an observation is an adimensional measure that can be compared
directly with z-scores from measurements expressed on a different scale.
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Fig. 3. Distribution of request rates for the 7 teams. The request rates depend
on the response time, the number of clients and the client-side think time.

Each team has tested their application in 48 different configurations, vary-
ing the number of clients, the request rate and the message sizes®. Two-way
replication was used for the middle-tier server, in active or warm-passive mode
depending on the design of each application. The students tested different com-
binations of several numbers of clients, inter-request (“think”) times and sizes for
the reply messages, varying one parameter at a time.

Number of clients. The teams ran experiments with 1, 4, 7 and 10 clients.
This parameter affects the amount of server-side concurrency, which should lead
to an increased average latency as requests compete for access to the database
and for processing time inside the application server. The number of clients may
also influence the maximum latency and, therefore, the size of the outliers. As
each client connection requires the server to keep volatile (session) state, an
increasing number of clients leads to higher memory requirements, potentially
leading to server overload.

Request rates. For our experiments, the application can be modeled as a
closed queuing system [14] where the server-side request rate is influenced by
the response time, the client-side think time between requests and the number
of clients. The teams simulated different request rates by varying the number of
clients and by introducing inter-request think times of 40 ms, 20 ms and 0 ms
(no pause). We compute the request rate by counting the number of requests
arriving each second at probe P4. Figure 3 shows the request rates issued by the
seven teams during the experiments; the discrepancies are due to the different
response-time profiles of their applications. The request rate also affects the
average latency due to server-side concurrency. If the incoming load exceeds
the server’s capacity, the server loses its ability to process requests in a timely
manner; this manifests in the form of successive invocations that are rejected or
that exhibit a very high latency.

Size of the reply messages. Each team ran experiments with the original
messages used by their applications, but also with reply messages carrying mod-

5 The full trace is available online at www.ece.cmu.edu/~tdumitra/FTDS_trace
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ified payloads of exactly 256, 512 and 1024 bytes. This was achieved by adding
a parameter to each invocation from the workload and padding the messages up
to the required size. The reply size may affect the average response time, due to
message fragmentation and reassembly in the middleware/protocol layers, but
the dependence will not be linear. The thresholds for fragmenting messages de-
pend on the protocols used and on the network configuration. In [5], we reported
that this is the only parameter that seems to affect the number and size of out-
liers. However, large numbers of high-latency spikes occurred in the case of reply
messages with a payload of 64 KB. In this paper, we tried to eliminate one of the
leading causes of unpredictability by focusing on the behavior of small messages.

3.4 Challenges and Fallacies

We encountered several challenges in analyzing and interpreting the experimen-
tal results. These challenges are derived from the fact that students from different
teams interpreted the empirical requirements in slightly different ways, dedicated
different amounts of work for this phase of the project (as is typical of students
taking a course), and used systems with widely different robustness characteris-
tics. None of this is surprising in hindsight — we served as independent observers
and these discrepancies were an inherent side-effect of our intentionally electing
not to be too familiar with the internals of the systems.

In some cases, the teams made a number of honest mistakes that rendered
their data slightly different. Some of these problems were easily detected; for
instance, teams 5, 6 and 7 ran the experiments with only 100, 2243 and 1000
invocations, respectively, instead of the 10,000 required. Other variations were
subtle and harder to detect. Team 2 used 32-bit integers to store their times-
tamps, which led to an overflow for the long-running experiments with 1024-byte
reply messages. Team 3 recorded their timestamps in milliseconds instead of in
microseconds. Team 6 switched the incoming and outgoing probes at the client-
side, which resulted in apparently negative values for the end-to-end latencies.
Because of the allowed server-side concurrency, the order in which requests were
recorded in probes P, and P; was not the same, which complicated the calcu-
lations of the middleware and server latencies. We have corrected or excluded
all the corrupted data that we were able to detect; in the following sections, we
candidly share all the instances where we believe that some data inconsistencies
might have biased the results. We believe that these observations will be useful
to others attempting similar multi-team experimental case studies.

Even though the students were instructed to document all the configuration
parameters (e.g., the size of the requests from their workloads) relevant to their
experiments, some teams chose to report “variable” instead of the actual size
used. For some of these cases, we report in Table 1 an estimate based on the
team’s qualitative verbal description. The database server crashed once (due to
the high request-load during the hours before the course’s deadline for handing
in the results), and the folder where the students were uploading their data
exceeded its quota. However, the students were aware of these problems and we
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have made every effort to ensure that these events do not influence the data
presented here (except, maybe, the highest outlier observed for team 2).

Most importantly, we were concerned that some students might be tempted
to adjust their data in order to establish the magical 1% hypothesis that we
are trying to test. We informed the students repeatedly that their task was not
to confirm or refute the “magical 1%” effect, but to formulate an honest and
well-documented opinion on the behavior of their system. We believe that we
have succeeded in eliminating this bias. In fact, one of the teams concluded in
their final report that their results strongly contradict the “magical 1%”; upon
closer examination, it became apparent later that this statement was based on
a data-representation error, where the maximum and 99th percentile latencies
were plotted on different graphical scales.

4 Experimental Results and Analysis

For all 7 projects, the average response time is well correlated with some of the
variables of our controlled experiment. We have observed four trends for the
average latency:

— it increases linearly with the number of clients and it scales well with the
reply size (for teams 1, 3 and 5);

— it increases linearly with both the number of clients and the reply size (for
teams 2 and 7);

— it is significantly higher for the experiments with 10 clients and it is otherwise
unaffected by the reply size and client concurrency (for team 4);

— it is significantly higher for the experiments with 10 clients and it increases
linearly with the reply size (for team 6).

The message size usually affects the projects with a low latency, where network
delays have a significant impact on performance. We can observe this influence in
the case of project 6, which has a very low latency and sustains request rates an
order of magnitude higher than the other applications, as shown in Table 2. This
is probably due to the fact that, for some of the requests from its workload, the
middle-tier server does not need to contact the database and does not incur the
additional latency (see Table 1). Due to this property and to the fact that this
is a CORBA application, project 6 is closest to our experimental setup from [5].

Figure 4 summarizes our experimental results. On the left-hand side, we
compare the average, the 99th percentile and the maximum latency for each
configuration, sorted by increasing average latencies. While the latencies of the
seven applications have widely different magnitudes (summarized in Table 2, we
can observe that, in most cases, the 99th percentile closely follows the predictable
trend of the mean, while the maximum latency seems uncorrelated and may be
several orders of magnitude higher than the average. Team 1 is an exception, as
the maximum latency seems to follow the trend of the mean as well. This is the
only project that has achieved such predictability.

12
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Fig. 4. The magical 1% in the seven projects. The plots on the left-hand side
compare the average, the 99th percentile and maximum latency for each experi-
ment. The experiments are sorted by increasing average latencies. The maximum
latencies are usually unpredictable, but by filtering out the highest 1% of the
recorded latencies we eliminate this uppredictability (as indicated by the fact
that the 99th percentile closely follows the trend of the average latency). The
right-hand side plots indicate the z-scores of all the outliers and of the 99th per-
centile latency (together with the corresponding confidence interval). The 99th
percentile always has a low z-score.



Table 2. Characteristics of end-to-end latency and outliers in the 7 projects.

Project 1 2 3 4 5 6 7
Max. req. rate [req/s| | 160 350 28 215 67 1250 24
Latency range [ms| |5-1900 4-3400 32-11600 3-190000 8-1300 1.5-300 10-125000
Number of outliers [%] | 2.70% 1.68% 1.50%  0.33% 1.85% 0.86%  0.43%
Size of outliers (z-score)| 20.95 101.78  54.37 99.51  21.24 48.91 45.28

The large maximum latencies are due to a few outliers. On the right-hand
side of Figure 4 we plot the z-scores of all the outliers detected using the 30 test;
naturally, all the data points from the figure have a z-score higher than 3. A
z-score indicates the difference between the outlier and the average latency from
the corresponding experiment. We observe in the figure that Team 1 did not
record any outliers with z-score > 25, while Team 4 recorded multiple outliers
with z-scores between 80 and 100. The plots also suggest that the very large
latencies are not very common; for all the teams, the vast majority of outliers
have z-scores below 20.

We also plot the z-scores of the 99th percentile latency and the corresponding
confidence intervals at the 99% confidence level (i.e., we plot the 99% confidence
interval of the 99th percentile latency). This gives us a statistically-significant
(p < 0.01) indication that the 99th percentile of the latency has a low z-score
(less than 10 in all the cases). We could not compute the confidence interval for
team 5, due to the small size (only 100 remote invocations per client) of the data
sets produced by the students. Figure 4 seems to suggest that, with the exception
of a couple of outliers, the average and maximum latencies are correlated and
that project 5 has the smallest outliers; however, this may be an artifact of the
limited number of requests used for these experiments.

The outliers come in occasional bursts, but they occur uniformly throughout
the entire run-time of each experiment. This suggests that the number of clients
and the request rates were not high enough to overload the middle-tier servers.

4.1 The Magical 1%

The example of team 1 suggests that the 3o test is conservative and that some of
the outliers detected using this method are not very large. Our goal is to remove
all the extreme latencies and to obtain a predictable latency profile. According
to the magical 1% hypothesis, we investigate if the unpredictability is confined
to the highest 1% of the remote invocations. We turn our attention to the 99th
percentile of the latency.

Across all the experiments in our data set, there is a high correlation between
the 99th percentile and the average latency (r = 0.91). A two-tailed ¢-test [13]
indicates that this value is statistically-significant. This correlation, which can
also be observed in Figure 4, suggests that all the average-latency trends dis-
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cussed above apply to the 99th percentile as well and that the resulting latency
profile is predictable.

The confidence intervals for the z-scores of the 99th percentile help us es-
tablish soft latency bounds. The results are strikingly similar across all project
teams:® the high limit of the confidence interval has a z-score between 4.53 and
8.78. With a statistical confidence level of 99%, the data indicates that the 99th
percentile of the latency cannot have a z-score higher than 10 and cannot be more
than 20 times larger than the average latency. In other words, the 99th percentile
would never fail a 100 test.

4.2 Sources of the Unpredictability

We examine the server and middleware components of all the outliers recorded
in our experiments (see Section 3.3) to determine what caused the high latency.
With one exception (team 6), all the applications may produce outliers due to
either the latency of contacting the database or to the processing performed
within the FT middleware. The component responsible for most of the outliers
varies among the seven applications: for teams 1 and 2 most outliers originate in
the database queries, while for team 3 most of them originate in the middleware.
For team 6, all the outliers recorded originated in the middleware.
Other factors may also influence the production of outliers:

— The response time for certain invocations increases in time, as objects ac-
cumulate in the database, and this effect is amplified by a growing number
of clients. However, this affects the average latency as well and does not ex-
plain the discrepancy between the trends of average and maximum latency.
Moreover, the students have identified this problem and tried to compensate
for it: team 1 decided to use a workload that does not add information in
the database, and team 3 cleared the database between experiments.

— Team 4 discovered that, by increasing the Java heap size, the number of
large outliers can be drastically reduced. This is likely due to the fact that
request processing causes a high memory churn on the server, which forces
the garbage collector to run more frequently.

— Different applications may produce either many small outliers or a few large
ones. Table 2 shows that team 1 has generated the largest number of out-
liers (2.7% of all invocations) among the 7 projects, which contrasts with the
apparently-predictable behavior of this application. The only outlier with a
z-score higher than 100 was recorded in project 2, while project 4 (even after
increasing the Java heap size) has produced an outlier 3556 times larger than
the average latency from the corresponding experiment. Team 4 has also pro-
duced the fewest outliers (0.33% of all invocations) among all projects. This
inverse proportionality between the number and size of outliers is consistent
with our observations from [5].

5 We exclude Team 5 because we could not compute the confidence intervals due to
the small sample sizes reported.
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Fig. 5. Impact of the request-rate on the outliers.

We also investigate if outliers are correlated with certain values of the configura-
tion parameters, to determine if certain operating modes of the applications are
more unpredictable than others. Table 2 suggests that outliers usually account
for around 1% of the remote invocations, except for project 1 which produces
more outliers. The relative size of the outliers also varies among projects. Four
projects (2, 3, 4 and 7) exhibit maximum latencies two orders of magnitude
higher than the average, and project 4 has recorded outliers three orders of
magnitude higher that the average.

Figure 5 shows the impact of the request rates on the numbers and sizes of
outliers in all the experiments. The data points with request rates larger than
600 req/s correspond to team 6, which was the only project able to sustain
such high throughput. The data points with very large outliers (z-score =~ 100)
from Figure 5(a) come from teams 2 and 4, and the large numbers of outliers
(up to 6% of the requests, in some experiments) from Figure 5(b) correspond to
team 1. Examining the correlation coefficients and the individual scatter plots for
each team (not included here for lack of space) reveals that there is no significant
correlation between the request rates and the z-scores of the outliers. The impact
on the number of outliers differs for each project: for teams 1 and 5 there is
no significant correlation, teams 2, 4 and 7 display low, negative correlation
(r € [-0.39,—0.57]) and team 6 has low, positive correlation (r = 0.61). The
only case with a high, positive correlation (r = 0.8) between request rates and
the number of outliers is team 4.

Table 3. Impact of the reply size. Table 4. Impact of the # clients.
[bytes] |original 256 512 1024 Clients | 1 4 7 10
% outliers| 1.37% 1.37% 1.32% 1.28% % outliers|1.31% 1.70% 1.35% 0.98%
Z-score 99.51 99.01 101.78 98.95 z-score |53.25 101.78 99.18 99.50
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The results are similar for the impact of the reply size (Table 3) and number of
clients (Table 4) on the outliers. The number of outliers is uniformly distributed
among all the tested values of these two parameters. The corresponding max-
imum sizes of outliers are comparable for all these values, with the exception
of the experiments with a single client connection, which exhibit lower z-scores.
The impact of the reply size on the relative z-scores of the outliers can also be
observed in Figure 4. These results suggest that, in general, the request rate, the
number of clients and the message size do not have a significant impact on the
generation of outliers.

4.3 Comparison with Fault-Recovery Time

So far, we have shown that the 7 FT applications may have unpredictable re-
sponse times even in the absence of failures. It is interesting to compare these
random high latencies occurring during the normal operation mode with the
time the recovery time needed after a crash fault. A single fault in a middle-tier
server does not induce an outage because the servers are replicated. No requests
are lost and the clients do not have to reconnect, but they experience a high
latency while the fault-tolerant infrastructure carries out recovery actions. After
each crash, we launch a new server replica to restore the 2-way replication of the
middle tier and to prepare the application for handling the next fault.

The students conducted a series of fault-injection experiments by provoking
10-20 crash faults in the middle tier while 1 client was connected. Based on pre-
liminary results, the teams have optimized their system for improved recovery
times by maintaining object references to all the server replicas and by keeping
open TCP connections to these replicas in order to avoid time-consuming name
lookups and the overhead of connection establishment during the failover pro-
cess. Figure 6 shows the recovery times after this optimization stage; each bar
represents the average round-trip time of the requests issued when faults were
injected. We break down the recovery time into components corresponding to
fault-detection, failover and normal request processing. Since this phase of the
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project was designed as an opportunity to obtain bonus points, these results are
reported unevenly: teams 1 and 7 did not provide recovery-time numbers, while
team 6 lumped together the fault-detection and failover times.

Figure 6 indicates that the largest contributor to the recovery time in these
systems is the delay introduced by fault detection. As all the applications use
stateless middle-tiers, the failover process is very fast. In consequence, the nor-
mal processing time of the request brings a significant contribution to the fault-
induced latency outliers. We compare these fault-induced outliers with the out-
liers recorded in the fault-free experiments with 1 client connection. The fault-
induced outliers are significantly higher for team 4, and they are comparable
with the fault-free outliers for teams 2, 5 and 6. Team 3, however, has recorded
453 outliers larger than its recovery time; the largest such outlier (13.6 s) is one
order of magnitude bigger than the recovery time. This indicates that, under cer-
tain circumstances, high latencies occurring randomly during normal operation
may have higher impact on availability than hardware crash faults.

The low recovery times achieved by these applications are due to the stateless
nature of the replicated servers, which does not mandate a long fail-over process.
Enterprise three-tier systems usually store volatile state, such as sessions or
cached content, in the middle tiers, and they keep their persistent objects in a
database [15]. Because volatile state can be recreated after a fault and does not
need to be synchronized, the low recovery times reported by these applications
are realistic. This result brings a new aspect into the cost/benefit trade-off of FT
middleware. It suggests that it may not be worth optimizing the failover process
for achieving a very low recovery time, since comparable outages are expected
to occur during normal operation. It does not diminish the usefulness of FT
middleware because the fault-tolerance techniques prevent data loss in fault
scenarios similar to the ones examined here. Moreover, without F'T middleware,
the outage following a hardware crash would much longer due to the need to
bootstrap a new version of the system.

5 Implications of the Magical 1%

The unpredictability of end-to-end response times has been observed and docu-
mented for many COTS-based systems [4]. The unpredictability of FT middle-
ware [3,2,4,5] undermines many critical systems that rely on the fault-tolerant
mechanisms to increase their reliability and availability under any conditions
and to help them deliver a predictable behavior continuously. Unfortunately, in
such complex systems the unpredictability has multiple sources and it proved
resilient to our attempts to eliminate it by choosing the best COTS components
available and by carefully configuring the system [5].

5.1 Eliminating the Root Causes of Unpredictability is Impractical

While the typical source of outliers depends on the application, most of the seven
teams have recorded that the outliers may originate either from the interactions
with the database server or from the middleware itself. In our experiences with

18



the MEAD system, where we had a finer-grained monitoring infrastructure, we
have observed outliers originating in all the components of the system: the group
communication protocols, the middleware, the replication mechanism and even
the microbenchmark server, which has under 100 LOC (the group communica-
tion accounted for the vast majority of outliers) [5]. The only parameter settings
that show a correlation with the outliers are the message size for MEAD (a
large number of small outliers occur for reply messages larger than 64 KB) and
the request rate for Team 4 (the number of outliers increases linearly with the
request rate, but there is no correlation with the size of outliers).

It is tempting to draw conclusions on which design choices affect the per-
formance and predictability of the system. The seven applications have similar
architectures, but the resulting latency profiles are widely different. Each appli-
cation has a certain propensity to produce outliers, but, as these outliers may
originate in different components of the applications, we are unable to suggest a
general method for preventing them. Since only two teams used CORBA instead
of EJB and only one team used active replication, we cannot make a rigorous
comparison between the impact on system predictability of these choices.

Team 1 has achieved a latency profile that seems to be fairly predictable,
but this may be a result of the limited number of configurations — 48, compared
with the 960 we reported in [5] — that each team was able to test during the 15-
week course. Based on the evidence presented here and in the related literature,
we conclude that there is no silver bullet that will render a FT middleware
application predictable and that, in general, the maximum end-to-end latency
is hard to bound. Most likely, this behavior is the result of combining COTS
components which: (i) were not built and tested together, and (ii) were designed
to optimize the common case among a wide variety of workloads, rather than
to enforce tight bounds for the worst-case behavior. This unbounded behavior
comes in addition to the unpredictability related to the potential occurrence
of faults and it is not negligible compared to the fault-recovery times. How to
enforce strict predictability, in order to establish guarantees for the maximum
latency of FT middleware, remains an open research question.

5.2 Statistical Predictability for Enterprise Applications

The magical 1% hypothesis states that, for many FT middleware systems, the
unpredictability — if it exists — is limited to less than 1% of the remote invo-
cations. We emphasize that 1% is a rule of thumb and not the statistical limit
suggested by the experimental data; for instance, our results from the MEAD
experiments show that the distribution of the highest 1% of response times
has a long tail and that 0.1% might be enough to remove the unpredictability.
However, for all the systems that we have examined, removing the magical 1%
resulted in a predictable latency profile. This hypothesis holds true for different
operating systems (TimeSys and SUSE Linux), middleware platforms (CORBA
and EJB), programming languages (C++ and Java), replication styles (active
and warm passive) and applications. This is the magic of the unruly 1%.
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This indicates that statistical predictability is within our reach: upper bounds
for the 99th percentile of the latency can be established with a high confidence,
which allows the developers of FT middleware applications to establish and
honor service-class guarantees. Reliable percentile-based guarantees are desirable
in most enterprise and soft real-time systems.

For example, a predictable latency profile would enable the automatic nego-
tiation of service-level agreements between service providers. According to the
Web-Services Agreement specification [16], service providers advertise a list of
standard offerings that clients can select from. Clients requesting access to the
service will typically communicate a description of their workload and the de-
sired QoS guarantees. In return, the service provider will communicate the price
and, potentially, a penalty function for violating the QoS guarantees. The stan-
dard also allows the service to describe several options and to assign priorities
among these options. Service providers must make informed business decisions
during the SLA negotiation, such as how many new clients they can admit be-
fore compromising the quality of the service provided to their existing clients,
or what class of service it can reliably deliver based on the observed load on the
system. These decisions can only be based on an accurate model of the system
behavior, which seems achievable with the statistical predictability obtained by
removing the magical 1% of invocations.

5.3 Limitations of Statistical Predictability

Statistical predictability is not relevant in all the situations. We have verified
the magical 1% hypothesis in multiple configurations on a local-area network,
which is a typical setting for fault-tolerant middleware systems. This hypothesis
may not hold in a wide-area network with high propagation delays, or in an
environment with intermittent network connectivity, such as a wireless network.
virtual, rather than physical computing resources. Moreover, certain applications
(e.g., embedded, real-time systems) will not be able to use percentiles; in such
cases, nothing short of predictable worst-case behavior will be sufficient to ensure
safety.

6 Summary of Findings and Conclusions

In this paper, we present an experiment evaluating the unpredictability of en-
terprise applications using fault-tolerant middleware. We compare seven three-
tier applications using CORBA or EJB middleware and active or warm passive
replication mechanisms. We identify one project that seems to have achieved
predictable latencies (Su-Duel-Ku) and one project where the results were in-
conclusive due to incomplete data (Mafia); the remaining five projects exhibit
unpredictable and sometimes very high latencies (up to three orders of mag-
nitude higher than the average response time). Some of the high latencies ob-
served may be due to contention between projects for the LAN bandwidth and
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for the database server. However, these conditions are typical for enterprise in-
frastructures where multiple applications share communication and computing
resources.

We present strong empirical evidence supporting the hypothesis that unpre-
dictability is confined to the highest 1% of the remote invocations: the 99th
percentile of the latency cannot have a z-score higher than 10 and is typically
at most 20 times larger than the mean These bounds for the majority of the
remote invocation latencies are significant at the 99% confidence level. For two
of the projects (Blackjack and Mafia) and with a single client connection, the
recovery time after a fault is comparable to the maximum latencies recorded in
the fault-free case.

While the unpredictability of FT middleware is unsettling, the knowledge
that this unpredictability is limited to a small number of remote invocations —
typically less than 1% — enables the establishment of high-confidence bounds
on the 99th percentile of the latency. This style of statistical predictability is
relevant for many enterprise applications. As we propose an easily-verifiable hy-
pothesis, which would provide significant benefits for designing and deploying
fault-tolerant applications, we encourage the research community to verify the
validity of the magical 1% rule in other middleware systems.
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