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Abstract. Distributed applications must often consider and select the
appropriate trade-offs among three important aspects – fault-tolerance,
performance and resources. We introduce a novel concept, called ver-
satile dependability, that provides a framework for analyzing and rea-
soning about these trade-offs in dependable software architectures. We
present the architecture of a middleware framework that implements ver-
satile dependability by providing the appropriate ”knobs” to tune and
re-calibrate the trade-offs. Our framework can adjust the properties and
the behavior of the system at development-time, at deployment-time,
and throughout the application’s life-cycle. This renders the versatile
dependability approach useful both to applications that require static
fault-tolerance configurations supporting the loss/addition of resources
and changing workloads, as well as to applications that evolve in terms
of their dependability requirements. Through a couple of specific exam-
ples, one on adapting the replication style at runtime and the other on
tuning the system scalability under given constraints, we demonstrate
concretely how versatile dependability can provide an extended coverage
of the design space of dependable distributed systems.

1 Introduction

Oftentimes, the requirements of dependable systems are conflicting in many
ways. For example, optimizations for high performance usually come at the ex-
pense of using additional resources and/or weakening the fault-tolerance guar-
antees. Conversely, distributed fault-tolerance techniques, such as replication,
can adversely impact the performance and scalability. It is our belief that these
conflicts must be viewed as trade-offs in the design space of dependable systems
and that only a good understanding of these trade-offs can lead to the devel-
opment of useful and reliable systems. Unfortunately, many existing approaches
offer only point solutions to this problem because they hard-code the trade-offs
in their design choices, rendering them difficult to adapt to changing working
conditions and to support evolving requirements over the system’s lifetime.
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As an alternative, we propose versatile dependability1 , a novel design para-
digm for dependable distributed systems that focuses on the three-way trade-off
between fault-tolerance, quality of service (QoS) – in terms of performance or
real-time guarantees – and resource usage. This framework offers a better cover-
age of the dependability design-space, by focusing on an operating region (rather
than an operating point) within this space, and by providing a set of “knobs”
for tuning the trade-offs and properties of the system.

Our versatile dependability framework is an enhancement to current middle-
ware systems such as CORBA or Java. While these middleware do have fault-
tolerance support (through the Fault-Tolerant CORBA [2] and the Continuous
Availability APIs for Java [3] standards), they lack the support for run-time
adaptability. Furthermore, tuning these off-the-shelf middleware is an awkward
task for their users because, in most cases, the adjustment process requires de-
tailed knowledge of the system’s implementation and because the internal tuning
mechanisms are hard to control in an effective manner and can produce unde-
sirable side-effects.

For example, the Fault-Tolerant CORBA standard [2] lists a set of “fault-
tolerance properties” (e.g., the replication style, the minimum number of repli-
cas, the checkpointing intervals, the fault monitoring intervals and their time-
outs), without providing any guidance as to how they ought to be set or how
they map into externally-observable properties, such as scalability. We call these
internal fault-tolerance properties the low-level knobs. The versatile dependabil-
ity approach advocates the implementation of high-level knobs, corresponding to
the external properties of the system, that encode the knowledge about the es-
sential trade-offs and that provide the necessary insights on how to configure the
system appropriately. Hence, the users of our COTS middleware do not need to
quantify or understand the intricate relationships between internal and external
properties, while enjoying the full benefits of an increased flexibility.

This paper makes four main contributions in describing:

– A new concept, versatile dependability, directed at achieving tunable, re-
source and QoS aware fault-tolerance in distributed systems (Section 2);

– A software architecture for versatile dependability with four design goals:
tunability, quantifiability, transparency and ease of use (Section 3);

– How to implement the tuning knobs of versatile dependability, including
two examples: dynamically adapting the replication style at runtime and
adjusting the system scalability under specified constraints (Section 4);

– Why versatile dependability is relevant for several classes of applications,
and what are the biggest challenges for extending this research direction
(Section 5).

1 An earlier version of this chapter, containing the first mention of versatile depend-
ability, was published as [1].



2 Versatile Dependability

We visualize the development of dependable systems through a three-dimensional
dependability design-space, as shown in Figure 1, with the following axes: (i) the
fault-tolerance “levels” that the system can provide, (ii) the high performance

guarantees it can offer, and (iii) the amount of resources it needs for each pair-
wise {fault-tolerance, performance} choice. In contrast to existing dependable
systems, we aim to span larger regions of this space because the behavior of the
application can be tuned by adjusting the appropriate settings. In our research,
we strive to achieve a high degree of flexibility by evaluating the wide variety
of choices for implementing dependable systems, and by quantifying the effect
of these choices on the three axes of our {Fault-Tolerance × Performance ×
Resources} design space. The purpose of this paper is to quantify some of the
trade-offs among these three properties and to demonstrate how we can imple-
ment the most effective tuning knobs that allow system users and administrators,
as well as application designers, to adjust these trade-offs appropriately.

Our general versatile dependability framework consists of:

1. Monitoring various system metrics (e.g., latency, jitter, CPU load) in order
to evaluate the conditions in the working environment [4];

2. Defining contracts for the specified behavior of the overall system;
3. Specifying policies to implement the desired behavior under different working

conditions;
4. Developing algorithms for automatic adaptation to the changing conditions

(e.g., resource exhaustion, introduction of new nodes) in the working envi-
ronment.
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Fig. 1. Design space of dependable systems.



Table 1. Mapping from high-level to low-level knobs.

High-level

Knobs

Scalability Availability Real-Time Guarantees

Low-level

Knobs

Replication
Style, Replica-
tion Degree

Replication Style,
Checkpointing Fre-
quencya

Replication Style, Repli-
cation Degree, Check-
pointing Frequency

Application

Parameters

Request Fre-
quency, Re-
quest and
Response Size,
Resources

State Size, Re-
sources

Request Frequency,
Request and Response
Size, State Size, Re-
sources

a This knob is relevant only for passive replication (see Section 3.1)

Versatile dependability was developed to provide a set of control knobs to
tune the multiple trade-offs. There are two types of knobs in our architecture:
high-level knobs, which control the abstract properties from the requirements
space (e.g., scalability, availability), and low-level knobs, which tune the fault-
tolerant mechanisms that our system incorporates (e.g., replication style, number
of replicas). The high-level knobs, which are the most useful ones for the system
operators, are influenced by both the settings of the low-level knobs that we
can adjust directly (e.g., the replication style, the number of replicas, the check-
pointing style and frequency), and the parameters of the application that are
not under our control (e.g., the frequency of requests, the size of the application
state, the sizes of the requests and replies). Through an empirical evaluation
of the system, we determine in which ways the low-level knobs can be used to
implement high-level knobs under the specified constraints, and we define adap-
tation policies that effectively map the high-level settings to the actual variables
of our tunable mechanisms. This approach complements a formal analysis of
the system’s correctness and performance and it shows how the system can be
tuned and configured in its working environment. Table 1 shows three examples
of mapping from high-level knobs to low-level knobs; in a complex system there
can be many more such knobs and many other parameters that influence those
knobs. In this paper, we consider a representative set of these knobs to illustrate
the tuning process.

3 The Architecture of our Framework

Our framework is based on the Fault-Tolerant CORBA specification [2], which
has only primitive support for tunable fault-tolerance. The tuning and adapta-
tion to changing environments are enacted in a distributed manner, by a group
of software components that work independently and that cooperate to agree
and execute the preferred course of action. In order to add a minimal over-
head to the systems that we are continuously monitoring and tuning, we try to
keep our system as simple as possible and to limit its functionality to the core
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mechanisms needed to add and adjust fault-tolerance. We believe that this is
important, especially since footprint and scalability are major concerns in some
critical middleware applications.

This research forms a fundamental part of the MEAD (Middleware for Em-
bedded Adaptive Dependability) project [4] which is currently under develop-
ment at Carnegie Mellon University. While we currently focus on CORBA
systems, which seemed the ideal starting point for this investigation given our
previous experiences,2 our approach is intrinsically independent of the specific
middleware platform and can be applied to other systems as well.

3.1 A Tunable, Distributed Infrastructure

To ensure that our overall system architecture enables both the continuous mon-
itoring and the simultaneous tuning of various fault-tolerance parameters, we
have four distinct design goals for our system architecture:

– Tunability and homogeneity: having one infrastructure that supports mul-
tiple knobs and a range of different fault-tolerant techniques;

– Quantifiability: using precise metrics to evaluate the trade-offs among vari-
ous properties of the system and to develop benchmarks for evaluating these
metrics;

– Transparency: enabling support for replication-unaware and legacy applica-
tions;

– Ease of use: providing simple knobs that are intuitively easy to adjust.

2 MEAD was born out of the lessons that we learned in architecting and implementing
the Eternal system [5]; however, Eternal was primarily designed to support fault-
tolerant CORBA – real-time, resource-awareness and tunability were not considered
in its design.



The taxonomy of low-level and high-level knobs helps us address the flexibil-
ity and ease of use requirements of versatile dependability: the knobs preserve
the tunability of the system’s behavior (by not hard coding the trade-off settings
in the design choices) and they translate the internal variables of the framework
into external properties that make sense for the system operators. The trans-
parency and quantifiability requirements of versatile dependability are achieved
through the architecture of our framework, which is discussed below.

We assume a distributed asynchronous system, subject to hardware and
software crash faults, transient communication faults, performance and timing
faults. The architecture of our system is illustrated in Figure 2. At the core of
our approach is the replicator, a software module that can be used to provide
fault-tolerance transparently to a middleware application. The replicator inter-
cepts the system calls of the CORBA application (on both the client and server
sides), redirects the CORBA messages between hosts to a reliable group com-
munication service, and manages groups of client and server replicas. Note that
the application and the ORB need not be aware of all these tasks; in fact, we
have successfully used the replicator to obtain fault-tolerant versions of legacy,
un-replicated applications.

The replicator module is implemented as a stack of sub-modules with three
layers. The top layer is the interface to the CORBA application; it intercepts the
system calls in order to understand the operations of the application. The middle
layer contains all the mechanisms for transparently replicating processes and
managing the groups of replicas, as well as the knobs needed to tune the system.
The bottom layer is the interface to the group communication package and is
an abstraction layer to render the replicator portable to various communication
platforms.

The unique feature of the replicator is that its behavior is tunable and that it
can adapt dynamically to changing conditions in the environment. Given all the
design choices for building dependable systems, the middle layer of the replicator
can choose, from among different implementations, those that are best suited to
meet the system’s requirements. In the following paragraphs, we describe some
of the techniques used by the replicator.

Library Interposition. This technique allows the replicator to perform tasks
transparently to the application and to CORBA itself [6]. The replicator is a
shared library that intercepts and redefines the standard system calls to convey
the application’s messages over a reliable group communication system. Using
linker-related environment variables (e.g., LD_PRELOAD), we can insert the repli-
cator ahead of all the other shared libraries in the CORBA application process’
address space. At runtime, symbol definitions of interest to us (primarily socket
and network level routines) resolve to the replicator rather than the default op-
erating system libraries. This is accomplished with no change to the application,
the ORB, or the operating system, thereby achieving transparency. The calls
redefined inside the replicator are interposed between the application and the
system libraries, such that, at runtime, the application (unknowingly) calls the



functions from the replicator, instead of the standard ones. Because the repli-
cator mimics the TCP/IP programming interface, the application continues to
believe that it is using regular CORBA GIOP connections. For example, if a
client is trying to send a message to a server, we can intercept it and broadcast
it (using group communication) to several replicas of that server in order to
increase the dependability of the service.

Group Membership and Communication. We are currently using the
Spread toolkit [7] for group membership and communication. This package pro-
vides an API (based on the extended virtual synchrony model [8]) for join-
ing/leaving groups, detecting failures and reliable multicasting. Spread can pro-
vide five types of guarantees for message delivery: best effort (no guarantees),
reliable delivery, FIFO ordering (by sender), causal ordering and total order-
ing. These guarantees enable us to ensure the consistency between the different
replicas of the application. The price we have to pay for this consistency is that
our system inherits the performance overhead of maintaining virtual synchrony
between the nodes and the behavior of the replicator is closely related to the
performance of the underlying group communication protocol.

Tunable Fault-Tolerant Mechanisms. We provide fault-tolerant services
to both CORBA client and server applications by replicating them in various
ways, and by coordinating the client interactions with the server replicas. We
implement replication at the process level rather than at the object level because
a CORBA process may contain several objects (that share “in-process” state),
all of which have to be recovered, as a unit, in the event of a process crash.
Maintaining consistent replicas of the entire CORBA application is, therefore,
the best way to protect our system against loss of state or processing in the
event of software (process-level) and hardware (node-level) crash faults.

Currently, the replicator supports the two canonical replication styles: active
replication and passive replication:3

– Active replication, also called the “state-machine approach” [10], is a tech-
nique where all the replicas are running and processing requests simulta-
neously on different nodes. The client has two choices for determining the
correct response:
• it can accept the first response received, if the server replicas are trusted

not to behave maliciously (which is the case in this paper);
• it can do majority voting on all the responses it receives, if Byzantine

failures may occur in the system [11].
– Passive replication, also called the “the primary-backup approach” [12], man-

dates that only one replica, called the primary, executes the application,
while one or several backups are waiting to take over when the primary fails.
Depending on how and when the state of the primary is transferred to the
backups, this replication style has two flavors:

3 In the future, we plan to include support for other replication styles [9] as well.



• cold passive replication, where a backup is launched (by a watchdog)
only when the primary crashes, retrieving the state from a log saved on
shared permanent storage, and

• warm passive replication, where the backups are in a stand-by mode,
periodically receiving state updates from the primary. When the primary
crashes, a new primary is chosen from among the running backups, using
some deterministic algorithm.

We implement tunability by providing a set of low-level knobs that can adjust
the behavior of the replicator, such as the replication style, the number of replicas
and the checkpointing style and frequency (see Table 1). Note that versatile
dependability does not impose a “one-style-fits-all” strategy; instead, it allows
the maximum possible freedom in selecting a different replication style for each
CORBA process and in changing it at run-time, should that be necessary.

Replicated State. As the replicator is itself a distributed entity, it maintains
(using the group communication layer) within itself an identically replicated ob-
ject with information about the entire system (e.g., current view of the group
membership, resource availability at all the hosts, performance metrics, envi-
ronmental conditions). This object is needed for certain steps of the replication
process (such as failover) and for making consistent decisions when adapting to
the conditions in the environment. This is accomplished through MEAD’s de-
centralized resource monitoring infrastructure and through the Fault-Tolerance
Advisor [4], whose task is to identify the most appropriate configurations (in-
cluding the replication style and degree) for the current state of the system.

Adaptation Policies. There are various reasons why a system may need to
adapt its fault-tolerance properties. For example, an application may be multi-
modal and hence require different fault-tolerance in different modes, or runtime
profiling of an application may show different resource availability at different
times, and hence fault-tolerance policies would need to be adapted to this. These
scenarios require different approaches and hence different adaptation algorithms.

Our system can perform static as well as runtime profiling to adapt the fault-
tolerance of the system. It can monitor various system metrics and generates
warnings when the operating conditions are about to change. If the contracts for
the desired behavior can no longer be honored, the replicator adjusts the fault-
tolerant mechanisms to the new working conditions (including modes within the
application, if they happen to exist). This adaptation is performed automatically,
according to a set of policies that can be either pre-defined or introduced at run
time; these policies correspond to the high-level knobs described in Section 2.
For example, if the re-enforcement of a previous contract is not feasible, versatile
dependability can offer alternative (possibly degraded) behavioral contracts that
the application might still wish to have; manual intervention might be warranted
in some extreme cases. As soon as all of the instances of the replicator have agreed
to follow the new policy, they can start adapting their behavior accordingly.



Application of Adaptation Policies. The decision to act on an adaptation
policy must be applied consistently at all the nodes of the distributed system.
This can be accomplished in two ways: (i) applying the adaptation without any
further communication, based on the replicated state, and (ii) sending a “switch”
message through a totally ordered multicast channel to initiate the change. With
the first strategy, all the decisions to re-tune the system parameters are made
in a distributed manner by a deterministic algorithm that takes the replicated
state as input. If each local change is the outcome of events that are consis-
tently delivered4 at all the nodes by the resource monitoring system, then no
further communication is needed; the decisions are based on data that is already
available and agreed upon, and virtual synchrony ensures that the adaptation
will be applied correctly. This has the advantage that the distributed adapta-
tion process is very swift. With the second strategy, the system sends a “switch”
message to all the replicators in a group; reception of this message triggers the
adaptation process. This is equivalent to running Consensus to decide when to
apply the change, and the “switch” message acts as a checkpoint in the totally
ordered stream of messages indicating a time when all the replicas have received
the same set of incoming messages and they are in the same state (we give a
more detailed example of this strategy in Section 4.1). This approach introduces
the delay of a totally ordered multicast between the time when an adaptation
decision is made and the time when it is applied.

There are cases when the first strategy cannot be applied. For example, if
the Fault-Tolerance Advisor runs as a separate process from the replicator, the
decision to change will be communicated through an IPC or a shared memory
mechanism. Since our system uses group communication to enforce consistency,
using a side-channel (such as IPC or shared memory) may lead to unrecog-
nized causality between the stream of requests and the adaptation decision and,
therefore, the change could be applied when the replicas are in inconsistent
states.5 Integrating the replicator, the resource monitoring and the adaptation
policy parsing in a single execution thread would remove this shortcoming, but
it would increase the overhead of processing the requests. This shows that there
is a trade-off between the overhead of the replicator in the average case and the
ability to apply the adaptation policies very fast.

High and Low Level Knobs. Using all the mechanisms described above, we
can implement the high and low level knobs mandated by versatile dependability.
The group communication package allows us to implement a low-level knob that
specifies the type of delivery guarantee the messages in the stream of requests
have. Depending on the nature of the application, different types of messages
may be used to achieve the target performance and dependability (for example,
a stateless server requires only reliable message delivery, while a stateful server

4 In the virtual synchrony model [13, 8], consistent delivery means that the same events
are delivered in the same order, but without any timeliness guarantees.

5 This does not happen when the requests do not update the state or when the replicas
are stateless.



needs totally ordered messages if the requests contain state updates). Our repli-
cation mechanisms let us tune a number of parameters, such as the replication
style, the number of replicas and the checkpointing frequency. The aggressiveness
of resource monitoring and the strategy for applying adaptation policies define
other low-level knobs that can be adjusted to control the overhead and the speed
of the adaptation process. Finally, the high-level knobs are implemented on top
of all these low-level knobs, using the adaptation policies.

4 Implementation of Tuning Knobs

Our versatile dependability framework includes both knobs that can be used
off-line, to configure the system for particular requirements and workloads, and
knobs that adapt to conditions in the working environment at runtime. Below,
we estimate empirically the performance and the overhead of our framework
(Section 4), we show how to implement a low-level knob that allows us to switch
between an active and a passive replication style at runtime (Section 4.1), and
we show how to construct a high-level knob to tune the system scalability (Sec-
tion 4.2).

We have deployed a prototype of our system on a test-bed of seven Intel
x86 machines. Each machine is a Pentium III running at 900 megahertz with
512MB RAM of memory and running RedHat Linux 9.0. We employ the Spread
(v. 3.17.1) group communication system [7] and the TAO real-time ORB [14]
(v. 1.4). In our experiments, we use a CORBA client-server test application that
processes a cycle of 10,000 requests.
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Performance and Overhead of the Replicator. In Figure 3, we examine the
raw overhead introduced by the replicator and the replication mechanism. We
compare here the latencies of the baseline application (without the replicator),
of an operating mode where the system calls are intercepted, but not modified
(with just the client, just the server, and both of them intercepted), and of the
active and warm passive replication styles (with one client and an unreplicated
server to keep the results comparable). The vertical error bars from the figure
indicate the jitter measured in the corresponding experiment. We can see that
the replicator itself introduces little overhead, but the replication mechanisms
lead to increased latency and jitter.

Figure 4 shows a break-down of the average round-trip time of a request
transmitted through MEAD, as measured at the client (in a configuration with
one client and an unreplicated server). We notice that the transmission delay
through the group communication layer is the dominant contributor to the over-
all latency (in this paper, by latency we mean round-trip time). The application
processing time is very small because we are using a micro-benchmark; for a
real application, the time to process the request would be significantly higher.
The replicator introduces only 154 µs overhead on average, a fairly small figure
compared to the latencies of the group communication system and the ORB.

4.1 Runtime Adaptive Replication

The active and passive replication styles represent different trade-offs between
timeliness, recovery and resource usage. In general, active replication is faster in
responding to requests and in recovering from faults because checkpointing and
rollback are not needed, while passive replication uses more efficiently the re-
sources available, such as bandwidth and CPU cycles. Adaptive systems should
be able to modify replication styles on the fly, at run-time, in response to work-
load changes and application requirements. We implement a low-level knob to
switch between replication styles through three steps (see also the pseudocode
in Figure 5):



1. One or more replicas initiate the transition process by sending a “switch”
message to the entire replica group (duplicate messages are discarded);

2. Each replica, on receiving the “switch” message, starts enqueuing application
messages and broadcasts all the information needed by the other replicas to
update their local state and to perform the switch;

3. Each replica, on receiving all the information needed to ensure a consistent
state, updates its internal state and assumes its role in the new replication
style.

The second step is different depending on the direction of the switch: when
switching from warm passive to active replication, the backups must synchronize
their states with the primary before they can start processing requests. In the
case of a crash of the primary, the backups can restore a consistent state by
replaying the messages received since the last checkpoint prior to the crash.
When switching from active to warm passive replication, a new primary must
be selected and the other replicas become backups after finishing to service their
current requests.

The “switch” messages are sent through a totally ordered, reliable multicast
channel using our group communication layer (see Section 3.1), which makes
our algorithm tolerant to the crash of any replica. Since fault notifications are
ordered consistently with respect to the “switch” and the other messages, the
remaining non-faulty instances of the replicator can always determine at which
point in the algorithm the crash has occurred and continue the work from that
point until the replication style switch is complete. The protocol described in
Figure 5 can tolerate the crash failure of either the primary or of any of the
backups.

Our adaptive replication style takes the middle ground between the fast,
resource-hungry active replication and the slower, resource-efficient passive repli-
cation. Figure 6 shows how we can adapt the replication style in response to the
load of the system. Since active replication can handle higher request arrival
rates than passive replication, in this example we switch whenever the request
rate increases above a certain threshold. This simple adaptation policy selects
the replication style that is appropriate for the measured request arrival rate at
the server.

The observed delays required to complete the switch are comparable to the
average response time, and they are negligible at high loads, such as the ones
that trigger the adaptation. It is interesting to note that the request arrival rate
observed at the server is 4.1% higher in the case of adaptive replication than
when using static passive replication with the same workload. This is because
active replication can respond faster under such high loads; clients waiting for
the replies receive them faster and can send new requests sooner than in the
previous case (there is no need for quiescence and checkpointing). This speed-
up effect allows the servers to regulate the load imposed by the clients and to
increase the throughput of the replicated service.

The adaptive replication knob provides the ability to change the replication
style whenever required, either off-line, before the application is launched, or



I INITIATE adaptation:

send switch message

II PREPARE to switch:

/* Case 1: switch Warm Passive --> Active */

If (this replica == current Primary)

prepare to send one more checkpoint before switching

If (replica == current Backup)

prepare to wait for one more checkpoint after the switch

/* Case 2: switch Active --> Warm Passive */

Choose a new primary

Prepare to handle outstanding messages, if any, after the switch

III SWITCH to new replication style:

/* Case 1: switch Warm Passive --> Active */

New replication style = Active

If (this replica == previous Primary)

send one more checkpoint

If (this replica == previous Backup)

accept one more checkpoint

If (no checkpoints received &&

detect crash of previous Primary)

process all outstanding requests

in message queue (rollback)

else

continue

/* Case 2: switch Active --> Warm Passive */

New replication style = Active

If (this replica == new backup)

If (any outstanding requests in message queue)

process those requests and then

become completely passive

else

continue as backup

Fig. 5. Algorithm to switch between replication styles.
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online, during its execution. This flexibility allows us to tune with precision
the behavior of dependable systems in the space between active and passive
replication, by defining the appropriate adaptation policies. This is essential
when the middleware infrastructure needs to support a graceful degradation to
operation modes with reduced functionality, (e.g., when taking the system in
a safe mode when the loss of redundancy threatens the reliability and safety
of the system). However, adaptive replication is most useful for implementing
high-level knobs that correspond to external system properties, as described in
the next section.

4.2 Tuning System Scalability

In this section, we show we can tune the scalability of the system (i.e., the number
of clients it can service) under specified resource and performance constraints.
The first step in implementing a scalability knob is to gather enough data about
the system’s behavior in order to construct a policy for implementing a high-level
knob (see Section 3.1). We examine the average round-trip latency of requests,
under different system loads and redundancy levels (because we were limited
to eight computers, we ran experiments with up to five clients and three server
replicas). In Figure 7-(a), we can see that the active replication incurs a much
lower latency than warm passive replication, which makes the round-trip delays
increase almost linearly with the number of clients. With five clients, passive
replication is roughly three times slower than active replication.

The roles are reversed in terms of resource usage. In Figure 7-(b), we no-
tice that, although in both styles the bandwidth consumption increases with the
number of clients, the growth is steeper for active replication. Indeed, for five
clients, active replication requires about twice the bandwidth of passive replica-
tion. Thus, when considering the scalability of the system, we must pay attention
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Fig. 7. Trade-off between latency and bandwidth usage.

to the trade-off between latency and bandwidth usage. While this is not intu-
itively surprising, our quantitative data will let us determine the best settings
for a given number of clients.

Implementing a “Scalability” Knob. We would like to implement a knob
that tunes the scalability of the system under bandwidth, latency, and fault-
tolerance constraints. In other words, given a number of clients Ncli, we want
to decide the best possible configuration for the servers (e.g., the replication
style and the number of replicas). Let us consider a system with the following
requirements:

1. The average latency shall not exceed 7000 µs;
2. The bandwidth usage shall not exceed 3 MB/s;
3. The configuration should have the best fault-tolerance possible (given re-

quirements 1–2);
4. Among all the configurations i that satisfy the previous requirements, the

one with the lowest:

Costi = p
Latencyi

7000µs
+ (1 − p)

Bandwidthi

3MB/s

should be chosen, where Latencyi is the measured latency of i, Bandwidthi

is the measured bandwidth and p is the weight assigned to each of these
metrics.6

This situation is illustrated in Figure 8. The hard limits imposed by re-
quirements 1 and 2 are represented by the vertical planes that set the useful

6 The cost function is a heuristic rule of thumb (not derived from a rigorous analysis),
that we use to break the ties after satisfying the first 3 requirements; we anticipate
that other developers could define different cost functions. Here, we use p = 0.5 to
weight latency and bandwidth equally.
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Fig. 8. High level knob: scalability.

configurations apart from the other ones. For each number of clients Ncli, we
select from this set those configurations that have the highest number of server
replicas to satisfy the third requirement. If, at this point, we still have more than
one candidate configuration, we compute the cost to choose the replication style
(the number of replicas has been decided during the previous steps). The result-
ing policy is represented by the thick line from Figure 8, and its characteristics
are summarized in Table 2.

Note that, while for up to four clients the system is able to tolerate two crash
failures, for five clients only one failure is tolerated because no configuration
with three replicas could meet the requirements in this case. This emphasizes
the trade-off between fault-tolerance and scalability under the requirements 1–4,
which impose hard limits for the performance and resource usage of the system.
Furthermore, since in both the active and passive replication styles, at least one
of the metrics considered (i.e., bandwidth and latency) increases linearly, it is

Table 2. Policy for scalability tuning.

Ncli 1 2 3 4 5

Configurationa A (3) A (3) P (3) P (3) P (2)
Latency [µs] 1245.8 1457.2 4966 6141.1 6006.2

Bandwidth [MB/s] 1.074 2.032 1.887 2.315 2.799
Faults Tolerated 2 2 2 2 1

Cost 0.268 0.443 0.669 0.825 0.895

a Active/Passive (number of replicas); e.g., A(3) = 3 active replicas.



Fig. 9. Active and passive replication in the dependability design space.

likely that, for a higher load, we cannot satisfy the requirements. In this case, the
system notifies the operators that the tuning policy can no longer be honored
and that a new policy must be defined in order to accept any more clients.

5 Discussion

Scalability is only one possible high-level knob that versatile dependability can
tune; we could similarly implement other high-level knobs such as availability,
reliability, sustained throughput, etc. In fact, each one of the requirements spec-
ified in Section 4.2 probably corresponds to a high-level knob that can be tuned
independently. Achieving a separation of concerns between these knobs, by re-
ducing the influence they have on each other, is therefore an important research
challenge for the future of versatile dependability.

However, in its current stage versatile dependability rises to the challenge of
enabling adaptive systems with a tunable range of reliability and performance
guarantees. Figure 9 displays the trade-off between the active and passive repli-
cation styles in the dependability design space (which was introduced in Fig-
ure 1). The data set displayed here is the same one from Figure 7, where the
fault-tolerance, performance and resource usage of each configuration are nor-
malized to their maximum values. We can see that each of the two replication
styles corresponds to a larger region in this space and includes multiple possible
configurations of the system. The two regions are non-overlapping; however, by
using low and high-level knobs such as the ones described above, we can position
the system in any configuration desired.

Versatile dependability is essential for long-running applications that cannot
be stopped (e.g., during a space flight), but that have several modes of operation



with different resource and performance requirements (e.g., simulation/ training
and mission modes). The high performance provided by active replication can
be used when gathering data and performing actuation must be done within
narrow time limits, when there are limited windows of opportunity and data is
critical, because of the faster response and recovery times. The more conservative
passive replication is needed when the resources are scarce and cannot be wasted
by running several active replicas in parallel. When both these conditions are
present (e.g., in a network of sensors), the infrastructure must be able to tune
the replication style to run in a resource-conservative mode most of the time,
and to switch to the high-performance mode only during the limited window
of opportunity. The ability to express the tuning problem in terms of external
properties (the high-level knobs), rather than internal parameters of the system
(the low-level knobs), facilitates the configuration and management of complex
distributed systems because it does not require a detailed knowledge of the
system’s implementation and the internal fault-tolerant mechanisms used.

6 Related Work

Among the first attempts to reconcile soft real-time and fault-tolerance, the
Delta-4 XPA project [15] used semi-active replication (the leader-follower model)
where all the replicas are active but only one designated copy (the leader) trans-
mits output responses. In some conditions, this approach can combine the low
synchronization requirements of passive replication with the low error-recovery
delays of active replication. The ROAFTS project [16] implements a number of
traditional fault-tolerant schemes in their rugged forms and operates them un-
der the control of a centralized network supervision and reconfiguration (NSR)
manager.

Traditionally, research on adaptive software systems has focused on either
system architectures to support the adaptation process [17, 18], or on domain-
specific strategies for adaptation under given constraints encountered in practical
situations [19, 20]. The former approach does not make use of any domain knowl-
edge about the application and, thus, only enables hooks for adaptation while
leaving the actual implementation details to domain experts; the latter approach
usually focuses on one particular (often domain-specific) instance of the problem
and does not build a generic framework around the proposed solution.

For instance, the AQuA framework [19] proposes a technique to support
graceful QoS adaptation by requiring applications to specify the criticality of
their timeliness and consistency requirements in probabilistic terms. This prob-
abilistic QoS model can be implemented through replication and a combination
of virtual synchrony and lazy propagation of updates that effectively provides
a tunable range of consistency guarantees. Based on the client’s request and
the measured conditions in the environment (e.g., current network latencies and
replica staleness), the framework detects whether the client’s QoS specification
can be met with the required probability. In this case, AQuA automatically se-
lects the subset of replicas to service the invocation using a greedy algorithm.



Note that, in our terminology, AQuA’s tunable QoS guarantees are analogous
to a high-level knob.

However, in some cases, the QoS requirements and the environmental condi-
tions can change so drastically that a switch to a completely different algorithm
is necessary. Cactus [17] proposes a generic software architecture for adaptive
systems based on fine-grained software modules that implement abstract QoS
properties. The adaptation framework uses fitness functions associated with each
module to determine the best one for the current requirements and execution
environment. The adaptive action is performed after all the distributed compo-
nents have agreed to select the corresponding software modules in a consistent
way. This adaptation mechanism is similar to a low-level knob from our frame-
work, such as the one described in Section 4.1.

It has also been noted that hybrid replication strategies can be conceived,
and these can be combined with caching in order to give more flexibility to
the application designer [21]. For example, some of the replicas can be active
and some can be passive in order to increase the scalability of the system while
keeping low fail-over delays. There are possibly 50–100 such hybrid strategies
which give a much finer control of the operational parameters of the system. An
analysis of all these combinations, emphasizing the most useful ones of them,
would result in a better coverage of the presently very sparsely populated space
of replication strategies.

For example, the DARX framework [22] is aimed at providing adaptive fault-
tolerance for multi-agent software platforms. This infrastructure associates a
replication policy with each agent, and the replication style and degree are ad-
justed according to the importance of each agent with respect to the rest of the
application. This derives from a fundamental assumption that the importance
of an agent evolves over time and so do its fault-tolerance requirements.

An offline approach to selecting the appropriate trade-off between fault-
tolerance and real-time guarantees was adopted by the MARS project [23] and
its successor, the Time-Triggered Architecture (TTA) [24] which are based on
time-triggered protocols with strong temporal predictability. Fault-tolerance is
achieved in the TTA by using a static schedule (created at design time) that
allows enough slack for the system to be able to recover when faults occur. This
approach does not provide a generic solution because it delegates the responsibil-
ity for reconciling fault-tolerance and real-time requirements to the application
designer who establishes the static schedule.

7 Conclusions

Tunable software architectures are becoming important for distributed systems
that must continue to run, despite loss/addition of resources, faults and other
dynamic conditions. Versatile dependability is designed to facilitate the resource-
aware tuning of multiple trade-offs between an application’s fault-tolerance and
QoS requirements. We propose the concept of “knobs” as a convenient architec-
tural feature that helps designers reason about the system trade-offs and that



expresses the tuning process in terms of externally-observable properties of the
system. The architecture described in this paper provides abstract high-level
knobs for tuning system-level properties such as scalability and low-level knobs
for selecting implementation choices, such as the replication style. We detail
the implementation of such knobs based on empirical observations, and present
the expanded trade-off space covered by our current implementation of versatile
dependability.
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