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Abstract

Many problems that compilers want to solve are NP-Hard to solve optimally. Therefore,
compilers authors typically use fast ad-hoc methods that strike a trade-off between good code
quality and fast compile time. We investigated taking the decision on the trade-off out of the
compiler author’s hands: based on profile information or static estimates, the compiler will tilt
the balance in favour of code quality on hot segments of code, compensating by going for fast
compile time on cold segments. The particular problem we decided to attack was instruction
scheduling on the Itanium. We find inconclusive results, but we have an excuse: our machine
model was inaccurate.

1 Introduction

In several places, optimizing compilers want to solve NP-hard optimization problems. Typically,
this is done by having the compiler writer decide on a heuristic approach that, in practice, gives
good results (outputs fast code), while still compiling the code in a reasonable amount of time.

Our goal is to allow trading off time and code quality at compile time. That is, the compiler
itself may decide to spend longer — and get better code — on one part of the program than on
another. This allows two things: the user can decide to compile quickly during the development
phase, and spend a long time to get very good code for deployment; and the compiler can use
profile feedback to identify hot sections and optimize them well, while saving time on less critical
sections of code.

Two approaches that handle this notion well are anytime algorithms from the Al community,
and PTAS from the algorithms / operations research community. In an anytime algorithm, the
algorithm quickly finds a feasible solution, then conducts a search to find a better solution. When
it finds a better solution, it stores the solution, then resumes searching. At any time (hence the
name), the algorithm can be stopped and asked for its best solution so far.

A PTAS (polynomial-time approximation scheme) provides the user with a knob to turn: the
algorithm will give an answer provably within 1+€ of the optimum value, at a time cost of O(n*+1/€)
where ¢ depends on the problem. For example, if ¢ were 0, we might get a 2-approximation —
the solution would provably be within a factor of two of optimal — in linear time, and a 1.1-
approximation in O(n!%) time. Many, but not all, NP-hard optimization problems admit a PTAS.

1.1 Instruction scheduling

The problem we decided to study was scheduling instructions within a basic block, targeting the
IA-64 architecture (specifically, the Itanium processor) [4]. In Section 2, we discuss how we infer
that this problem is NP-Hard.

In basic block scheduling, the input is a set of instructions, a dependence graph between in-
structions, and a description of the processor. We draw an arc from instruction ¢; to instruction i



if 7o must be scheduled after 7;. Furthermore, we put a weight on the arc to denote how long we
must wait after ¢; has been issued before issuing 75. An arc may have zero length, in which case
i9 can be issued at the same time as ¢; but not before (this is often the case with anti and output
dependence). The task is to find, for each instructions, the time at which it should be issued such
that the time at which the last instruction finishes is minimized.

The description of the processor typically includes the issue width — the number of instructions
that can be simultaneously started — and a set of functional units. An instruction can only be issued
on a certain subset of the functional units: for instance, an add instruction cannot be processed
by a floating-point unit or a branch unit. We cannot issue more instructions at the same time-step
than the issue width allows, and we cannot issue more than one instruction per functional unit.

On IA-64, we have additional constraints. The compiler must output code as a list of 128-bit
bundles of three instructions. Furthermore, the bundle must match a template: for instance, we
can issue a memory instruction followed by two integer instructions, but we cannot issue a memory
instruction followed by two floating-point instructions. Some templates have stops between instruc-
tions that delimit the end of a region of instructions that the processor may issue concurrently.
We discuss the highlights of the Itanium processor and the constraints posed by the design of the
architecture, more extensively in Section 3.
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2 Related Work

Scheduling in the large is a well-studied problem and many books (indeed, theses) have been written
about various variants of scheduling. In the nomenclature of the field [1, 3], instruction scheduling is
closely related to a problem with parallel machines, precedence constraints, and where the objective
is to minimize the makespan. This we denote by the cryptic string P|prec|Cmax.

Parallel machines (P) means that we have multiple machines, which correspond to functional
units. Each job (instruction) has a time p;, which is the amount of time that job i spends on
machine . We can say that a job cannot use a particular machine by setting p;, to be very large.

Precedence constraints (prec) very directly map to the data precedence graph.

The makespan (Cpax) is the time at which the last job finishes. This is exactly what we want.

We only say “closely related” because the nomenclature does not include an easy model for
pipelining using parallel machines. That is, when we schedule instruction ¢ on machine p, machine
1 is unavailable until instruction ¢ is done. This is appropriate for non-pipelined machines but
misses the pipeline entirely.

Another closely related problem is the job-shop problem J|prec|Cpax. Here a “job” ¢ consists of
a list of operations O;; which must be done in series. Thus we can model each stage of a pipelined
functional unit as a machine, and an instruction that requires that functional unit will have one
operation per stage.

The job-shop model is much closer, but still not perfect. In particular, there is no way to specify



that an operation must be performed in the next cycle after the previous operation was performed.
For example, on most machines, one instruction cannot stop processing after the third stage of
the pipeline, let another instruction go through the pipeline, then resume processing in the fourth
stage. But the job-shop model allows this.

This all implies that instruction scheduling on a normal pipelined superscalar machine is at least
as hard as P|prec|Cpax or as J|prec|Cpax. But Lenstra et al [8, 9] showed that even P2||Cihax is
NP-Hard. That is, no polynomial-time algorithm exists to find the shortest schedule when there are
two machines and no precedence constraints — clearly an easier problem than instruction scheduling.
Furthermore, the job-shop scheduling even without precedence constraints cannot be approximated
better than 5/4 in polynomial time (assuming P # NP). That is, no polynomial-time algorithm
can guarantee to produce a schedule that is less than 25% longer than optimal.

In light of these results, we can make the following two assertions:

e Scheduling on the TA-64 is NP-hard
e No PTAS exists for the problem.

Notice we say [A-64 rather than Itanium. This is because the hardness results hold when the
machine description is an input to the algorithm. It is conceivable (though, in our opinion, highly
unlikely) that due to the fact that the Itanium has exactly 9 functional units and issues instructions
in precisely the fashion described by Intel, there is a PTAS or even a polynomial-time algorithm
for scheduling. Consider that one could build a machine that implements the IA-64 architecture
but is neither pipelined nor superscalar and all instructions take one cycle. On such a machine,
finding the optimal schedule is trivial: any legal schedule is optimal.

However, the Itanium is not such a machine, thus it seems exceedingly likely that in fact
scheduling n instructions on it is NP-hard and cannot be approximated better than a constant
factor.

3 The Itanium Processor

The Itanium processor is the first of Intel’s Itanium Processor Family, based on the 1A-64 ISA
(instruction set architecture). In particular, this ISA gives the compiler considerable control over
the processor’s behavior - thus it is called an Explicitly Parallel Instruction Computer (EPIC).
EPIC was heavily influenced by VLIW (very long instruction word) computing, which is often
beneficial for parallel/vector computation. EPIC takes this idea to the next level, and allows the
compiler to identify independent instructions of all types - not just arithmetic operations.

To accomplish this, IA-64 uses the notion of instructions groups, which by definition are a set
of independent instructions. The processor may rearrange the instructions in an instruction group
in any order, and the compiler is responsible for ensuring correct output will always be generated.

TA-64 retains the concept of instructions, but introduces a new one: bundles. For the sake of
efficiency, IA-64 operations are encoded as a bundle. A bundle is 128 bits, composed of three 41-bit
instructions and a 5-bit template field. The template tells the processor what kind of instructions
are present. The processor uses this information to deliver instructions to appropriate functional
units.

To further confuse matters, there is not a direct correspondence between instruction type and
functional unit type. There are five instruction types: I (integer), F (floating point), M (memory),
B (branch), and L+X (used to encode longer immediate values). There are four types of functional
unit: integer, memory, floating point, and branch. These appear to match fairly well initially,



however, it turns out that some instructions can be executed on either a I or a M unit (these are
referred to as A-type instructions in some places in the literature, but are ignored in others).

As the template is only five bits, it cannot encode all possible bundle types. This is a very
strict limitation than cannot be ignored by the compiler. Furthermore, the template encodes where
instruction groups end. Thus, for a particular combination of instruction types, there are several
other possibilities that demarcate different groups. For example, the M M1 bundle can take one
of four forms: MMI, MMI ||, M || MI, M || MI ||. Each “||” represents a stop, which is Intel’s
name for the method of marking the end of an instruction group.

As stated above, the Itanium processor is the first implementation of the IA-64 architecture.
It has 128 integer and 128 floating-point registers (the minimum dictated by the ISA), and is an
in-order superscalar processor. It has two integer, two floating point, two memory, and three branch
units. However, only one of each type of unit is fully capable, and the others are more restricted
in exactly which instructions they can execute.

The Itanium processor will try to execute two bundles (i.e. six instructions) per clock cycle.
Instructions must be issued in order (i.e. instruction #2 will not issue before instruction #1,
regardless of stops). If an instruction cannot be issued because of resource limitations, the processor
stalls all remaining instructions. If the first bundle is completely issued, a new bundle is brought
in. In one clock cycle, the Itanium will only issue instructions from a single instruction group - i.e.,
a stop will always cause execution to stall until the next cycle, unless the stop occurs at the end
of a bundle (when it would have to wait for the next cycle anyway). The Itanium processor also
imposes further restrictions on which functional unit an instruction will be issued to based on the
instruction’s location within the bundle.

Obviously, all these complications must be considered if a compiler is to generate an optimal
schedule. However, incorporating all of them into a clean problem model proved to be difficult.
We consider a simplified model that takes into account some version of most constraints, and we
do optimal scheduling in this model. We describe this model in Section 5, and in Section 5.3 we
mention some of the major differences with respect to the true architecture.

4 Infrastructure

The Open Research Compiler (ORC) [7] is a tool for evaluating compiler advances for the Itanium
Processor Family. As an open source project, the entire source code is available, permitting any
optimization/improvement to be assessed. The current version of the compiler(2.1) is reasonably
advanced, with support for all basic optimizations (e.g., peephole, dead code elimination) as well as
some more advanced techniques (e.g., loop invariant code motion, inter-procedural optimization).
The compiler also takes makes use of many of the advanced features of the IA-64 architecture,
supporting if-conversion, predication, and control and data speculation.

With respect to instruction scheduling, ORC has two key features. First, scheduling occurs
in two phases - global scheduling before register allocation, and local scheduling after that. Local
scheduling is performed within a single basic block. Global scheduling occurs over regions, which
are series of basic blocks with one entry point but multiple exit points. The compiler determines
regions through code analysis and profiling information.

Profiling information is the second key feature to ORC’s scheduling. Support for profiling was
present throughout the compiler’s development, and is integrated well. Profiling is also a two-
phase process. First, the compiler instruments the binary, and when run, the program generates
profile information. The compiler then re-instruments the program, ensuring that profile feedback
is accurate in the presence of optimizations. A third compilation generates the final executable,



using the updated profile information.

5 Algorithm Description

As we discussed in  Section 1 and Section 2, we had originally planned to use a PTAS to solve
the instruction scheduling problem for Itanium processors, but we found no PTAS. Therefore we
formulated a branch and bound any-time algorithm for the problem, based on the original list
scheduling algorithm [10], modified to handle bundle constraints.

More formally, our model is the following: we have a set of machines M; a set of bundle
templates B, each of which is a vector of three elements of M; and a set of instructions I. Each
instruction ¢ that may execute on a subset of the machines. Instructions may have dependencies
on prior instructions (the dependency graph must be acyclic). With each dependency we associate
a positive integer latency. Finally, we have a time bound in seconds which limits the amount of
search we do: once the time is up, we return the solution we have (if we have no solution, we revert
to list scheduling to produce one).

In this model, where latencies are associated not with instructions but with arcs between in-
structions, minimizing the completion time of the last instruction is ill-defined. Therefore we declare
an instruction finished after it has spent the maximum latency of any of its dependents. We wish
to find a schedule that minimizes the total time to complete the execution of the set I. In this
model, that optimization criterion is equivalent to minimizing the start time of the last instruction
to start.

We note that our model is a significant simplification of the true behaviour of the architecture.
In particular, the bundling constraints and instruction issue constraints of the Itanium cannot
be expressed by a mere set of bundle templates, especially constraining them to be sets of three
machines. This issue is described in more detail in Section 5.3. It is a simple matter of programming
to properly model the machine behaviour: we simply need to replace the word “triple” by the term
“instruction group” and change how we check bundle constraints to match all the intricacies of the
processor. Sadly, simple does not translate to being quick to do.

5.1 Branch and Bound Algorithm

We now describe our branch and bound algorithm for the simplified model of the scheduling prob-
lem.

First, we introduce the notation used in describing the algorithm. An instruction group is a set
of three instructions, all ready, possibly including no-ops, that are scheduled into one bundle. R is
list of instructions that are ready to be scheduled, F' is the set of instructions currently in-flight, S
is the set of instructions that are yet to finish (i.e., all instructions in flight, on the ready list, and
not yet ready), and T is table of scheduled instructions, indexed by functional unit and time.

Figure 1 describes the basic list-scheduling algorithm that obey the bundle constraints. Here
is how we pick triples of ready operations: we pick an instruction, then we pick a bundle template
that allows that instruction, and then find two more ready instructions (or no-ops) that fit this
template.

The branch and bound algorithm is essentially a modification of this algorithm. At the highest
level, in the basic list scheduling algorithm, there are a few places where we simply choose the
first valid option we come to. To get an optimal schedule, we instead need to loop over all choices
(modulo pruning) at these points:

e deciding which instruction to process first from the ready queue.



SCHEDULE(R, F, S, T, time)

/* if all instructions are scheduled and completed */

while S is not empty
time = time + 1
/* update the sets of ready, unfinished, and in-flight instructions */
S «— S — finished(F,time)
F «— F — finished(F,time)
R — R+ ready(F, time)
/* find a valid set of ready instructions to schedule */
find a triple z of ready operations we can schedule obeying bundle and machine

constraints

T — T + {time, z}

Figure 1: The simple list-scheduling algorithm.

SCHEDULE(R, F, S, T, time)
/* if all instructions are scheduled and completed */
If S is empty
if time < best-time,
/* store the best schedule */
best-schedule =T
best-time = time
else
time = time 4+ 1
/* update the sets of ready, unfinished, and in-flight instructions */
S" «— S — finished(F,time)
F' «— F — finished(F,time)
R’ — R+ ready(F,time)
/* try scheduling each valid set of ready instructions */
for each triple z of ready operations we can schedule,
T — T+ {time, z}
SCHEDULE(R' — 2z, F' 4+ 2,5, T’ time)

Figure 2: The vanilla branch-and-bound algorithm.

e picking a bundle template.
e picking the additional ready instructions to fill out the bundle.

Figure 2 presents the branch and bound algorithm.
We observe that because bundle constraints only matter within a time step, we need to examine
those only when finding valid instruction group.

5.2 Optimizing the algorithm
We now discuss some of the major optimizations we implemented on the vanilla branch and bound

algorithm, to make it reasonably fast.

Data Structures The algorithm presented above is very sloppy about what data structures it
uses and how it replicates them. To produce a fast (or at least bearable) implementation, we needed
to be much more careful. Since our code was in C++, we used the data structures provided by the



STL. To avoid problems, we did not use the hash_set and hash map types which were inexplicably
left out of the C++ standard.

To tell whether an instruction is ready or finished, we need to be able to find when (and whether)
its successors were started. Therefore, we store T' as a map from an instruction to its start time.
Interpret T « T + {time, z} as being three insert calls.

A major cost of the algorithm is in replicating the data structures. In particular, S and T are
of size linear in the number of instructions being scheduled. Since we schedule at most a constant
number of instructions at each timestep, the search depth of the algorithm is itself linear. Therefore,
we store a quadratic amount of information. Furthermore, each recursive call (each node in the
search tree) does linear work copying S and T'.

S, F', and R hold a lot of information, all of which can be inferred from 7. However, we want
to find that information more quickly than by looping over T. We can do away with .S, which is
the largest of the three, replacing the test for S being empty by a test for F'U R being empty: if
there are no instructions in flight, and none ready, then we’re done scheduling.

We could also avoid replicating all of T" and instead change T" in place: add z before the recursive
invocation and remove it after. We did not do this because of time constraints.

We also make one final modification to the algorithm. Instead of storing the instructions that
are in flight, we can store the fringe: the instructions waiting on instructions in flight (that is, all
their predecessors are either in flight or have completed). By keeping the fringe ordered by when
each instruction becomes ready, we can very quickly — that is, in time O(|R’|) — update the ready
list at the start of each timestep. Furthermore, we can skip a timestep if no instruction is ready
and none becomes ready in that timestep.

Pruning Any speed-up in processing one node in the search tree is fairly minor: there are about n!
nodes to search in the tree (that is, schedules), so even if each node took constant time irrespective
of the number of instructions to schedule, things would be painfully slow.

First, we observe that any time a group of instructions can be scheduled together, it will be at
least as good as scheduling subsets of that group of instructions at that particular time. Therefore,
we track if a set of instructions can be scheduled with additional instructions from the current
ready list; if they can, we do not try to schedule that set of instructions.

Secondly, we note that in our model, it does not matter which bundle we choose — only that
there exists a bundle for the triple of instructions —, since there are no interactions between bundles.
In a truer model, we could not ignore this choice point.

Finally, we have so far not explained why the technique we used is called branch-and-bound.
Notice that in our algorithm, the first thing we do is compute the list scheduling solution. From
now on, if we can prove that any solution from the current state takes longer than the best solution
known so far, we can immediately stop processing the current state. In particular, we need not
bother making the recursive calls.

To determine whether we can prune, then, we need to quickly compute a lower bound for the
remaining time in the schedule. For reasons known only to Al researchers, such a function is called
an admissible heuristic.

For our heuristic we run a pre-processing phase in which we find, for each instruction, the
longest path from that instruction in the precedence graph. Since the precedence graph is a DAG,
the longest path is well-defined. The longest path is a lower bound for how long it will take to
finish the schedule after scheduling an instruction because bundle constraints, issue width, and
other considerations can only make the schedule longer.

As our heuristic value we consider the instructions in the ready list and in the fringe, and for



each we compute a lower bound on the finish time, taking into account that operations on the
fringe cannot be issued yet. We return the maximum finish time over all these instructions: each
finish time is a lower bound, so in particular, the largest is a lower bound (and it allows us to prune
more).

This heuristic speeds up the search dramatically at no cost in correctness. We have not devel-
oped any other heuristics, but if we did, we could compute all the heuristics, take the largest of
them, and use that as our lower bound. Or, if some heuristics were more expensive to calculate
than others, we could compute the cheap ones first, and only use the expensive ones if the cheap
ones were insufficient to prune.

Order Heuristics Since we prune based on the best solution found so far, it helps to find a good
solution early on. Therefore, we order the instructions in the ready list so that we will go down
promising branches early, in the hope that unpromising ones will be ignored long enough that we
will be able to prune them.

Here, we need not use an admissible heuristic: any number will do. Only time is affected by
the order in which we look at the branches of the search tree; correctness is not. We could even
order the branches randomly — and in fact this is often useful to do.

However, the heuristic value we computed above does put higher value on instructions more
likely to be a bottleneck, so we use it as our order heuristic. This means we behave like a textbook
list scheduler to find the first solution. In experiments, we’ve found that a prioritized list scheduler
does better than a list scheduler that picks instructions in arbitrary order; therefore, we believe
that the order heuristic actually does speed up the search.

5.3 Simplifications: how our model is incorrect

Perhaps the biggest of the simplifications of our model is in the bundles. The Itanium documenta-
tion [5, 6] describes bundles as triples of instruction-types that may execute simultaneously, along
with designated stop positions. We translate this into templates of machines by considering all com-
binations of machine types that execute each instruction-type in the bundle (modulo associativity),
and ignore the stops. We do not represent any additional functional unit constraints.

This abstraction ignores any inter-bundle machine constraints. In reality, however, there are
many inter-bundle machine constraints, and it is not just enough to examine the total number
of machines available at any particular time-step; the machine on which an instruction is issued
depends on the position of the instruction at that particular time, and whether it is the first or the
second bundle. For instance, only machine I7 may be used for an integer operation at the third
instruction of the second bundle issued at a particular time. If we have two consecutive bundles
b1 and be, such that the last instruction 7 in b9 is an integer instruction, and the machine 17 is not
available for 7 in by, the schedule splits the bundle by. However, if the bundle by is split there, then
that instruction ¢ becomes the first instruction in the next time-step, and thus would need to be
scheduled on machine 0.

A related simplification is that our model issues no more than 3 instructions at a time-step,
rather than the 6 done by the Itanium — that is, only one bundle is issued at any time step. Once
again, we did this because we do not represent inter-bundle machine constraints, but issuing up to
6 instructions at a time would require that we examine inter-bundle machine constraints, as well
as track the stops in the bundles. That would be necessary to figure out when/where a bundle
splits, so that we can figure out when a bundle is the first bundle in the instruction group, and
when it is the second bundle. To illustrate this in our previous example, if the bundle template for



the second bundle by was M M1, and there is more than one memory functional unit available for
by, the bundle by may be split only after the first M instruction. Therefore, there would only be
one memory functional unit available for a new bundle bg brought in after b; finishes in the current
time step. Thus the bundle b3 may need to be split as well — if that happens, the bundle b3 would
become the first bundle in the time step after that, and will choose different machines, and so on.

Thus, we would need to track when a particular bundle may be brought in, as well as what
machines are free at any particular time, and where a bundle can break. That would be the only
way to figure out how to issue 6 instructions at a time, optimally, predicting how the bundles might
split, and take into account the inter-bundle machine constraints. Also, in our current model, by
only issuing one bundle at a time, we also can ignore the limitations on the number of machines,
since any particular bundle has a set of instruction-types that can be scheduled together completely.
In Section 5.4, we discuss the ORC’s microscheduler and issues with using it to examine what sets
of instructions may be scheduled at a particular time.

Also, there are instruction types (L and X) which execute on different machine types when the
instructions have certain opcodes. We also ignore such constraints on the execution of instruction
types, and assume that all instructions of an instruction-type are equivalent, and may be issued on
the same set of machine-types. For the bundles that involved these instruction-types, we created
all possible combinations of the machine-types involved.

5.4 Microscheduler

As described in Section 1.1, the characteristics of instruction issue on the Itanium are complicated,
even though the Itanium is an in-order processor. Our initial understanding was that the processor
would issue all three instructions in a bundle simultaneously, and that it would issue two bundles
simultaneously if there were no data dependences between them. But this is false. Furthermore,
in a paper by some of the developers of ORC [2], the authors find a 4.5% speed-up on average
between an approach that largely ignored bundling constraints and a version that employed an
FSA to model the state of the instruction issue.

ORC separates the task of scheduling into two parts: the high-level scheduler, which decides
which instructions can be run simultaneously and tries to schedule the highest-priority ones first;
and the low-level or microscheduler, which tries to reorder the instructions within an instruction
group such that they will be run in parallel. The interaction is as follows: the high-level scheduler
repeatedly picks an instruction it would like to schedule in the current cycle. The microscheduler
then checks to see whether there is a template that allows issuing the instruction in the current
bundle, which may require some reordering within the current and previous bundle due to instruc-
tion issue rules (the first integer instruction issued in a CPU cycle always goes to 10, for instance).
If it cannot find one, the high-level scheduler tries another instruction. When the cycle is full, or
if the microscheduler refused all the instructions, the high-level scheduler moves to the next cycle
and commits the current bundle.

This is very much akin to the usual list scheduling. There, we can think of a low-level scheduler
merely checking whether there is an open machine for the new instruction in the current cycle; the
main difference is that the ORC microscheduler has a rather more complicated task than merely
finding a machine.

5.4.1 Our experiences with ORC’s microscheduler

We tried to get their microscheduler to work for us (rather than simply re-implementing it), but
we failed. The problem is that they wrote their microscheduler assuming it would be run forwards



exactly once per basic block, whereas we want to backtrack. Accordingly, they only allow a 1-
instruction look-ahead; after that, they start clobbering data structures throughout the back-end.
That is, we can ask whether an instruction will fit in the current cycle, but we cannot even ask
whether a set of instructions will all fit in the current cycle, much less decide on a set of instructions
for the current cycle, advance to the next cycle, then restore to a prior state.

The ORC microscheduler is also not optimal, which is a problem when looking for an optimal
schedule. It is, however, much better than our abstraction.

We do use the microscheduler in one way: The way we integrated our scheduler into ORC was
by making our scheduler be the “heuristic” that the ORC scheduler uses to prioritize. This often
ends up producing code that fits in far fewer cycles than what we predicted.

5.5 Memoization

In many search algorithms, the algorithm visits the same state repeatedly. To speed up the search,
we can store a memo with each state saying what the optimal solution is from that state. When
we enter a state, we first check to see whether there’s a memo, and we use the memo if it exists
rather than completing the search.

Memoization works well when the the number of states we actually visit is relatively small, and
when we visit those same states often. If we only visited each state exactly once, there would be
no win at all (instead, there would be a loss since making the memos and looking them up takes
time).

To apply memoization to our problem, we need to define what a state in the search space
is. One easy definition is that the state is the times of every instruction scheduled and the set of
instructions not scheduled (the latter is implicit from the former, so we need not store it). However,
under that definition we never repeat states in the algorithm above. Therefore, we use a different
definition: the state is:

1. the instructions in the fringe and their start times compared to the current time, and
2. the set of instructions not yet scheduled.

Similarly, the solution we store will be the start times of the instructions that define the state
(those in the fringe plus those not yet scheduled).

Using times relative to the current time, we can find some repetition. Consider the following
situation: 73 depends on both 7; and is. Furthermore, ¢; and i cannot be run in parallel, and
there are more instructions after i3. Let all latencies be one cycle. Suppose we start searching, and
decided to run i; first, then io. The state at this point has a fringe of i3 with a relative time of 41,
and all instructions other than ¢; and s are yet to be scheduled. We find an optimal solution for
the remaining instructions — this may take a long time — and store it in a memo. Now the search
will backtrack, and will try running i before i; to see whether we can get a better schedule this
way. Immediately, we will find the memo, and we will know that in fact no better schedule exists.
Just this one memo will have cut down on the search by about half.

Admittedly, that was a contrived example. For a lack of time, we did not integrate the memo-
ization code that we wrote into the search algorithm to test how useful it would be. We put a low
precedence on this feature because it’s not unlikely that the large size of the state would obviate
any benefit it gave us: the state is of size up to linear in the size of the basic block.
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6 Experimental Results

6.1 Experimental Setup

We evaluated our proposal with benchmarks compiled by the modified ORC. The benchmarks were
run on a machine with an Itanium 1 processor at 733MHz and 1GB of RAM, running RedHat 7.3.
A subset of the SPEC CPU2000 benchmark suite [11] was used - since the SPEC benchmarking
process includes a verification stage, it ensures that our compiler generates correct code. Also,
many researchers are familiar with the SPEC suite.

All benchmarks were run with profiling enabled. Our adaptive scheduling technique relies on
profile information, and as such it would be an unfair comparison if the base case could not take
advantage of the same information. Since ORC uses two profiling phases, three passes are required
for each test case we are investigating - two passes with the training input for profiling, and one
standard run with the reference input.

We compare three different scheduling techniques. The base case is the default ORC scheduler.
Second, we use our base list scheduler. Third, we present results for our final branch-and-bound
search algorithm. All compilation was performed at the highest optimization level (-O3) and with
inter-procedural analysis enabled.

We use the profiling information to generate a reasonable time limit for the branch-and-bound
scheduler. If a particular basic block accounts for much of the program’s runtime, we should try
longer to find the optimal solution. Our approach is to normalize the execution count of each
basic block, by dividing its execution frequency by the sum for all basic blocks. This fraction is
then multiplied by a constant to yield a value that is appropriate as a time limit (in seconds) for
searching.

Our time constraints prevented the use of more benchmarks from the SPEC2000 suite. For each
benchmark, nine runs must be performed: we test three scheduling algorithms, and each one takes
three runs. Furthermore, the runs that collect profiling information run very slowly. For example,
gzip takes as long with profiling on its training input as it does without profiling on its reference
input.

We include results for the gzip and mcf integer benchmarks, and for the art, equake, and lucas
floating point benchmarks. For reasons not clear to us, the list scheduler using our model failed to
compile the equake benchmark (the compiler crashed).

6.2 Results and Discussion

The run times of the optimized executables running the reference inputs are shown in Figure 3.
The standard ORC scheduler is usually faster than our schedulers, except for art, in which both of
our scheduling techniques are clearly superior. Just between our two schedulers, there is no clear
winner - they trade victory over different benchmarks.

The sizes in bytes of the compiled binaries are shown in the table in Figure 4 . Clearly, there is
not much variation between the different scheduling techniques: our schedulers produce code that
is about 0.1% smaller than ORC’s code.

Accordingly, there is no relationship between code size and performance. Sometimes the smallest
executable is fastest; other times it is slowest. Since the sizes are so similar, this result should not
be surprising. Most code is not run very frequently, so its size can change without greatly affecting
overall application performance

Relatively, our techniques perform considerably better with floating point applications than
with integer applications. This is due to different types and frequencies of operations in the two
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Figure 3: Graph showing the running times of the optimized executables from SPEC2000

Benchmark | Type ORC Priority List Branch-and-Bound
gzip int 156495 156039 155879
mcf int 53283 53251 53307
art fp 66835 66539 66667
equake fp 83487 - 82895
lucas fp 1721793 1721641 1721529

Figure 4: Sizes of the compiled binaries in bytes of various benchmarks of SPEC 2000
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application classes. Floating point code is more regular, and instructions often have long latencies,
which provide more opportunity for our schedulers to have an impact on performance. Conversely,
integer code is a mess of low latency operations. Considering the complex restrictions that the
Itanium processor uses to execute these instructions, a scheduler that has been tweaked for the
Itanium will be able to find a better solution. This is the main purpose of ORC’s microscheduler -
to take care of these nuances. Since our scheduler does not take this level of detail into consideration,
its code generation is not as good for integer applications.

It should be noted that our “optimal” scheduler sometimes does worse than the list scheduler.
This is because the machine model is quite wrong.

7 Conclusion

We've mentioned that no PTAS is available (and likely none exists) for instruction scheduling
on TA-64. However, this does not mean that the approach would not work for some other hard
optimization problem in the compiler. Sadly, the ORC is ill-equipped for dealing with backtracking
search algorithms, or any algorithm that changes its mind, making it hard to implement such
algorithms in that framework. SUIF seems much better-equipped for such algorithms. We have no
experience with other research compilers.

What we can conclude from our experience with the Itanium is that, as had been noted by
other groups, the pipeline description, bundle constraints, and so on are critical to producing a
good schedule. In fact, the slowdown we see compared to ORC is on the order of the slowdown
they reported for using an overly naive machine description, and better in some cases. This means
that our experimental results are inconclusive.

Other essentially anecdotal evidence suggests that the branch-and-bound scheduler produces
a significantly better schedule in our model than does the list scheduling algorithm. In the one
program we tested in this way, the branch-and-bound scheduler produced basic blocks that (on a
machine that matched our model) ran in 3.70 cycles on average, whereas our list scheduler produced
code that ran in 4.41 cycles on average. This suggests that with a correct machine model, we should
have beaten the ORC scheduler.
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