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Abstract
Mochi, a new visual, log-analysis based debugging tool
correlates Hadoop’s behavior in space, time and vol-
ume, and extracts a causal, unified control- and data-
flow model of Hadoop across the nodes of a cluster.
Mochi’s analysis produces visualizations of Hadoop’s
behavior using which users can reason about and debug
performance issues. We provide examples of Mochi’s
value in revealing a Hadoop job’s structure, in optimiz-
ing real-world workloads, and in identifying anomalous
Hadoop behavior, on the Yahoo! M45 Hadoop cluster.

1 Introduction
MapReduce (MR) [7] is a programming paradigm and
framework introduced by Google for data-intensive
cloud computing on commodity clusters. Hadoop [9],
an open-source Java implementation of MapReduce, is
used by Yahoo! and Facebook, and is available on Ama-
zon’s pay-as-you-use EC2 cloud computing infrastruc-
ture. Debugging the performance of Hadoop programs
is difficult because of their scale and distributed na-
ture. Hadoop can be debugged by examining the local
(node-specific) logs of its execution. These logs can
be large, and must be manually stitched across nodes
to debug system-wide problems. Current Java debug-
ging/profiling tools (jstack, hprof) target program-
ming abstractions to help debug local code-level errors
rather than distributed problems across multiple nodes
[16]. In addition, these tools do not provide insights at
the higher level of abstraction (e.g. Maps and Reduces)
that is more natural to MR users and programmers. Sim-
ilarly, path-tracing tools [8] for distributed systems pro-
duce fine-grained views at the language rather than at the
MR abstraction.

Our survey of the Hadoop users’ mailing-list indi-
cates that the most frequent performance-related ques-
tions are indeed at the level of MR abstractions. We
examined the 3400 posts on this mailing list over a 6-
month period (10/2008 to 4/2009), and classified the
30-odd explicit performance-related posts2 (some posts

1This research was partially funded by the Defence Science &
Technology Agency, Singapore, via the DSTA Overseas Scholarship,
and sponsored in part by the National Science Foundation, via CA-
REER grant CCR-0238381 and grant CNS-0326453.

2As expected of mailing-lists, most of the 3400 posts were from
users learning about and configuring Hadoop (note that misconfigu-
rations can also lead to performance problems). We filtered out, and

had multiple categories) in Table 1. These posts fo-
cused on MR-specific aspects of Hadoop program be-
havior. The primary response to these posts involved
suggestions to use Java profilers, which do not capture
dynamic MR-specific behavior, such as relationships in
time (e.g., orders of execution), space (which tasks ran
on which nodes), and the volumes of data in various pro-
gram stages. This motivated us toextract and analyze
time-, space- and volume-related Hadoop behavior.

The MR framework affects program performance at
the macro-scale through task scheduling and data distri-
bution. This macro behavior is hard to infer from low-
level language views because of the glut of detail, and
because this behavior results from the framework out-
side of user code. For effective debugging, tools must
expose MR-specific abstractions. This motivated us to
capture Hadoop distributed data- and execution-related
behavior that impacts MR performance. Finally, given
the scale (number of nodes, tasks, interactions, dura-
tions) of Hadoop programs, there is alsoa need to visual-
ize a program’s distributed executionto support debug-
ging and to make it easier for users to detect deviations
from expected program behavior/performance. To the
best of our knowledge, Mochi is the first debugging tool
for Hadoop to extract (from Hadoop’s own logs) both
control- and data-flow views, and to then analyze and vi-
sualize these views in a distributed, causal manner. We
provide concrete examples where Mochi has assisted us
and other Hadoop users in understanding Hadoop’s be-
havior and unearthing problems.

2 Problem Statement

Our previously developed log-analysis tool, SALSA
[18], extracted various statistics (e.g., durations of Map
and Reduce tasks) of system behavior from Hadoop’s
logs on individual nodes. Mochi aims to go beyond
SALSA, to (i) correlate Hadoop’s behavior in space,
time and volume, and (ii) extract causal, end-to-end, dis-
tributed Hadoop behavior that factors in both computa-
tion and data across the nodes of the cluster. From our
interactions with real Hadoop users (of the Yahoo! M45
[11] cluster), a third need has emerged: to provide help-
ful visualizations of Hadoop’s behavior so that users can
reason about and debug performance issues themselves.

Goals.Mochi’s goals are:

focused on, the 30-odd posts thatexplicitly raised a performance issue.
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Category Question Fraction
Configuration How many Maps/Reduces are efficient? Did I set a wrong number of Reduces? 50%
Data behavior My Maps have lots of output, are they beating up nodes in the shuffle? 30%
Runtime behavior Must all mappers complete before reducers can run? What is the performance impact of setting X?

What are the execution times of program parts?
50%

Table 1: Common queries on users’ mailing list

To expose MapReduce-specific behaviorthat results
from the MR framework’s automatic execution, that
affects program performance but is neither visible
nor exposed to user Map/Reduce code, e.g. when
Maps/Reduces are executed and on which nodes,
from/to where data inputs/outputs flow and from which
Maps/Reduces. Existing Java profilers do not capture
such information.
To expose aggregate and dynamic behaviorthat can
provide different insights. For instance, Hadoop sys-
tem views in time can be instantaneous or aggregated
across an entire job; views in space can be of individual
Maps/Reduces or aggregated at nodes.
To be transparentso that Mochi does not require any
modifications to Hadoop, or to the way that Hadoop
users write/compile/load their programs today. This also
makes Mochi amenable to deployment in production
Hadoop clusters, as is our objective.
Non-goals. Our focus is on exposing MR-specific as-

pects of programs rather than behavior within each Map
or Reduce. Thus, the execution specifics or correctness
of code within a Map/Reduce is outside our scope. Also,
Mochi does not discover the root-cause of performance
problems, but aids in the process through useful visual-
izations and analysis that Hadoop users can exploit.

3 Mochi’s Approach
MapReduce programs, or jobs, consist of Map tasks fol-
lowed by Reduce tasks; multiple identical but distinct in-
stances of tasks operate on distinct data segments in par-
allel across nodes in a cluster. The framework has a sin-
gle master node (running the NameNode and JobTracker
daemons) that schedules Maps and Reduces on multiple
slave nodes. The framework also manages the inputs
and outputs of Maps, Reduces, and Shuffles (moving
of Map outputs to Reduces). Hadoop provides a dis-
tributed filesystem (HDFS) that implements the Google
Filesystem [10]. Each slave node runs a TaskTracker
(execution) and a DataNode (HDFS) daemon. Hadoop
programs read and write data from HDFS. Each Hadoop
node generates logs that record the local execution of
tasks and HDFS data accesses.

3.1 Mochi’s Log Analysis

Mochi constructs cluster-wide views of the execution
of MR programs from Hadoop-generated system logs.
Mochi builds on our log-analysis capabilities to ex-
tract local (node-centric) Hadoop execution views [18].
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Figure 2:Swimlanes: detailed states: Sort workload

Mochi then correlates these views across nodes, and
also between HDFS and the execution layer, to con-
struct a unique end-to-end representation that we call a
Job-Centric Data-flow (JCDF), which is a distributed,
causal, conjoined control- and data-flow.

Mochi parses Hadoop’s logs3 based on SALSA’s [18]
state-machine abstraction of Hadoop’s execution. In its
log analysis, Mochi extracts (i) a time-stamped, cross-
node, control-flow model by seeking string-tokens that
identify TaskTracker-log messages signaling the starts
and ends of activities (e.g., Map, Reduce), and (ii) a
time-stamped, cross-node, data-flow model by seeking
string-tokens that identify DataNode-log messages sig-
naling the movement/access of data blocks, and by cor-
relating these accesses with Maps and Reduces running
at the same time. Mochi assumes that clocks are syn-
chronized across nodes using NTP, as is common in pro-
duction Hadoop clusters.

Mochi then correlates the execution of the TaskTrack-
ers and DataNodes in time (e.g. co-occurring Maps and
block reads in HDFS) to identify when data was read
from or written to HDFS. This completes the causal
path of the data being read from HDFS, processed in
the Hadoop framework, and written to HDFS, creating
a JCDF, which is a directed graph with vertices repre-
senting processing stages and data items, and edges an-
notated with durations and volumes (Figure 1). Finally
we extract all Realized Execution Paths (REPs) from the
JCDF graph–unique paths from a parent node to a leaf
node– using a depth-first search. Each REP is a distinct
end-to-end, causal flow in the system.

3Mochi uses SALSA to parse TaskTracker and DataNode logs. We
can extend this to parse NameNode and JobTracker logs as well.
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Figure 3:MIROS: Sort workload; (volumes in bytes)

Thus, Mochi automatically generates, and then cor-
relates, the cross-node data- and control-flow models of
Hadoop’s behavior, resulting in a unified, causal, cluster-
wide execution+data-flow model.

3.2 Mochi’s Visualization

Mochi’s distributed data- and control-flows capture MR
programs in three dimensions: space (nodes), time (du-
rations, times, sequences of execution), and volume (of
data processed). We use Mochi’s analysis to drive visu-
alizations that combine these dimensions at various ag-
gregation levels. In this section, we describe the form
of these visualizations, without discussing actual exper-
imental data or drawing any conclusions from the visu-
alizations (although the visualizations are based on real
experimental data). We describe the actual workloads
and case studies in §4.
“Swimlanes”: Task progress in time and space. In
such a visualization, the x-axis represents wall-clock
time, and each horizontal line corresponds to an exe-
cution state (e.g., Map, Reduce) running in the marked
time interval. Figure 2 shows a sample detailed view
with all states across all nodes. Figure 6 shows a sample
summarized view (Maps and Reduces only) collapsed
across nodes, while Figure 7 shows summarized views
with tasks grouped by nodes. Figure 5 showsSwimlanes
for a 49-slave node cluster.Swimlanesare useful in cap-
turing dynamic Hadoop execution, showing where the
job and nodes spend their time.
“MIROS” plots: Data-flows in space. MIROS (Map
Inputs, Reduce Outputs, Shuffles, Figure 3) visualiza-
tions show data volumes into all Maps and out of all Re-
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Figure 4:REPplot for Sort workload

duces on each node, and between Maps and Reduces on
nodes. These volumes are aggregated over the program’s
run and over nodes. MIROS is useful in highlighting
skewed data flows that can result in bottlenecks.
REP: Volume-duration correlations. For each REP
flow, we show the time taken for a causal flow, and the
volume of inputs and outputs, along that flow (Figure 4).
Each REP is broken down into time spent and volume
processed in each state. We use thek-means clustering
algorithm to group similar paths for scalable visualiza-
tion. For each group, the top bar shows volumes, and the
bottom bar durations. This visualization is useful in (i)
checking that states that process larger volumes should
take longer, and (ii) in tracing problems back to any pre-
vious stage or data.

4 Examples of Mochi’s Value
We demonstrate the use of Mochi’s visualizations (using
mainly Swimlanesdue to space constraints). All data
is derived from log traces from the Yahoo! M45 [11]
production cluster. The examples in § 4.1, § 4.2 involve
4-slave and 49-slave clusters, and the example in § 4.3
is from a 24-slave cluster.

4.1 Understanding Hadoop Job Structure

Figure 6 shows theSwimlanesplots from the Sort
and RandomWriter benchmark workloads (part of the
Hadoop distribution), respectively. RandomWriter
writes random key/value pairs to HDFS and has only
Maps, while Sort reads key/value pairs in Maps, and
aggregates, sorts, and outputs them in Reduces. From
these visualizations, we see that RandomWriter has
only Maps, while the Reduces in Sort take significantly
longer than the Maps, showing most of the work occurs
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Figure 5:Swimlanesplot for 49-node job for the Matrix-
Vector Multiplication; top plot: tasks sorted by node;
bottom plot: tasks sorted by time.

in the Reduces. TheREPplot in Figure 4 shows that a
significant fraction (≈ 2

3) of the time along the critical
paths (Cluster 5) is spent waiting for Map outputs to be
shuffled to the Reduces, suggesting this is a bottleneck.

4.2 Finding Opportunities for Optimization

Figure 7 shows theSwimlanesfrom the Matrix-Vector
Multiplication job of the HADI [12] graph-mining ap-
plication for Hadoop. This workload contains two MR
programs, as seen from the two batches of Maps and
Reduces. Before optimization, the second node and first
node do not run any Reduce in the first and second jobs
respectively. The number of Reduces was then increased
to twice the number of slave nodes, after which every
node ran two Reduces (the maximum concurrent permit-
ted), and the job completed 13.5% faster.

4.3 Debugging: Delayed Java Socket Creation

We ran a no-op (“Sleep”) Hadoop job, with 2400 idle
Maps and Reduces which sleep for 100ms, to character-
ize idle Hadoop behavior, and found tasks with unusu-
ally long durations. On inspection of theSwimlanes, we
found delayed tasks ran for 3 minutes (Figure 8). We
traced this problem to a delayed socket call in Hadoop,
and found a fix described at [1]. We resolved this issue
by forcing Java to use IPv4 through a JVM option, and
Sleep ran in 270, instead of 520, seconds.

5 Related Work
Distributed tracing and failure diagnosis. Recent
tools for tracing distributed program execution have fo-
cused on building instrumentation to trace causal paths
[3], infer causality across components [15] and networks
[8]. They produce fine-grained views at the language but
not MR level of abstraction. Our work correlates sys-
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tem views from existing instrumentation (Hadoop sys-
tem logs) to build views at a higher level of abstrac-
tion for MR. Other uses of distributed execution trac-
ing [2, 5, 13] for diagnosis operate at the language level,
rather than at a higher-level of abstraction (e.g. MR)
since they are designed for general systems.

Diagnosis for MR. [14] collected trace events
in Hadoop’s execution generated by custom
instrumentation– these are akin to language-level
views; their abstractions do not account for the volume
dimension which we provide (§3.2), and they do not
correlate data with the MR level of abstraction. [19]
only showed how outlier events can be identified
in DataNode logs; we utilize information from the
TaskTracker logs as well, and we build a complete
abstraction of all execution events. [17] diagnosed
anomalous nodes in MR clusters by identifying nodes
with OS-level performance counters that deviated
from other nodes. [18] demonstrated how to extract
state-machine views of Haodop’s execution from its
logs; we have expanded on the per-node state-machine
views in [18] by building the JCDF and extracting REPs
(§3.1) to generate novel system views.

Visualization tools. Artemis [6] provides a pluggable
framework for distributed log collection, data analysis,
and visualization. We have presented specific MR ab-
stractions and ways to build them, and our techniques
can be implemented as Artemis plugins. The “machine
usage data” plots in [6] resembleSwimlanes; REPshows
both data and computational dependencies, while the
critical path analysis in [6] considers only computation.
[4], visualized web server access patterns and the out-
put of anomaly detection algorithms, while we showed
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Figure 7: Matrix-vector Multiplication before optimiza-
tion (above), and after optimization (below)

system execution patterns.

6 Conclusion and Future Work
Mochi extracts and visualizes information about MR
programs at the MR-level abstraction, based on
Hadoop’s system logs. We show how Mochi’s analysis
produces a distributed, causal, control+data-flow model
of Hadoop’s behavior, and then show the use of the re-
sulting visualizations for understanding and debugging
the performance of Hadoop jobs in the Yahoo! M45 pro-
duction cluster. We intend to implement our (currently)
offline Mochi analysis and visualization to run online, to
evaluate the resulting performance overheads and ben-
efits. We also intend to support the regression testing
of Hadoop programs against new Hadoop versions, and
debugging of more problems, e.g. misconfigurations.
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