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Abstract had multiple categories) in Table 1. These posts fo-
) _ ) ) cused on MR-specific aspects of Hadoop program be-
Mochi, a new visual, log-analysis based debugging t00kayior. The primary response to these posts involved
correlates Hadoop's behavior in space, time and vol-ggqestions to use Java profilers, which do not capture
ume, and extracts a causal, unified control- and data-gynamic MR-specific behavior, such as relationships in
flow model of Hadoop across the nodes of a clusterijme (e.g., orders of execution), space (which tasks ran
Mochi’'s analysis produces visualizations of Hadoop’s 5, \which nodes), and the volumes of data in various pro-
behavior using which users can reason about and deb“%ram stages. This motivated usetract and analyze
performance issues. We provide examples of Mochi'§ime_7 space- and volume-related Hadoop behavior
value in revealing a Hadoop job's structure, in optimiz- 0 VR framework affects program performance at
ing real-world workloads, and in identifying anomalous o inacro-scale through task scheduling and data distri-
Hadoop behavior, on the Yahoo! M45 Hadoop cluster. ) vion  This macro behavior is hard to infer from low-
1 Introduction level language views because of the glut of detail, and
] ] ) because this behavior results from the framework out-
MapReduce (MR) [7] is a programming paradigm andgjge of user code. For effective debugging, tools must
framework introduced by Google for data-intensive exnose MR-specific abstractions. This motivated us to
cloud computing on commodity clusters. Hadoop [9], capture Hadoop distributed data- and execution-related
an open-source Java implementation of MapReduce, igehavior that impacts MR performanceinally, given
used by Yahoo! and Facebook, and is available on Amagye scale (number of nodes, tasks, interactions, dura-
zon's pay-as-you-use EC2 cloud computing infrastruc+jons) of Hadoop programs, there is atsoeed to visual-
ture. Debugging the performance of Hadoop programsze  program’s distributed executida support debug-
is difficult because of their scale and distributed na-ging and to make it easier for users to detect deviations
ture. Hadoop can be debugged by examining the IOCa1?rom expected program behavior/performance. To the
(node-specific) logs of its execution. These logs camegt of our knowledge, Mochi is the first debugging tool
be large, and must be manually stitched across nodeg, Hadoop to extract (from Hadoop’s own logs) both
to debug system-wide problems. Current Java debugeontrol- and data-flow views, and to then analyze and vi-
ging/profiling tools [ st ack, hpr of ) target program- g jize these views in a distributed, causal manner. We
ming abstractions to help debug local code-level errorg) qyide concrete examples where Mochi has assisted us

rather than distributed problems across multiple nodesng other Hadoop users in understanding Hadoop’s be-
[16]. In addition, these tools do not provide insights atpavior and unearthing problems.
the higher level of abstraction (e.g. Maps and Reduces)

that is more natural to MR users and programmers. Sim2  Problem Statement
(ice e-gtanecviens o e anguage rather har at QU1 Proviously developed log-analysis t0ol, SALSA
g guag @], extracted various statistics (e.g., durations of Map

MROabstractlon.f the Had ) iling-list indi and Reduce tasks) of system behavior from Hadoop’s
i urtﬁu:\/t(ra]y 0 tef a ootp usfers mallng—l 'f dm - logs on individual nodes. Mochi aims to go beyond
cates that the most frequent performance-related que SALSA, to (i) correlate Hadoop’s behavior in space,

tions are indeed at the level of MR abstractions.  Weyo o volume, and (i) extract causal, end-to-end, dis-
examined the 3400 posts on this mailing list over a 6-

month period (10/2008 to 4/2009), and classified thetrlbuted Hadoop behavior that factors in both computa-

30-0dd explicit performance-related gs(some osts tion and data across the nodes of the cluster. From our
plicit p P P interactions with real Hadoop users (of the Yahoo! M45
1This research was partially funded by the Defence Science &M] .Clust_er),.a third need has emerged: to provide help-
Technology Agency, Singapore, via the DSTA Overseas Scéfils ~ ful visualizations of Hadoop’s behavior so that users can
and sponsored in part by the National Science FoundatienC#-  reason about and debug performance issues themselves.
REER grant CCR-0238381 and grant CNS-0326453. . .
2As expected of mailing-lists, most of the 3400 posts were from Goals. Mochi’s goals are:
users learning about and configuring Hadoop (note that miggen
rations can also lead to performance problems). We filteredamat focused on, the 30-odd posts tleaplicitly raised a performance issue.




Category Question Fraction
Configuration How many Maps/Reduces are efficient? Did | set a wrong numbeedtges? 50%
Data behavior My Maps have lots of output, are they beating up nodes in to#lsR 30%
Runtime behavior| Must all mappers complete before reducers can run? What is therpence impact of setting X? 50%
What are the execution times of program parts?

Table 1: Common queries on users’ mailing list

To expose MapReduce-specific behavibat results
from the MR framework’s automatic execution, that
affects program performance but is neither visible
nor exposed to user Map/Reduce code, e.g. when
Maps/Reduces are executed and on which nodes,
from/to where data inputs/outputs flow and from which
Maps/Reduces. Existing Java profilers do not capture
such information.

To expose aggregate and dynamic behawioat can
provide different insights. For instance, Hadoop sys- -& ‘ ; ‘
tem views in time can be instantaneous or aggregated o 20 40 60 800
across an entire job; views in space can be of individual Times
Maps/Reduces or aggregated at nodes.

To be transparenso that Mochi does not require any
modifications to Hadoop, or to the way that Hadoop . .
users write/compile/load their programs today. This alsolvIOChI then correlates these views across nodes, and

makes Mochi amenable to deployment in productionaISO betwe_en HDFS and the execuho_n layer, to con-
Hadoop clusters, as is our objective. struct a unique end-to-end representation that we call a

Non-goals. Our focus is on exposing MR-specific as- Job—Centrlc. Data—ﬂow (JCDF)which is a distributed,
causal, conjoined control- and data-flow.

pects of programs rather than behavior within each Map Mochi parses Hadoop's Idﬂbased on SALSAS [18]
or Reducg. 'Thus, the executi.on spgcifics or Correcmesé:'tate-machine abstraction of Hadoop’s execution. In its
of cod_e within aM_ap/Reduce is outside our scope. Also109 analysis, Mochi extracts (i) a time-stamped, cross-
MOET' doesb nOt.g'SFOVﬁ rthe root—catuse ﬁf per;‘olrmancl%ode’ control-flow model by seeking string-tokens that
problems, but aids In the process through usefu V_'Suafdentify TaskTracker-log messages signaling the starts
izations and analysis that Hadoop users can exploit. and ends of activities (e.g., Map, Reduce), and (i) a
3 Mochi’'s Approach tim_e-stamped, cro_ss-m_)de, data-flow model by seeki_ng
i ) string-tokens that identify DataNode-log messages sig-
MapReduce programs, or jobs, consist of Map tasks foly,ing the movement/access of data blocks, and by cor-

lowed by Reduce tasks; multiple_ identical butdistinc.t in- relating these accesses with Maps and Reduces running
stances of tasks operate on distinct data segments in Palf the same time. Mochi assumes that clocks are syn-

allel across nodes in a cluster. The framework has a sinzp,onized across nodes using NTP, as is common in pro-
gle master node (running the NameNode and JobTrackej,ction Hadoop clusters. '

daemons) that schedules Maps and Reduces on multiple Mochi then correlates the execution of the TaskTrack-

slave nodes. The framework also manages the inputs. 214 pataNodes in time (e.g. co-occurring Maps and

apd outputs of Maps, dReduces, ‘an Shuﬁlgcjs (mO\éi,nQ)lock reads in HDFS) to identify when data was read
of Map outputs to Reduces). Hadoop provides a 'S¥rom or written to HDFS. This completes the causal

tr?buted filesystem (HDFS) that implements the Google ath of the data being read from HDFS, processed in
Fllesyst_em [10]. Each slave node runs a TaskTracke he Hadoop framework, and written to HDFS, creating
(execution) and a DataNode (HDFS) daemon. Hadoo JCDF, which is a directed graph with vertices repre-

programs read and write data from HDFS. Each Hadooﬁenting processing stages and data items, and edges an-
node generates logs that record the local execution otated with durations and volumes (Figure 1). Finally
tasks and HDFS data accesses. we extract all Realized Execution Paths (REPSs) from the
3.1 Mochi's Log Analysis JCDF graph—unique paths from a parent node to a leaf

. . . . node— using a depth-first search. Each REP is a distinct
Mochi constructs cluster-wide views of the execution .
end-to-end, causal flow in the system.

of MR programs from Hadoop-generated system logs.

Mochi builds on our .IOQ'analySis capa_bilitie; 10 €X-  3)pochi uses SALSA to parse TaskTracker and DataNode logs. We
tract local (node-centric) Hadoop execution views| [18]. can extend this to parse NameNode and JobTracker logs as well.

Detailed Swimlanes: Sort Workload (4 nodes)
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Figure 2:Swimlanesdetailed states: Sort workload
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Figure 1: Single instance of a Realized Execution Path (REBWing vertices and edge annotations
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Figure 3:MIROS Sort workload; (volumes in bytes)  duces on each node, and between Maps and Reduces on
nodes. These volumes are aggregated over the program’s
Thus, Mochi automatically generates, and then coryyn and over nodes. MIROS is useful in highlighting
relates, the cross-node data- and control-flow models ofkewed data flows that can result in bottlenecks.
Hadoop’s behavior, resulting in a unified, causal, clusterREp: \olume-duration correlations. For each REP
wide execution+data-flow model. flow, we show the time taken for a causal flow, and the
3.2 Mochi’s Visualization volume of inputs and outputs, along that flow (Figure 4).

o Each REP is broken down into time spent and volume
Mochi’s distributed data- and control-flows capture MR

in three di S q . q rocessed in each state. We useltmeans clustering
programs in three dimensions: space (nodes), time ( algorithm to group similar paths for scalable visualiza-
rations, times, sequences of execution), and volume (

. . . - \Mtion. For each group, the top bar shows volumes, and the
data processed). We use Mochi’s analysis to drive visu

lizati h bine th di . . bottom bar durations. This visualization is useful in (i)
alizations that combine these dimensions at various agéhecking that states that process larger volumes should

gregation _Ievells. !n this .sectlon,. we dgscrlbe the form,[ake longer, and (i) in tracing problems back to any pre-
of these visualizations, without discussing actual exper-

. . ) "~"vious stage or data.
imental data or drawing any conclusions from the visu- _
alizations (although the visualizations are based on reat Examples of Mochi’'s Value

experimental data). We describe the actual workloadgye gemonstrate the use of Mochi's visualizations (using
?nd_case S“jd'es in 84. o mainly Swimlanesdue to space constraints). All data
Swimlanes™: Task progress in time and space.In s derived from log traces from the Yahoo! M45 [11]
such a visualization, the x-axis represents Wa”'C|OCkproduction cluster. The examples i §14.1, § 4.2 involve

time, and each horizontal line corresponds to an exez_gjave and 49-slave clusters, and the example[in § 4.3
cution state (e.g., Map, Reduce) running in the markeds from a 24-slave cluster.

time interval. Figuré 2 shows a sample detailed view
with all states across all nodes. Figure 6 shows a sampl
summarized view (Maps and Reduces only) collapsedrigure[6 shows theSwimlanesplots from the Sort
across nodes, while Figure 7 shows summarized viewand RandomWriter benchmark workloads (part of the
with tasks grouped by nodes. Figure 5 sh@wémlanes Hadoop distribution), respectively.  RandomWriter
for a 49-slave node cluste8wimlanesre useful in cap-  writes random key/value pairs to HDFS and has only
turing dynamic Hadoop execution, showing where theMaps, while Sort reads key/value pairs in Maps, and
job and nodes spend their time. aggregates, sorts, and outputs them in Reduces. From
“MIROS” plots: Data-flows in space. MIROS (Map these visualizations, we see that RandomWriter has
Inputs, Reduce Outputs, Shuffles, Figute 3) visualiza-only Maps, while the Reduces in Sort take significantly
tions show data volumes into all Maps and out of all Re-longer than the Maps, showing most of the work occurs

4.1 Understanding Hadoop Job Structure
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bottom plot: tasks sorted by time. Figure 6: SummarizedSwimlanesplot for Ran-

domWriter (top) and Sort (bottom)

in the Reduces. ThBEPplot in Figurd 4 shows that a

significant fraction & %) of the time along the critical tem views from existing instrumentation (Hadoop sys-
paths (Cluster 5) is spent waiting for Map outputs to betem logs) to build views at a higher level of abstrac-
shuffled to the Reduces, suggesting this is a bottlenecktion for MR. Other uses of distributed execution trac-
ing [2,'5, 13] for diagnosis operate at the language level,
rather than at a higher-level of abstraction (e.g. MR)
FigureW shows th&wimlanedrom the Matrix-Vector since they are designed for genera| Systems_

Muttiplication job of the HADI [12] graph-mining ap- Diagnosis for MR. [14] collected trace events
plication for Hadoop. This workload contains two MR . Hadoop's execution generated by custom

i
programs, as seen from the two batches of Maps anfﬂstrumentation— these are akin to language-level

Reduces. Before optimization, the second node and f'r";i}iews; their abstractions do not account for the volume

node do not run any Reduce in the first and second joba-mension which we provide [(§3.2), and they do not
respectively. The number of Reduces was then increase rrelate data with the MR level oflabstractiodl.:[19]

to twice the number of slave nodes, after which everyonly showed how outlier events can be identified

node ran two Reduces (the maximum concurrent permity, DataNode logs; we utilize information from the
ted), and the job completed B3 faster.

TaskTracker logs as well, and we build a complete
4.3 Debugging: Delayed Java Socket Creation abstraction of all execution events.[ [17] diagnosed

We ran a no-op (“Sleep”) Hadoop job, with 2400 idle ar)omalous nodes in MR clusters by identifying npdes
Maps and Reduces which sleep for 100ms, to charactelith OS-level performance counters that deviated
ize idle Hadoop behavior, and found tasks with unusu{rom other nodes. [ [18] demonstrated how to extract
ally long durations. On inspection of ti&wvimlaneswe state-machine views of Haodop’s execution from |t§
found delayed tasks ran for 3 minutes (Figure 8). We!09S; we have expanded on the per-node state-machine
traced this problem to a delayed socket call in HadoopY1€Ws in [18] by building the JCDF and extracting REPs
and found a fix described at|[1]. We resolved this issue$3-1) to generate novel system views.
by forcing Java to use IPv4 through a JVM option, andVisualization tools. Artemis [6] provides a pluggable
Sleep ran in 270, instead of 520, seconds. framework for distributed log collection, data analysis,
and visualization. We have presented specific MR ab-
5 Related Work stractions and ways to build them, and our techniques
Distributed tracing and failure diagnosis. Recent can be implemented as Artemis plugins. The “machine
tools for tracing distributed program execution have fo-usage data” plots in [6] resemi@vimlanesREPshows
cused on building instrumentation to trace causal pathoth data and computational dependencies, while the
[3], infer causality across components [15] and networkscritical path analysis in [6] considers only computation.
[8]. They produce fine-grained views at the language buf4], visualized web server access patterns and the out-
not MR level of abstraction. Our work correlates sys- put of anomaly detection algorithms, while we showed

4.2 Finding Opportunities for Optimization
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