
Blind Men and the Elephant: Piecing Together Hadoop for Diagnosis

Xinghao Pan, Jiaqi Tan
DSO National Laboratories

Singapore
{pxinghao,tjiaqi}@dso.org.sg

Soila Pertet, Rajeev Gandhi, Priya Narasimhan
Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA, U.S.A.

{spertet,rgandhi}@ece.cmu.edu, priya@cs.cmu.edu

Abstract—Google’s MapReduce framework enables dis-
tributed, data-intensive, parallel applications by decomposing a
massive job into smaller (Map and Reduce) tasks and a massive
data-set into smaller partitions, such that each task processes a
different partition in parallel. However, performance problems
in a distributed MapReduce system can be hard to diagnose
and to localize to a specific node or a set of nodes. On the
other hand, the structure of large number of nodes performing
similar tasks naturally affords us opportunities for observing
the system from multiple viewpoints.

We present a “Blind Men and the Elephant” (Blimey)
framework in which we exploit this structure, and demonstrate
how problems in a MapReduce system can be diagnosedůů
by corroborating the multiple viewpoints. More specifically,
we present algorithms within the Blimey framework based on
OS-level performance counters, on white-box metrics extracted
from logs, and on application-level heartbeats. We show that
our Blimey algorithms are able to capture a variety of faults
including resource hogs and application hangs, and to localize
the fault to subsets of slave nodes in the MapReduce system.

In addition, we discuss how the diagnostic algorithms’
outcomes can be further synthesized in a repeated application
of the Blimey approach. We present a simple supervised
learning technique which allows us to identify a fault if it
has been previously observed.

Keywords-MapReduce, Hadoop, Failure Diagnosis

I. INTRODUCTION

Problem diagnosis is the science of automatically discov-
ering if, what, when, where, why and how problems occur in
systems and programs. In general, however, answering these
questions may not be easy. At times, it is not entirely clear
what constitues a problem or if one even exists. As systems
today become increasingly large and complex, programmers
and sysadmins have more trouble reasoning about their
systems. The vast amounts of data can also easily overwhelm
a human debugger.

MapReduce (MR) [1] is a programming framework and
implementation introduced by Google for data-intensive
cloud computing on commodity clusters. Hadoop [2], an
open-source Java implementation of MapReduce, is used
by Yahoo! and Facebook. Debugging the performance of
Hadoop programs is difficult because of their scale and
distributed nature. For example, Yahoo! Search Webmap is a
large production Hadoop application that runs on a 10,000+
core Linux cluster and produces data that is used in Yahoo!

Web search queries; the cluster’s raw disk is 5+ petabytes in
size [3]. Hadoop can be certainly debugged by examining
the local (node-specific) logs of its execution. These logs
can be overwhelmingly large to analyze manually, e.g., a
fairly simple Sort workload running for 850 seconds on a
5-node Hadoop cluster generates logs at each node, with a
representative node’s log being 6.9MB in size and containing
42,487 lines of logged statements. Furthermore, to reason
about system-wide, cross-node problems, the logs from
distinct nodes must be collectively analyzed, again manually.
Hadoop provides a simple web-based user interface that
reveals key statistics about job execution. However, the user
interface can be cumbersome to navigate when debugging
a performance problem in a large MapReduce system, not
to mention the fact that some kinds of problems might
completely escape (i.e., not be visible in) this interface.

In this paper, we propose to perform problem diagnosis for
Hadoop systems by corroborating and synthesizing multiple
distinct viewpoints of Hadoop’s behavior. Hadoop, as a
large distributed system, provides us with multiple sources
(e.g. OS-level performance counters, tasks’ durations as
inferred from application logs) and multiple locations (the
master node and large number of slave nodes) at which
the instrumentation may be performed. We corroborate the
instrumentated data from the different locations, and further
synthesize this corroboration to piece together a picture of
Hadoop’s behavior for the purpose of problem diagnosis.

More concretely, the contributions of this paper are:

• One set of diagnostic algorithms, each of which corrob-
orates the views from different instrumentation sources
at every node in the system.

• The diagnostic algorithms then provide a secondary
perspective into the MapReduce system. Treating the
different intermediate diagnostic algorithms, in turn,
as blind men, we synthesize the algorithms’ outcomes
to identify the kind of fault that has occurred in the
system.

To the best of our knowledge, this is the first research
result that aims to synthesize a variety of instrumentation
sources and intermediate diagnostic outcomes to produce
a holistic picture of Hadoop’s behavior that then enables
improved problem diagnosis.

II. PROBLEM STATEMENT

In contrast to traditional web enterprise systems, MapRe-
duce systems are composed of large numbers of machines
performing similar (though not necessarily identical) tasks.
We seek to exploit this structure to diagnose performance
problems in the MapReduce system.

A. Goals

There are two high-level goals in this paper. Firstly, we
seek to indict faulty slave nodes for a variety for faults.
Hadoop offers multiple locations at which we can instrument
and observe the system. Corroborating the instrumentated
data in the Blimey framework will allow us to indict faulty
slave nodes. We also show that by synthesizing the outcomes
of diagnostic algorithms, we can improve the localization
of the fault, and furthermore identify the fault if it were
previously seen.

Furthermore, in our diagnosis, we primarily target per-
formance problems that result in a Hadoop job taking
longer to complete than expected for a variety of reasons,
including external/environmental factors on the node (e.g.,
a non-Hadoop process consuming system resources to the
detriment of the Hadoop job), reasons not specific to user
MapReduce code (e.g., bugs in Hadoop), or interactions be-
tween user MapReduce code and the Hadoop infrastructure
(e.g., bugs in Hadoop that are triggered by user code). We
intentionally do not target faults due to bugs in user-written
MapReduce application code. We seek to have our diagnosis
approach work in production environments, requiring no
modifications to existing MapReduce-application code or
existing Hadoop infrastructure.

B. Non-goals

We do not aim to have fine-grained diagnosis, that is,
our diagnosis will not identify the root-cause, nor pinpoint
exactly the offending line of code at which the fault orig-
inated. We also do not aim to have complete coverage of
either faults or all possible instrumentation sources. While
we keep these ultimate goals of problem diagnosis in mind,
they are not the primary focus of this paper.

C. Assumptions

We assume that MapReduce applications and infrastruc-
ture are the dominant sources of activity on every node.
We assume that a majority of the MapReduce nodes are
problem-free and homogeneous in hardware.

III. OVERVIEW

A. Background: MapReduce and Hadoop

Hadoop [2] is an open-source implementation of Google’s
MapReduce [1] framework that enables distributed, data-
intensive, parallel applications by decomposing a massive
job into smaller (Map and Reduce) tasks and a massive
data-set into smaller partitions, such that each task processes

a different partition in parallel. A Hadoop job consists of
a group of Map and Reduce tasks performing some data-
intensive computation. Hadoop uses the Hadoop Distributed
File System (HDFS) to share data amongst the distributed
tasks in the system. HDFS splits and stores files as fixed-size
blocks (except for the last block). Hadoop uses a master-
slave architecture with a Hadoop cluster having a unique
master node and multiple slave nodes.

The master node typically runs two daemons: (1) the
JobTracker that schedules and manages all of the tasks
belonging to a running job; and (2) the NameNode that
manages the HDFS namespace by providing a filename-to-
block mapping, and regulates access to files by clients (the
executing tasks). Each slave node runs two daemons: (1)
the TaskTracker that launches tasks locally on its host, as
directed by the JobTracker, and then tracks the progress of
each of these tasks; and (2) the DataNode that serves data
blocks (on its local disk) to HDFS clients. Hadoop provides
fault-tolerance by using periodic keep-alive heartbeats from
slave daemons (from TaskTrackers to the JobTracker and
DataNodes to the NameNode). Each Hadoop daemon gen-
erates logs that record the local execution of the daemons
as well as MapReduce application tasks and local accesses
to data.

B. Synopsis of Blimey’s Approach

There can be multiple perspectives of Hadoop’s or a
MapReduce application’s behavior, e.g., from the operating-
system’s viewpoint, from the application’s viewpoint, from
the network’s viewpoint, etc. In the mythological story of
The Blind Men and the Elephant , each blind man arrives
at a different conclusion based on his limited perspective of
the elephant. It is only by corroborating all the blind men’s
perspectives that one can reconstruct a complete picture
of the elephant. MapReduce, as a large distributed system,
affords us many opportunities or instrumentation points to
observe the system’s behavior. Each view can be thought to
correspond to a “blind man”, and the MapReduce system
itself to the elephant. By mediating across and synthesizing
the different views, our approach, Blimey, acts as the wise
man and is able to diagnose problems in MapReduce. In
particular, we apply the Blimey approach at two different
levels: instrumentation points and diagnostic algorithms.
• We present a number of diagnostic algorithms, each of

which corroborates the views from different instrumen-
tation sources at each node in the system.

• The diagnostic algorithms then provide a secondary
perspective into the MapReduce system. Treating the
different diagnostic algorithms as the blind men, we
synthesize the algorithms’ outcomes to identify the
fault.

We produce two levels of diagnostic outcomes. First,
a collection of diagnostic algorithms (Section IV-C) each
identifies a set of slave nodes in the cluster that caused

the job to experience an increased runtime. Second, the
synthesis of the outputs of these algorithms (Section V),
given prior labelled training data, produces for each node,
the most likely fault from a class of previously seen faults
in the labelled training data (possibly no fault) present in
the cluster, and whether that node suffers from the identifed
fault.
[Blind Men #1] Views from instrumentation points. Large
distributed systems have different instrumentation points
from which the behavior and properties of the system can
be simultaneously observed. Often, these instrumentation
points can serve as somewhat redudnant or corroborating
(albeit distinct) views of the system. We exploit the parallel
distributed nature of MapReduce systems by applying the
Blimey framework to three distinct types of instrumentation
views of the system: (white-box) heartbeat-related metrics,
extracted from the Hadoop logs; (white-box) execution-state
metrics, extracted from the Hadoop logs; and (black-box)
performance and resource-usage metrics, extracted from the
operating system.
[Blind Men #2] Views from diagnostic algorithms. Faults
in a distributed system can manifest on different sets of
metrics in different ways. A given fault might manifest
only on a specific subset of metrics or, alternatively, might
manifest in a system-wide correlated manner, i.e., the fault
originates on one node but also manifests on on some metrics
on other (otherwise untainted) nodes, due to the inherent
communication/coupling across nodes. Thus, diagnosis al-
gorithms that focus on or analyze a selective set of metrics
will likely miss faults or in the case of cascading fault-
manifestations, wrongly indict nodes that exhibit any corre-
lated manifestation of the fault. By further synthesizing the
outcomes of our diagnostic algorithms, Blimey gains greater
insight into the distributed nature of the fault, allowing it to
identify the kind of fault as well as the true culprit node.

IV. DIAGNOSTIC APPROACH

This section describes the internals of the Blimey diag-
notic approach, including the instrumentation sources and
the diagnosis algorithms that analyze the corroborating
instrumentation-based views of the system.

A. High-Level Intuition

First, Hadoop uses heartbeats as a keep-alive mechanism.
The heartbeats are periodically sent from the slave nodes
(TaskTrackers and DataNodes) to the master node (Job-
Tracker and NameNode). Upon receipt of the hearbeat, the
master node sends a heartbeatResponse to the slave node, in-
dicating that it has received the heartbeat. Both the receipt of
heartbeats at the JobTracker and of the heartbeatResponses
at the TaskTrackers are recorded in the respective daemon’s
logs, together with the heartbeat’s unique id. We corroborate
these log messages in one of our diagnosis algorithms.
In addition, upon completion of tasks, the TaskTrackers

proactively send heartbeats to the JobTracker indicating the
task completion. As such, the rate at which a TaskTracker
sends heartbeats is indicative the workload it is experiencing.
In another of our diagnosis algorithms, we corroborate the
rate of heartbeats across the slave nodes.

Secondly, a job consists of multiple copies of Map and
Reduce tasks, each running the same piece of code, albeit
operating on different portions of the dataset. We expect
that the the Map tasks exhibit similar behavior with other
Map tasks, and that Reduce tasks exhibit similar behavior
with other Reduce tasks. More abstractly, since each Map
task Mi is an instance from the global set of all Map tasks,
any property P(Mi) of the Map task Mi can be treated as a
single sample from a global distribution of the property P
over all Map tasks. The same is true for Reduce tasks. In
particular, we are most interested in the completion times
of Map and Reduce tasks. The local distribution of task
completion times on each node is an instrumentation source,
and in the absence of faults, these times should corroborate
across all TaskTrackers.

Finally, we apply a similar principle to the observations
on each slave node’s OS-level performance counters. Since
each slave node executes a subset of the global set of tasks,
and the OS-level performance counters are dependent on the
slave node’s workload, its OS-level performance counters
can be thought of as a sampling of a global distribution of
OS-level performance counters too.

B. Instrumentation Sources

Black-box: OS-level performance metrics. On each node
in the Hadoop cluster, we gather and analyze black-box
(i.e., OS-level) performance metrics, without requiring any
modifications to Hadoop, the MapReduce applications or the
OS to collect these metrics. For black-box data collection,
we use sysstat’s sadc program [4] and a custom script
that samples TCP-related and netstat metrics to collect
16 metrics (listed in Table I) from /proc, once every second.
We use the term sadc-vector to denote a vector containing
samples of these 16 metrics, all extracted at the same instant
of time. We then use these sadc-vectors as our (black-box)
metrics for diagnosis.
White-box: Execution-state metrics. We collect the system
logs generated by Hadoop’s own native logging code from
the TaskTracker and DataNode daemons on each slave node.
We then use our Hadoop-log analysis tool (called SALSA
[5] and, its successor, Mochi [6]) to extract inferred state-
machine views of the execution of each daemon. The log-
analysis generates the durations of Map and Reduce tasks
executed on every node in the cluster as part of its output.
We then examine the durations of these execution states as
the metrics in our (white-box) diagnosis.
White-box: Heartbeat metrics. Heartbeat events are also
recorded in Hadoop’s native logs, and we extract these from
the master-node (JobTracker, NameNode) and the slave-node

Metric Description
user % CPU time in user-space
system % CPU time in kernel-space
iowait % CPU time waiting for I/O
ctxt Context switches per second
runq-sz # processes waiting to run
plist-sz Total # of processes and threads
ldavg-1 system load average for the last minute
bread Total bytes read from disk /s
bwrtn Total bytes written to disk /s
eth-rxbyt Network bytes received /s
eth-txbyt Network bytes transmitted /s
pgpgin KBytes paged in from disk /s
pgpgout KBytes paged out to disk /s
fault Page faults (major+minor) /s
TCPAbortOnData # of TCP connections aborted with data in

queue
rto-max Maximum TCP retransmission timeout

Table I
GATHERED BLACK-BOX METRICS (SADC-VECTOR).

(TaskTracker, DataNode) logs. Although both are derived
from white-box instrumentation sources, these heartbeat
metrics are orthogonal to the previously described execution-
state metrics.

For each heartbeat event between the master node and
a given slave node, a log entry is recorded in both the
master-node’s log and that specific slave-node’s logs, along
with with a matching monotonically increasing heartbeat
sequence-number. Each (master node, slave node) pair has
an independent, unique space of hearbeat sequence-numbers.
Each message is timestamped with a millisecond-resolution
timestamp. The master-node’s log first records a message as
it receives the heartbeat from the slave node, and the slave
node’s log then records a message as it receives the master
node’s acknowledgment/response for the same heartbeat.
Hadoop has an interesting implementation artefact where
the master node logs the slave node’s heartbeat message,
and then performs additional processing within the same
thread, before it acknowledges the slave. Analogously, the
acknowledgement/response is first processed by the slave
node before it is finally logged. This artefact is exploited,
as we explain in the next section.

C. Component Algorithms

1) Black-box Diagnosis:
Intuition.: Each slave node in the MapReduce system

executes a subset of the global set of Map and Reduce tasks.
We note that all MapReduce jobs follow the same temporal
ordering: Map tasks are assigned, and begin by reading input
data from DataNodes; upon completion, the MapOutput data
is Shuffled to the Reduce tasks; eventually the job terminates
after the Reduce tasks write their outputs to the DataNodes.
Since each slave node executes a subset of the global set of
Map and Reduce tasks, this temporal ordering is reflected
on the slave nodes as well. Hence, we expect that within

reasonably large windows of time, slaves nodes encounter
similar workloads that are reflective of the global workload
of the MapReduce system. In the language of Blimey, each
slave node is a “blind-man” who has a limited view of the
entire system.

The workload on each slave node at every instant of time
is represented by the black-box metrics that we collect on
the slave node. More abstractly, we can represent the global
workload of the MapReduce system as a global distribution
of black-box metrics. The observed black-box metrics on
each slave node is then a sampling of the global distribution
at the time of collection. Our black-box diagnosis algorithm,
then, corroborates the black-box views on slave nodes. A
slave node whose black-box view differs significantly from
the that of the other slave nodes indicted. We describe below
how we perform the comparison in practice.

Algorithm.: Our black-box algorithm consists of three
parts: collection, sampling and corroboration.

Firstly, we collect 14 metrics from /proc and 2 TCP-
related metrics from netstat I. This is done for every
slave node at a fixed time interval of 1 second. Each slave
node maintains a window of the 120 most recently collected
sadc- vectors.

A naive pair-wise comparison of each slave node’s sadc-
vectors with every other slave node’s sadc-vectors would
require O(n2) comparisons. Instead, to maintain scalability,
we maintain, on each slave node, an approximation of the
global distribution of black-box metrics. This approximate
global distribution is constructed by collecting samples of
sadc-vectors from random peer slave nodes.

The sadc-vectors on each slave node are then corrob-
orated against the approximate global distribution on that
node [7], resulting in O(n) total comparisons. Notice that
the diagnosis can be performed in a distributed fashion.
The work done by each slave node scales at a constant
O(1) with the number of slave nodes. An alarm for a
slave node is raised whenever the sadc-vectors on a slave
node differs significantly from the global distribution as
approximated on that slave node. An alarm is treated merely
as a suspicion; repeated alarms are needed for indicting a
node. Thus, we maintain an exponentially weighted alarm-
count for each slave node. The slave node is then indicted
when its exponentially weighted alarm- count exceeds a
predefined value.

2) White-box Diagnosis:
Intuition.: From our log-extracted state-machine views

on each node, we consider the durations of maps and
reduces. For each of these states of interest, we can compute
the histogram of the durations of that state on the given
node. As mentioned in Section IV-A, the durations for the
state on a given node is a sample of the global distribution
of the durations for that state across all nodes. The local
distribution of durations is hence an estimate of the global
distribution. According to our Blimey framework, the local

Figure 1. Heartbeat rates of 4 slave nodes throughout an experiment with
no fault injected.

distribution is a limited view of the global distribution, which
is a property of the MapReduce system. We corroborate
each local distribution against a global distribution, indicting
nodes with local distributions that are dissimilar from the
global distribution as being faulty. The intuition, as described
earlier, is that the tasks on each node (for a given job) are
multiple copies of the same code, and hence should complete
in comparable durations.

Algorithm.: First, for a given state on each node,
probability density functions (PDFs) of the distributions
of durations are estimated from their histograms using a
kernel density estimation with a Gaussian kernel to smooth
the discrete boundaries in histograms. Then, an estimate
of global distribution is built by summing across all local
histograms. Next, the difference between these distributions
from the global distribution is computed as the pair-wise
distance between their estimated PDFs. We repeat this
analysis over each window of time. As with the black-box
algorithm , we raise an alarm for a node when its distance
to the global distribution exceeds a set threshold, and indict
it when the exponentially weighted alarm-count exceeds
a predefined value. The pseudo-code for raising alarms is
presented above.

3) Heartbeat-based Diagnosis:
Heartbeat-rate Corroboration: In a Hadoop cluster,

each slave node sends heartbeats to the master node at the
same periodic interval across the cluster (this interval is
adaptively increased across all TaskTracker nodes as cluster
size increases). Hence, in the absence of faulty conditions,
the same heartbeat rate (number of heartbeat messages
logged per unit time) should be observed across all slave
nodes (see Section IV-A). The heartbeat-rate is computed
by smoothing over the discrete event series of heartbeats
into a continuous time-series using a Gaussian kernel. Figure
1 shows the heartbeat rates of 4 slave nodes through an
experiment with no fault injected. These heartbeat rates
are then compared across slave nodes, by computing the
difference between the rates and the median rate.

Heartbeat Propogation Delay: The Heartbeat Propa-
gation Delay is the difference between the time at which a
received heartbeat is logged at the JobTracker, and at which
the received acknowledgement is logged at the TaskTracker
for the same heartbeat. This delay includes both the network
propagation delay, and the delay caused by computation oc-
curring in the same thread as that for handling the heartbeat
at both the JobTracker and TaskTracker. This difference in
timestamps, however, is subject to clock synchronization and
clock drift. We account for these differences by performing a
local linear regression on the timestamp differences against
time. If the true propagation delay is almost constant, the

Figure 2. Residual heartbeat propagation delay of 4 slave nodes throughout
an experiment with injected hang2051.

residuals of our local linear regression would be almost
zero. On the other hand, if a heartbeat has a large residual
heartbeat propagation delay, then either the heartbeat is
anomalous compared to other heartbeats from the same
TaskTracker, or there is a large variation in the true heartbeat
propagation delay. Both cases are indicative of problems in
the MapReduce system. Thus, we indict nodes for which
there is a large average residual heartbeat propagation delay.

Figure 2 shows the residuals obtained from the local linear
regression on timestamp difference against log message
time. In this particular experiment, we injected hang2051, a
JobTracker hang (see Table II). We observe that before the
fault is triggered, the residuals are mostly less than 100ms.
After the fault was triggered, the residuals increased to about
±1500.

V. SYNTHESIZING VIEWS: “RECONSTRUCTING THE
ELEPHANT”

Different faults manifest differently on different metrics,
resulting in different outcomes from our diagnostic algo-
rithms. A particular fault may or may not manifest on a
particular metric, and the manifestation may be correlated
to varying degrees. Each of our diagnostic algorithms thus
acts as a “blind-man” to give us a different perspective into
the fault’s effect on the MapReduce system. By synthesizing
these perspectives, it is possible to identify the particular
fault. More specifically, given a cluster, we would like to
know, for each node, if it is faulty, and if so, which of the
previously known faults it most closely resembles.

To this end, we represent each node by the diagnostic
statistics that are generated by the algorithms. The diagnostic
statistic for both our black-box and white-box algorithms is
the exponentially weighted alarm-count, for the heartbeat
rate corroboration algorithm it is the difference between
the node’s heartbeat rate and the median rate, and for
the heartbeat propagation delay algorithm it is the sum of
residuals. For each node, we construct a vector consisting
of the diagnostic statistics for each algorithm, and also the
average of the diagnostic statistics across all other nodes
in the cluster for each algorithm. The former captures the
ability of the diagnostic algorithms to indict the faulty
node, whereas the latter captures the degrees to which each
fault manifests in a correlated manner on the diagnostic
algorithms.

Using this representation, we are able to build classifiers
for the faults. In particular we chose to use decision trees as
our classifiers. Note, however, that it is possible to use other
types of classifiers, and while decision trees tend not to have
the best prediction errors, they have the added advantage of
being easily understood, and reflect the natural manner in
which human operators identify problems.

Figure 3. True positive and false positive rates for faults on slave nodes,
on 10 slaves cluster.

Figure 4. True positive and false positive rates for faults on slave nodes,
on 50 slaves cluster.

VI. EVALUATION AND EXPERIMENTATION

A. Testbed and Workload

We analyzed system metrics from Hadoop 0.18.3 running on
10- and 50-node clusters on Large instances on Amazon’s
EC2. Each node had the equivalent of 7.5 GB of RAM and
two dual-core CPUs, running amd64 Debian/GNU Linux
4.0. Each experiment consisted of one run of the GridMix
workload, a well-accepted, multi-workload Hadoop bench-
mark. GridMix models the mixture of jobs seen on a
typical shared Hadoop cluster by generating random input
data and submitting MapReduce jobs in a manner that
mimics observed data-access patterns in actual user jobs
in enterprise deployments. The GridMix workload has
been used in the real-world to validate performance across
different clusters and Hadoop versions. GridMix comprises
5 different job types, ranging from an interactive workload
that samples a large dataset, to a large sort of uncompressed
data that access an entire dataset. We scaled down the size
of the dataset to 2MB of compressed data for our 10-
node clusters and 200MB for our 50-node clusters to ensure
timely completion of experiments.

B. Injected Faults

We injected one fault on one node in each cluster to
validate the ability of our algorithms at diagnosing each
fault. The faults cover various classes of representative real-
world Hadoop problems as reported by Hadoop users and
developers in: (i) the Hadoop issue tracker [8] from October
1, 2006 to December 1, 2007, and (ii) 40 postings from the
Hadoop users’ mailing list from September to November
2007. We describe our results for the injection of the seven
specific faults listed in Table II.

VII. RESULTS

A. Diagnostic algorithms

1) Slave node faults: We evaluated our diagnostic algo-
rithms’ performance at detecting faults by using true positive
and false positive rates across all runs for each fault injected
on a slave node, and for clusters of sizes of 10 and 50 slave
nodes. A slave node with an injected fault that is correctly
indicted is a true positive, while a slave node without an
injected fault that is incorrectly indicted is a false positive.
Thus, the true positive (TP) and false positive (FP) rates are

computed as:

T P =
faulty nodes correctly indicted

nodes with injected faults

FP =
nodes without faults incorrectly indicted

nodes without injected faults

Figures 3 and 4 show the TP and FP rates of the algo-
rithms for a 10 and 50 slave node cluster respectively.
The bars above the zero line represent the TP rates, and
the bars below the zero line respresent the FP rates for
each fault. Each group of 12 bars (6 above, 6 below
zero line) show the TP and FP rates for a particular
algorithm and instrumentation source. “WB_Reduce” and
“WB_Map” are the diagnostic algorithms that corroborate
Reudce and Map tasks’ durations across the slave nodes,
respectively. “HB_rate” and “HB_propagation” refer to the
two hearbeat-based diagnostic algorithms that corroborate
heartbeat rates across TaskTrackers, and heartbeat propa-
gation delay between TaskTrackers and JobTrackers. The
“BlackBox” algorithm, as previously described, corroborates
OS-level performance counters across physical slave nodes.

From Fig 3 and 4, we observe that every fault is de-
tected (with TP > 0.65) by at least one algorithm. In the
case of resource- related faults (cpuhog, diskhog, pktloss5,
pktloss5), our black-box algorithm has high TP rates of at
least 0.83. BlackBox is also able to detect hang1036, but not
hang1152 and hang2080. As hang1036 occurs in the Map
task, an idle period results where the Reduce tasks block
on waiting for output from the Map tasks. On the other
hand, hang1152 and hang2080 occur in the Reduce tasks,
so the slave node is able to continue consuming resources
for execution of Map tasks, masking the hangs from the
black-box point of view. Not suprisingly, the white-box
algorithm WB_Map based on Map tasks’ durations capture
hang1036, and the algorithm WB_Reduce based on Reduce
tasks’ durations capture both hang1152 and hang 2080. The
algorithm HB_rate detects most faults, except pktloss5, and
the algorithm HB_propagation is most effective at detecting
resource-related faults. Since heartbeat rate is a reflection of
workload, we expect HB_rate to detect any fault that may ad-
versely affect workload. On the other hand, HB_propagation
targets a specific operation in the application: the sending of
a heartbeat response from the JobTracker to the TaskTracker.
The application hangs do not adversely affect this operation
and are thus not detected, whereas the resource-related faults
affect almost all operations in the system and are thus
detected by HB_propagation.

We notice that pktloss5 is not sufficiently severe and can
be eventually overcome by TCP’s retransmissions. Thus,
it fails to be detected by almost all algorithms (except
BlackBox which explicitly tracks TCP-related metrics, and
HB_Propagation, which targets a network-dependent opera-
tion). On the other hand, pktloss50 is sufficient severe that it
affects the slave node’s abiltiy to communicate and operate

[Source] Reported Failure [Fault Name] Fault Injected
[Hadoop users’ mailing list, Sep 13 2007] CPU bottleneck resulted from
running master and slave daemons on same machine

[CPUHog] Emulate a CPU-intensive task that consumes 70% CPU
utilization

[Hadoop users’ mailing list, Sep 26 2007] Excessive messages logged
to file during startup

[DiskHog] Sequential disk workload wrote 20GB of data to filesystem

[HADOOP-2956] Degraded network connectivity between DataNodes
results in long block transfer times

[PacketLoss5/50] 5%,50% packet losses by dropping all incoming/out-
coming packets with probabilities of 0.01,0.05,0.5

[HADOOP-1036] Hang at TaskTracker due to an unhandled exception
from a task terminating unexpectedly. The offending TaskTracker sends
heartbeats although the task has terminated.

[HANG-1036] Revert to older version and trigger bug by throwing
NullPointerException

[HADOOP-1152] Reduces at TaskTrackers hang due to a race condition
when a file is deleted between a rename and an attempt to call
getLength() on it.

[HANG-1152] Simulated the race by flagging a renamed file as being
flushed to disk and throwing exceptions in the filesystem code

[HADOOP-2080] Reduces at TaskTrackers hang due to a miscalculated
checksum.

[HANG-2080] Simulated by miscomputing checksum to trigger a hang
at reducer

[HADOOP-2051] Hang at JobTracker due to an unhandled exception
while processing completed tasks.

[HANG-2051] Revert to older version and trigger bug by throwing
NullPointerException

Table II
INJECTED FAULTS, AND THE REPORTED FAILURES THAT THEY SIMULATE. HADOOP-XXXX REPRESENTS A HADOOP BUG DATABASE ENTRY.

Figure 5. Alarm rates for faults on master nodes, on 10 slaves cluster.

Figure 6. Alarm rates for faults on master nodes, on 50 slaves cluster.

normally. All our algorithms detect, to varying TP rates,
pktloss50. The severeness of pktloss50 also affect other slave
nodes that block on reading or sending data to the faulty
slave node, explaining the generally higher FP rates for
pktloss50.

2) Master node faults: As our diagnostic algorithms
never explicitly indict the master node, it would be mean-
ingless to discuss TP and FP rates for master node failures.
Instead, we compute the alarm rate, that is, the proportion
of slave nodes that were indicted by the algorithm:

alarm =
of indicted slave nodes

of slave nodes
Figure 5 and 6 show the alarm rates for the 10 slave cluster
and the 50 slave cluster respectively. Note that the fault “con-
trol” is not actually a fault; it refers to control experiments
where we did not inject any fault into the system. We also
used the control set to determine our thresholds. Specifically,
we set the thresholds for each algorithm such that the alarm
rates in the control sets would be 3% or less.

In the case of master node faults, the alarm rates only
serve to give a notion of the effect of the master node fault
on the slave nodes. An alarm rate significantly higher than
3% would indicate that the master node fault has a significant
effect on the slave nodes. Note, however, that the diagnostic
algorithms only indict slave nodes. As such, none of the
algorithms localize the fault correctly, much less identify it.
We fix this problem using the decision tree classification, as
shown in the following section.

Nevertheless, we observe that the alarm rates vary be-
tween algorithms and faults. In particular, the alarm rate
for hang2051 for HB_propagation is 1.0 on the 10-slave

cluster, and 0.73 on the 50-slave cluster. This is because
hang2051 is a master node hang, and HB_propagation is
our only algorithm that explicitly accounts for the master
node. All other algorithms corroborate views from multiple
slave nodes. This demonstrates the usefulness of multiple
types of corroboration.

B. Synthesizing outcomes of diagnostic algorithms

We generated a decision tree by using the rpart package
of the statistical software R. The decision tree generated is
shown in Fig 7.

The interior nodes (and the root) of the decision tree is
labeled with an inequality of the form X < t or X >= t,
where X is a component of the representation (see Section
V) and t is a threshold. X is of the form algorithm_location,
where algorithm can be any of BB, WB_Map, WB_Reduce,
HB_rate and HB_propagation (representing our black-box
algorithm, white-box algorithm corroborating Map dura-
tions, white-box algorithm corroborating Reduce durations,
heartbeat-based algorithm corroborating heartbeat rates, and
heartbeat-based algorithm corroborating heartbeat propaga-
tion delays). location can be either self or other, with the
former representing the diagnostic statistic of the algorithm
for the node in concern, and the latter representing the mean
of the diagnostic statistics of other nodes that were indicted
by the algorithm.

Labels on the leaves have the form of fault:suffix, where
fault indicates the most likely fault that occurred in the
system; and a suffix of m indicates the fault occurred at
the master node, s(+) indicates that the fault occurred on
the slave node in concern, and s(-) indicates that the fault
occurred on some slave node, but not on the node in concern.

Using the decision tree to classify the fault on a node
would involve traversing the tree from root to leaf, following
the left branch whenever the inequality at an interior node
(or the root) evaluates to true, and the right branch otherwise.

Figure 7. Decision tree, classifies faults by the outcomes of the diagnostic algorithms.

Figure 8. Confusion matrix of fault classification. Each row reprsents
a class of faults, and each column represents the classification given.
Lighter shades indicate the actual fault was likely to be given a particular
classification.

The labels at the leaves indicate whether the node in concern
was faulty, and the fault that was most likely, among the
known faults, to have occurred in the system.

In addition to merely visualizing the decision tree, we also
evaluated the ability of our classification technique by using
a N-fold cross- validation method. We randomly partitioned
our experiments into N subsets, and classified the data in
each subset using a decision tree trained on the remaining
N−1 subsets. We chose N = 296 for our evaluation, as we
had 296 experiments.

Fig 8 shows a confusion matrix of our classification
results. Each row reprsents an actual class of faults, and each
column represents the classification given by the decision
tree. A cell in row i, column j would hold the proportion
of nodes that were actually of class i, and were given the
classification j by the decision tree. Lighter (less red) shades
correspond to higher values. A perfect confusion matrix
would have a lightly shaded diagonal and dark shades at
all other non-diagonal cells.

Our confusion matrix shows that for most of the classes,
we are able to achieve high classification accuracy, with a
few exceptions. These exceptions are discussed in greater
detail in [7].

VIII. RELATED WORK

A. Diagnosing Failures and Performance Problems

[9] is the most similar to our work; Cohen et al. build
signatures of the state of a running system by summarizing
system metrics. These signatures are similar to our char-
acterization of known performance problems, however our
characterizations are based on the intermediate outputs of
component diagnosis algorithms, and they serve to synthe-
size algorithms, while the signatures in [9] are built directly
on observed system metrics. [10] built signatures of stan-
dalone applications using detailed system call information,
and would need to be augmented with significant network
tracing mechanisms and causal correlation across nodes to
work with a distributed system such as MapReduce. [11],
[12] use path-based techniques to diagnose failures; [11]
detects anomalously shaped paths (e.g. missing or additional
elements) while [12] focused on accurately extracting causal
paths. Both techniques were demonstrated with multi-tier
Internet service systems, where paths for different requests
can take on different shapes, so that path shape differences
can highlight problems. However, shapes of processing paths
in MapReduce are generally homogeneous. Thus, traditional

path-based techniques will not be effective at diagnosing
performance problems in MapReduce.

B. Diagnosing MapReduce Systems

Current techniques for diagnosing problems in MapRe-
duce systems have examined only individual sources of
instrumentation, while we have taken a holistic approach
to utilize multiple information sources. [13] examined de-
tailed causal network trace data generated using custom
instrumentation and identified simple faults such as a slow
disk by examining latencies along processing paths; these
are similar to our white-box instrumentation, although our
approach does not require the invasive instrumentation that
[13] used. [14] considered Hadoop’s logs as well, although
they focused on only DataNode logs and only considered
error events as opposed to the processing events which we
considered. Consequently, we have been able to diagnose a
larger range of faults than either work. [5], [15] constitute
our prior work.

C. Instrumentation Tools

Magpie [16] enables causal tracing of request flows with
attributed resource usage for each request, by using minimal
programmer-specified program structure and inserted instru-
mentation. Unlike [16], our approach does not require any
modification to the target application, namely, Hadoop. Also,
[16] demonstrated anomaly detection by identifying previ-
ously unobserved behaviors. However, this is not possible in
a MapReduce system which allows for arbitrary user code.

[17] provides causal network request tracing via inserted
instrumentation into the various communications layers; this
represents an additional data source which can be included
in our Blimey framework to enhance the robustness and fault
coverage of our diagnosis.

IX. CONCLUSIONS

A. Conclusion

We have presented the “Blind Men and Elephant” frame-
work, and described how this approach is useful for fault
diagnosis in a large parallel, distributed system like MapRe-
duce. In particular, we have presented black-box, white-
box, and heartbeat-based diagnostic algorithms within the
Blimey framework, and demonstrated that by corroborating
multiple instrumentation points of the system, one can iden-
tify suspect slave nodes. Further, in a repeated application
of the Blimey approach, we show that the synthesis of the
diagnostic algorithms’ outcomes can aid the identify of the
fault and localize the fault to the correct master or slave
node.

B. Future work
An ongoing research aims to move the techniques pre-

sented in this thssis online. This requires us to provide real-
time tools to debug a live system, and this will be done using
the ASDF framework [18]. It also requires that we can run
our techniques in an incremental fashion. This can be easily
done for the diagnostic algorithms by using finite windows
or exponential weights.

To further increase the value of the tool to sysadmins, we
need to present visualizations of the raw instrumentation data
as well as the output from our algorithms, which respectively
represent the primary and secondary viewpoints of Hadoop’s
behavior. Oftentimes it is easily to understand a visual, rather
than textual, representation.

We are also looking to increase our coverage of instru-
mentation sources. We would like to incoperate X-trace or
other path-based instrumentation. Corroboration of different
instrumentation sources could possibly lead to other insights
and algorithms in the Blimey framework.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” in USENIX Symposium on Op-
erating Systems Design and Implementation, San Francisco,
CA, Dec 2004, pp. 137–150.

[2] T. A. S. Foundation, “Hadoop,” 2007, http://hadoop.apache.
org/core.

[3] Y. D. Network, “Yahoo! launches world’s largest hadoop
production application (hadoop and distributed computing at
yahoo!),” Feb 2008, http://developer.yahoo.net/blogs/hadoop/
2008/02/yahoo-worlds-largest-production-hadoop.html.

[4] S. Godard, “SYSSTAT,” 2008, http://pagesperso-orange.fr/
sebastien.godard.

[5] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan,
“Salsa: Analyzing logs as state machines,” in Workshop on
Analysis of System Logs, San Diego, CA, Dec 2008.

[6] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan,
“Mochi: Visual Log-Analysis Based Tools for Debugging
Hadoop,” in First Workshop on Hot Topics in Cloud Com-
puting, May 2009.

[7] X. Pan, “Blind men and the elephant: Piecing together hadoop
for diagnosis,” Master’s thesis, Carnegie Mellon University,
2009.

[8] T. A. S. Foundation, “Apache’s JIRA issue tracker,” 2006,
https://issues.apache.org/jira.

[9] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly,
and A. Fox, “Capturing, indexing, clustering, and retrieving
system history,” in ACM Symposium on Operating Systems
Principles, Brighton, U.K., Oct 2005, pp. 105–118.

[10] X. Ding, H. Huang, Y. Ruan, A. Shaikh, and X. Zhang,
“Automatic software fault diagnosis by exploiting application
signatures,” in LISA’08: Proceedings of the 22nd conference
on Large installation system administration conference, 2008.

[11] E. Kiciman and A. Fox, “Detecting application-level failures
in component-based internet services,” IEEE Trans. on Neural
Networks: Special Issue on Adaptive Learning Systems in
Communication Networks, vol. 16, no. 5, pp. 1027– 1041,
Sep 2005.

[12] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen, “Performance debugging for distributed
system of black boxes,” in ACM Symposium on Operating
Systems Principles, Oct 2003, pp. 74–89.

[13] A. Konwinski, M. Zaharia, R. Katz, and I. Stoica, “X-tracing
Hadoop,” Hadoop Summit, Mar 2008.

[14] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Min-
ing console logs for large-scale system problem detection,”
in Workshop on Tackling Systems Problems using Machine
Learning, Dec 2008.

[15] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan,
“Ganesha: Black-Box Diagnosis of MapReduce Systems,”
in Second Workshop on Hot Topics in Measurement and
Modeling of Computer Systems), Sep. 2008.

[16] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using
Magpie for request extraction and workload modelling,” in
USENIX Symposium on Operating Systems Design and Im-
plementation, San Francisco, CA, Dec 2004.

[17] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica, “X-
Trace: A pervasive network tracing framework,” in USENIX
Symposium on Networked Systems Design and Implementa-
tion, Cambridge, MA, Apr 2007.

[18] K. Bare, M. Kasick, S. Kavulya, E. Marinelli, X. Pan, J. Tan,
R. Gandhi, and P. Narasimhan, “ASDF: Automated online
fingerpointing for Hadoop,” Carnegie Mellon University PDL,
Tech. Rep. CMU-PDL-08-104, May 2008.

