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Abstract

This paper studies the use of statistical induction tech-
niques as a basis for automated performance diagnosis
and performance management. The goal of the work is to
develop and evaluate tools for offline and online analysis
of system metrics gathered from instrumentation in Inter-
net server platforms. We use a promising class of proba-
bilistic models (Tree-Augmented Bayesian Networks or
TANs) to identify combinations of system-level metrics
and threshold values that correlate with high-level per-
formance states—compliance with Service Level Objec-
tives (SLOs) for average-case response time—in a three-
tier Web service under a variety of conditions.

Experimental results from a testbed show that TAN
models involving small subsets of metrics capture pat-
terns of performance behavior in a way that is accurate
and yields insights into the causes of observed perfor-
mance effects. TANs are extremely efficient to represent
and evaluate, and they have interpretability properties
that make them excellent candidates for automated diag-
nosis and control. We explore the use of TAN models for
offline forensic diagnosis, and in a limited online setting
for performance forecasting with stable workloads.

1 Introduction

Networked computing systems continue to grow in scale
and in the complexity of their components and interac-
tions. Today’s large-scale network services exhibit com-
plex behaviors stemming from the interaction of work-
load, software structure, hardware, traffic conditions, and
system goals. Pervasive instrumentation and query capa-
bilities are necessary elements of the solution for man-
aging complex systems [32, 23, 33, 14]. There are now
many commercial frameworks on the market for coor-
dinated monitoring and control of large-scale systems:
tools such as HP’s OpenView and IBM’s Tivoli aggre-
gate information from a variety of sources and present it

graphically to operators. But it is widely recognized that
the complexity of deployed systems surpasses the ability
of humans to diagnose and respond to problems rapidly
and correctly [17, 26]. Research on automated diagno-
sis and control—beginning with tools to analyze and in-
terpret instrumentation data—has not kept pace with the
demand for practical solutions in the field.

Broadly there are two approaches to building self-
managing systems. The most common approach is to in-
corporatea priori models of system structure and behav-
ior, which may be represented quantitatively or as sets of
event-condition-action rules. Recent work has explored
the uses of such models in automated performance con-
trol (e.g., [3, 1, 15]). This approach has several limita-
tions: the models and rule bases are themselves difficult
and costly to build, may be incomplete or inaccurate in
significant ways, and inevitably become brittle when sys-
tems change or encounter unanticipated conditions.

The second approach is to apply statistical learning
techniques to induce the models automatically. These ap-
proaches assume little or no domain knowledge; they are
therefore generic and have potential to apply to a wide
range of systems and to adapt to changes in the system
and its environment. For example, there has been much
recent progress on the use of statistical analysis tools to
infer component relationships from histories of interac-
tion patterns (e.g., from packet traces) [9, 2, 4, 10]. But
it is still an open problem to identify techniques that are
powerful enough to induce effective models, and that are
sufficiently efficient, accurate, and robust to deploy in
practice.

The goal of our work is to automate analysis of in-
strumentation data from network services in order to
forecast, diagnose, and repair failure conditions. This
paper studies the effectiveness and practicality ofTree-
Augmented NaiveBayesian networks [18], or TANs, as
a basis for performance diagnosis and forecasting from
system-level instrumentation in a three-tier network ser-
vice. TANs comprise a subclass of Bayesian networks,



recently of interest to the systems community as potential
elements of an Internet “Knowledge Plane” [11]. TANs
are less powerful than generalized Bayesian networks
(see Section 3), but they are simple, compact and effi-
cient. TANs have been shown to be promising in diverse
contexts including financial modeling, medical diagno-
sis, text classification, and spam filtering, but we are not
aware of any previous study of TANs in the context of
computer systems.

To explore TANs as a basis for self-managing sys-
tems, we analyzed data from 124 metrics gathered from a
three-tier e-commerce site under synthetic load. The in-
duced TAN models select combinations of metrics and
threshold values that correlate with high-level perfor-
mance states—compliance with Service Level Objec-
tives (SLO) for average response time—under a variety
of conditions. The experiments support the following
conclusions:

• Combinations of metrics are significantly more pre-
dictive of SLO violations than individual metrics.
Moreover, different combinations of metrics and
thresholds are selected under different conditions.
This implies that even this relatively simple problem
is too complex for simple “rules of thumb” (e.g.,
just monitor CPU utilization).

• Small numbers of metrics (typically 3–8) are suf-
ficient to predict SLO violations accurately. In
most cases the selected metrics yield insight into
the cause of the problem and its location within the
system. This property ofinterpretabilityis a key ad-
vantage of TAN models (Section 3.3). While we do
not claim to solve the problem of root cause anal-
ysis, our results suggest that TANs have excellent
potential as a basis for diagnosis and control. For
example, we may statically associate metrics with
control variables (actuators) to restore the system to
a desired operating range.

• Although multiple metrics are involved, the rela-
tionships among these metrics are relatively simple
in this context. Thus TAN models are highly accu-
rate: in typical cases, the models yield abalanced
accuracyof 90%–95% (see Section 2.1).

• The TAN models are extremely efficient to rep-
resent and evaluate. Model induction is efficient
enough to adapt to changes in workload and system
structure by continuously inducing new models.

Of the known statistical learning techniques, the TAN
structure and algorithms are among the most promising
for deployment in real systems. They are based on sound
and well-developed theory, they are computationally ef-
ficient and robust, they require no expertise to use, and

they are readily available in open-source implementa-
tions [24, 34, 5]. While other approaches may prove
to yield comparable accuracy and/or efficiency, Bayesian
networks and TANs in particular have important practical
advantages: they are interpretable and they can incorpo-
rate expert knowledge and constraints. Although our pri-
mary emphasis is ondiagnosingperformance problems
after they have occurred, we illustrate the versatility of
TANs by using them toforecastproblems. We empha-
size that our methods discover correlations rather than
causal connections, and the results do not yet show that
a robust “closed loop” diagnosis is practical at this stage.
Even so, the technique can sift through a large amount of
instrumentation data rapidly and focus the attention of a
human analyst on the small set of metrics most relevant
to the conditions of interest.

This paper is organized as follows: Section 2 defines
the problem and gives an overview of our approach. Sec-
tion 3 gives more detail on TANs and the algorithms to
induce them, and outlines the rationale for selecting this
technique for computer systems diagnosis and control.
Section 4 describes the experimental methodology and
Section 5 presents results. Section 6 presents additional
results from a second testbed to confirm the diagnostic
power of TANs. Section 7 discusses related work, and
Section 8 concludes.

2 Overview

Figure 1 depicts the experimental environment. The sys-
tem under test is a three-tier Web service: the Web server
(Apache), application middleware server (BEA We-
bLogic), and database server (Oracle) run on three differ-
ent servers instrumented with HP OpenView to collect a
set of system metrics. A load generator (httperf [28])
offers load to the service over a sequence of execution
intervals. An SLO indicator processes the Apache logs
to determine SLO compliance over each interval, based
on the average server response time for requests in the
interval.

This paper focuses on the problem of constructing an
analysis engine to process the metrics and indicator val-
ues. The goal of the analysis is to induce aclassifier, a
function that predicts whether the system is or will be in
compliance over some interval, based on the values of
the metrics collected. If the classifier is interpretable,
then it may also be useful for diagnostic forensics or
control. One advantage of our approach is that it iden-
tifies sets of metrics and threshold values that correlate
with SLO violations. Since specific metrics are associ-
ated with specific components, resources, processes, and
events within the system, the classifier indirectly iden-
tifies the system elements that are most likely to be in-
volved with the failure or violation. Even so, the analysis
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Figure 1: This study explores the use of TAN classifiers to diagnose a common type of network service: a three-tier
Web application with a Java middleware component, backed by a database.

process is general because it uses noa priori knowledge
of the system’s structure or function.

In this study we limit our attention to system-level
metrics gathered from a standard operating system (Win-
dows 2000 Server) on each of the servers. Of course,
the analysis engine may be more effective if it consid-
ers application-level metrics; on the other hand, analysis
and control using system-level metrics can generalize to
any application. Table 1 lists some specific system-level
metrics that are often correlated with SLO violations.

2.1 Formalizing the Problem

This problem is a pattern classification problem in su-
pervised learning. LetSt denote the state of the SLO at
time t. In this case,Scan take one of two states from the
set {compliance,violation}: let {0,1} or {s+,s−} de-
note these states. Let~Mt denote a vector of values forn
collected metrics[m0, ...,mn] at timet (we will omit the
subindext when the context is clear). The pattern classi-
fication problem is to induce or learn a classifier function
F mapping the universe of possible values for~Mt to the
range of system statesS [16, 7].

The input to this analysis is a training data set. In this
case, the training set is a log of observations of the form
< ~Mt ,St > from the system in operation. The learning is
supervised in that the SLO compliance indicator identi-
fies the value ofSt corresponding to each observed~Mt in
the training set, providing preclassified instances for the
analysis to learn from.

We emphasize four premises that are implicit in this
problem statement. First, it is not necessary to predict
system behavior, but only to identify system states that
correlate with particular failure events (e.g., SLO vio-
lations). Second, the events of interest are defined and
identified externally by some failure detector. For ex-
ample, in this case it is not necessary to predict system
performance, but only to classify system states that com-

ply with an SLO as specified by an external indicator.
Third, there are patterns among the collected metrics that
correlate with SLO compliance; in this case, the metrics
must be well-chosen to capture system states relating to
the behavior of interest. Finally, the analysis must ob-
serve a statistically significant sample of event instances
in the training set to correlate states with the observed
metrics. Our approach is based on classification rather
than anomaly detection: it trains the models with obser-
vations of SLO violations as well as normal behavior.
The resulting models are useful to predict and diagnose
performance problems.

The key measure of success is the accuracy of the re-
sulting classifierF . A common metric is theclassifica-
tion accuracy, which in this case is defined as the prob-
ability that F correctly identifies the SLO stateSt as-
sociated with any~Mt . This measure can be misleading
when violations are uncommon: for example, if10%of
the intervals violate the SLO, a trivial classifier that al-
ways guesses compliance yields a classification accuracy
of 90%. Instead, our figure of merit isbalanced accu-
racy (BA), which averages the probability of correctly
identifying compliance with the probability of detecting
a violation. Formally:

BA=
P(s− = F (~M)|s−)+P(s+ = F (~M)|s+)

2
(1)

To achieve the maximal BA of100%, F must per-
fectly classify both SLO violation and SLO compliance.
The trivial classifier in the example above has a BA of
only 50%. In some cases we can gain more insight into
the behavior of a classifier by considering the false posi-
tive rate and false negative rate separately.

2.2 Inducing Classifier Models

There are many techniques for pattern classification in
the literature (e.g., [7, 30]). Our approach first induces



Metric Description
mean AS CPU 1 USERTIME CPU time spent in user mode on the application server.
var AS CPU 1 USERTIME Variance of user CPU time on the application server.
mean AS DISK 1 PHYSREAD Number of physical disk reads for disk 1 on the application server,

includes file system reads, raw I/O and virtual memory I/O.
mean AS DISK 1 BUSYTIME Time in seconds that disk 1 was busy with pending I/O on the application server.
var AS DISK 1 BUSYTIME Variance of time that disk 1 was busy with pending I/O on the application server.
mean DB DISK 1 PHYSWRITEBYTE Number of kilobytes written to disk 1 on the database server,

includes file system reads, raw I/O and virtual memory I/O.
var DB GBL SWAPSPACEUSED Variance of swap space allocated on the database server.
var DB NETIF 2 INPACKET Variance of the number of successful (no errors or collisions) physical packets

received through network interface #2 on the database server.
mean DB GBL SWAPSPACEUSED Amount of swap space, in MB, allocated on the database server.
mean DB GBL RUNQUEUE Approximate average queue length for CPU on the database server.
var DB NETIF 2 INBYTE Variance of the number of KBs received from the network

via network interface #2 on the database server. Only bytes in packets
that carry data are included.

var DB DISK 1 PHYSREAD Variance of physical disk reads for disk 1 on the database server.
var AS GBL MEMUTIL Variance of the percentage of physical memory in use on the application server,

including system memory (occupied by the kernel), buffer cache, and user memory.
numReqs Number of requests the system has served.
var DB DISK 1 PHYSWRITE Variance of the number of writes to disk 1 on the database server.
var DB NETIF 2 OUTPACKET Variance of the number of successful (no errors or collisions) physical packets

sent through network interface #2 on the database server.

Table 1: A sampling of system-level metrics that are often correlated with SLO violations in our experiments, as
named by HP OpenView. “AS” refers to metrics measured on the application server; “DB” refers to metrics measured
on the database server.

a model of the relationship between~M andS, and then
uses the model to decide whether any given set of metric
values~M is more likely to correlate with an SLO vio-
lation or compliance. In our case, the model represents
the conditional distributionP(S|~M)—the distribution of
probabilities for the system state given the observed val-
ues of the metrics. The classifier then uses this distribu-
tion to evaluate whetherP(s+|~M) > P(s−|~M).

Thus, we transform the problem of pattern classifica-
tion to one of statistical fitting of a probabilistic model.
The key to this approach is to devise a way to represent
the probability distribution that is compact, accurate, and
efficient to process. Our approach represents the distri-
bution as a form of Bayesian network (Section 3).

An important strength of this approach is that one can
interrogate the model to identify specific metrics that af-
fect the classifier’s choice for any given~M. This inter-
pretability property makes Bayesian networks attractive
for diagnosis and control, relative to competing alterna-
tives such as neural networks and support vector ma-
chines [13]. One other alternative, decision trees [30],
can be interpreted as a set of if-then rules on the metrics
and their values. Bayesian networks have an additional
advantage ofmodifiability: they can incorporate expert
knowledge or constraints into the model efficiently. For
example, a user can specify a subset of metrics or corre-
lations to include in the model, as discussed below. Sec-

tion 3.3 outlines the formal basis for these properties.

The key challenge for our approach is that it is in-
tractable to induce the optimal Bayesian network classi-
fier. Heuristics may guide the search for a good classifier,
but there is also a risk that a generalized Bayesian net-
work may overfit data from the finite and possibly noisy
training set, compromising accuracy. Instead, we restrict
the form of the Bayesian network to a TAN (Section 3)
and select the optimal TAN classifier over a heuristically
selected subset of the metrics. This approach is based
on the premise (which we have validated empirically in
our domain) that a relatively small subset of metrics and
threshold values is sufficient to approximate the distribu-
tion accurately in a TAN encoding relatively simple de-
pendence relationships among the metrics. Although the
effectiveness of TANs is sensitive to the domain, TANs
have been shown to outperform generalized Bayesian
networks and other alternatives in both cost and accu-
racy for classification tasks in a variety of contexts [18].
This paper evaluates the efficiency and accuracy of the
TAN algorithm in the context of SLO maintenance for a
three-tier Web service, and investigates the nature of the
induced models.



2.3 Using Classifier Models

Before explaining the approach in detail, we first con-
sider its potential impact in practice. We are interested in
using classifiers to diagnose a failure or violation condi-
tion, and ultimately to repair it.

The technique can be used for diagnostic forensics as
follows. Suppose a developer or operator wishes to gain
insight into a system’s behavior during a specific execu-
tion period for which metrics were collected. Running
the algorithm yields a classifier for any event—such as
a failure condition or SLO threshold violation—that oc-
curs a sufficient number of times to induce a model (see
Section 3). In the general case, the event may be de-
fined by any user-specified predicate (indicator function)
over the metrics. The resulting model gives a list of met-
rics and ranges of values that correlate with the event,
selected from the metrics that do not appear in the defi-
nition of the predicate.

The user may also “seed” the models by preselecting
a set of metrics that must appear in the models, and the
value ranges for those metrics. This causes the algorithm
to determine the degree to which those metrics and value
ranges correlate with the event, and to identify additional
metrics that are maximally correlated subject to the con-
dition that the values of the specified metrics are within
their specified ranges. For example, a user can ask a
question of the form: “what percentage of SLO viola-
tions occur during intervals when the network traffic be-
tween the application server and the database server is
high, and what other metrics and values are most predic-
tive of SLO violations during those intervals”?

The models also have potential to be useful for online
forecasting of failures or SLO violations. For example,
Section 5 shows that it is possible to induce models that
predict SLO violations in the near future, when the char-
acteristics of the workload and system are stable. An au-
tomated controller may invoke such a classifier directly
to identify impending violations and respond to them,
e.g., by shedding load or adding resources.

Because the models are cheap to induce, the system
may refresh them periodically to track changes in the
workload characteristics and their interaction with the
system structure. In more dynamic cases, it is possible to
maintain multiple models in parallel and select the best
model for any given period. The selection criteria may be
based on recent accuracy scores, known cyclic behavior,
or other recognizable attributes.

3 Approach

This section gives more detail on the TAN representa-
tion and algorithm, and discusses the advantages of this
approach relative to its alternatives.

var_AS_CPU_1_usertime

var_DB_NETIF_2_inpacket

var_DB_NETIF_2_inbyte

mean_DB_GBL_swapspaceused var_DB_DISK_1_physIO

SLO state

Figure 2: Example TAN to fit SLO violations in a three-
tier Web service. Table 1 defines the metrics.

As stated in the previous section, we use TANs to ob-
tain a compact, efficient representation of the model un-
derlying the classifier. The model approximates a prob-
ability distributionP(S|~M), which gives the probability
that the system is in any given stateS for any given vec-
tor of observed metrics~M. Inducing a model of this form
reduces to fitting the distributionP(~M|S)—the probabil-
ity of observing a given vector~M of metric values when
the system is in a given stateS. Multidimensional prob-
lems of this form are subject to challenges of robustness
and overfitting, and require a large number of data sam-
ples [16, 21]. We can simplify the problem by making
some assumptions about the structure of the distribution
P. TANs comprise a subclass of Bayesian networks [29],
which offer a well-developed mathematical language to
represent structure in probability distributions.

3.1 Bayesian networks and TANs

A Bayesian network is an annotated directed acyclic
graph encoding a joint probability distribution. The ver-
tices in the graph represent the random variables of in-
terest in the domain to be modeled, and the edges rep-
resent direct influences of one variable on another. In
our case, each system-level metricmi is a random vari-
able represented in the graph. Each vertex in the network
encodes a probability distribution on the values that the
random variable can take, given the state of its prede-
cessors. This representation encodes a set of (probabilis-
tic) independence statements of the form: each random
variable is independent of its non-descendants, given that
the state of its parents is known. There is a set of well-
understood algorithms and methods to induce Bayesian
network models statistically from data [22], and these are
available in open-source software [24, 34, 5].

In anaiveBayesian network, the state variableS is the
only parent of all other vertices. Thus a naive Bayesian
network assumes that all the metrics are fully indepen-



dent givenS. A tree-augmented naive Bayesian network
(TAN) extends this structure to consider relationships
among the metrics themselves, with the constraint that
each metricmi has at most one parentmpi in the network
other thanS. Thus a TAN imposes a tree-structured de-
pendence graph on a naive Bayesian network; this struc-
ture is aMarkov tree. The TAN for a set of observations
and metrics is defined as the Markov tree that isoptimal
in the sense that it has the highest probability of having
generated the observed data [18].

Figure 2 illustrates a TAN obtained for one of our
experiments (see theSTEPworkload in Section 4.1.2).
This model has a balanced accuracy (BA) score of94%
for the system, workload, and SLO in that experiment.
The metrics selected are the variance of the CPU user
time at the application server, network traffic (packets
and bytes) from that server to the database tier, and the
swap space and disk activity at the database. The tree
structure captures the following assertions: (1) given the
network traffic between the tiers, the CPU activity in the
application server is irrelevant to the swap space and disk
activity at the database tier; (2) the network traffic is cor-
related with CPU activity, i.e., common increases in the
values of those metrics are not anomalous.

Our TAN models approximate the probability distri-
bution of values for each metric (given the value of its
predecessor) as a conditional Gaussian distribution. This
method is efficient and avoids problems of discretization.
The experimental results show that it has acceptable ac-
curacy and is effective in capturing the abnormal met-
ric values associated with each performance state. Other
representations may be used with the TAN technique.

3.2 Selecting a TAN model

Given a basic understanding of the classification ap-
proach and the models, we now outline the methods and
algorithms used to select the TAN model for the classi-
fier (derived from [18]). The goal is to select a subset
~M∗ of ~M whose TAN yields the most accurate classifier,
i.e., ~M∗ includes the metrics from~M that correlate most
strongly with SLO violations observed in the data. Let
k be the size of the subset~M∗. The problem of select-
ing the bestk metrics for ~M∗ is known asfeature selec-
tion. Most solutions use some form of heuristic search
given the combinatorial explosion of the search space in
the number of metrics in~M. We use a greedy strategy: at
each step select the metric that is not already in the vector
~M∗, and that yields maximum improvement in accuracy
(BA) of the resulting TAN over the sample data. To do
this, the algorithm computes the optimal Markov tree for
each candidate metric, then selects the metric whose tree
yields the highest BA score against the observed data.
The cost isO(kn) times the cost to induce and evaluate

the Markov tree, wheren is the number of metrics. The
algorithm to find the optimal Markov tree computes a
minimum spanning tree over the metrics in~M∗.

From Eq. 1 it is clear that to compute a candidate’s BA
score we must estimate the probability of false positives
and false negatives for the resulting model. The algo-
rithm must approximate the real BA score from a finite
set of samples. To ensure the robustness of this score
against variability on the unobserved cases in the data,
the following procedure calledten-fold cross validation
is used [21]. Randomly divide the data into two sets, a
training set and a testing set. Then, induce the model
with the training set, and compute its score with the test-
ing set. Compute the final score as the average score over
ten trials. This reduces any biases or overfitting effects
resulting from a finite data set.

Given a data set withN samples of then metrics, the
overall algorithm is dominated byO(n2 ·N) for smallk,
when allN samples are used to induce and test the can-
didates. Most of our experiments train models for31
SLO definitions on stored instrumentation datasets with
n= 124andN = 2400. Our Matlab implementation pro-
cesses each dataset in about ten minutes on a 1.8 GHz
Pentium 4 (∼ 20 seconds per SLO). Each run induces
about 40,000 candidate models, for a rough average of
15 ms per model. Once the model is selected, evaluating
it to classify a new interval sample takes 1-10 ms. These
operations are cheap enough to train models online as
needed and even to maintain and evaluate multiple mod-
els in parallel.

3.3 Interpretability and Modifiability

In addition to their efficiency in representation and infer-
ence, TANs (and Bayesian networks in general) present
two key practical advantages:interpretabilityandmodi-
fiability. These properties are especially important in the
context of diagnosis and control.

The influence of each metric on the violation of an
SLO can be quantified in a sound probabilistic model.
Mathematically, we arrive at the following functional
form for the classifier as a sum of terms, each involving
the probability that the value of some metricmi occurs in
each state given the value of its predecessormpi :

∑
i

log[
P(mi |mpi ,s

−)
P(mi |mpi ,s

+)
]+ log

P(s−)
P(s+)

> 0 (2)

Each metric is essentially subjected to a likelihood test
comparing the probability that the observed value occurs
during compliance to the probability that the value oc-
curs during violation. A sum value greater than zero
indicates a violation. This analysis catalogs each type
of SLO violation according to the metrics and values
that correlate with observed instances. Furthermore, the



Figure 3: Observed distributions of response time for
PetStore operations. Each box marks the quartiles of the
distribution; the horizontal line inside each box is the me-
dian. Outliers are shown as crosses outside each box.

strength of each metric’s influence on the classifier’s
choice is given from the probability of its value occur-
ring in the different states.

This structure gives insight into the causes of the viola-
tion or even how to repair it. For example, if violation of
a temperature threshold is highly correlated with an open
window, then one potential solution may be to close the
window. Of course, any correlation is merely “circum-
stantial evidence” rather than proof of causality; much of
the value of the analysis is to “exonerate” the metrics that
are not correlated with the failure rather than to “convict
the guilty”.

Because these models are interpretable and have clear
semantics in terms of probability distributions, we can
enhance and complement the information induced di-
rectly from data with expert knowledge of the domain
or system under study [22]. This knowledge can take
the form of explicit lists of metrics to be included in
the model, information about correlations and dependen-
cies among the metrics, or prior probability distributions.
Blake & Breese [8] give examples, including an early
use of Bayesian networks to discover bottlenecks in the
Windows operating system. Sullivan [31] applies this ap-
proach to tune database parameters.

4 Methodology

We considered a variety of approaches to empirical eval-
uation before eventually settling on the testbed environ-
ment and workloads described in this section. We re-
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jected the use of standard synthetic benchmarks, e.g.,
TPC-W, because they typically ramp up load to a stable
plateau in order to determine peak throughput subject to
a constraint on mean response time. Such workloads are
not sufficiently rich to produce the wide range of system
conditions that might occur in practice. Traces collected
in real production environments are richer, but produc-
tion systems rarely permit the controlled experiments
necessary to validate our methods. For these reasons we
constructed a testbed with a standard three-tiered Web
server application—the well-known Java PetStore—and
subjected it to synthetic stress workloads designed to ex-
pose the strengths and limitations of our approach.

The Web, application, and database servers were
hosted on separate HP NetServer LPr systems configured
with a Pentium II 500 MHz processor, 512 MB of RAM,
one 9 GB disk drive and two 100 Mbps network cards.
The application and database servers run Windows 2000
Server SP4. We used two different configurations of the
Web server: Apache Version 2.0.48 with a BEA We-
bLogic plug-in on either Windows 2000 Server SP4 or
RedHat Linux 7.2. The application server runs BEA We-
bLogic 7.0 SP4 over Java 2 SDK Version 1.3.1 (08) from
Sun. The database client and server are Oracle 9iR2. The
testbed has a switched 100 Mbps full-duplex network.

The experiments use a version of the Java PetStore
obtained from the Middleware Company in October
2002. We tuned the deployment descriptors, config.xml,
and startWebLogic.cmd in order to scale to the transac-
tion volumes reported in the results. In particular, we
modified several of the EJB deployment descriptors to
increase the values formax-beans-in-cache ,
max-beans-in-free-pool ,
initial-bean-in-free-pool , and some of
the timeout values. Theconcurrency-strategy
for two of the beans in the Customer and Inventory
deployment descriptors was changed to “Database”.
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Figure 6: Requests per minute inSTEPworkload.

Other changes include increasing the execute thread
count to 30, increasing the initial and maximum ca-
pacities for the JDBC Connection pool, increasing the
PreparedStatementCacheSize , and increasing
the JVM’s maximum heap size. The net effect of
these changes was to increase the maximum number of
concurrent sessions from 24 to over 100.

Each server is instrumented using the HP OpenView
Operations Embedded Performance Agent, a component
of the OpenView Operations Agent, Release 7.2. We
configured the agent to sample and collect values for 124
system-level metrics (e.g., including the metrics listed in
Table 1) at 15-second intervals.

4.1 Workloads

We designed the workloads to exercise our model-
induction methodology by providing it with a wide range
of (~M,~P) pairs, where~M represents a sample of val-
ues for the system metrics and~P represents a vector
of application-level performance measurements (e.g., re-
sponse time & throughput). Of course, we cannot di-
rectly control either~M or ~P; we control only the exoge-
nous workload submitted to the system under test. We
vary several characteristics of the workload, including

1. aggregate request rate,
2. number of concurrent client connections, and
3. fraction of requests that are database-intensive (e.g.,

checkout) vs. app-server-intensive (e.g., browsing).

Figure 3 presents box plots depicting the response time
distributions of the twelve main request classes in our
PetStore testbed. Response times differ significantly for
different types of requests, hence the request mix is quite
versatile in its effect on the system.

We mimic key aspects of real-world workload, e.g.,
varying burstiness at fine time scales and periodicity on
longer time scales. However, each experiment runs in 1–
2 days, so the periods of workload variation are shorter
than in the wild. We wrote simple scripts to generate
session files for thehttperf workload generator [28],
which allows us to vary the client think time and the ar-
rival rate of new client sessions.

1 For each Experiment
2 For SLO threshold = 60,...,90 percentile

of average response time
3 Identify intervals violating SLO.
4 Select k metrics using greedy search.
5 Induce TAN model with top k metrics.
6 Evaluate with 10-fold cross validation

for balanced accuracy, false alarm
and detection rates.

7 Evaluate using only Application server
CPU usertime metric (‘‘CPU’’).

8 if (SLO threshold == 60 percentile)
9 Save model as ‘‘MOD’’.

10 else
11 Evaluate MOD on current SLO.
12 Record metric attribution of current

TAN for each interval violating SLO.

Table 2: The testing procedure.

4.1.1 RAMP: Increasing Concurrency

In this experiment we gradually increase the number of
concurrent client sessions. We add an emulated client
every 20 minutes up to a limit of 100 total sessions, and
terminate the test after 36 hours.Individual client re-
quest streams are constructed so that theaggregatere-
quest stream resembles a sinusoid overlaid upon a ramp;
this effect is depicted in Figure 4, which shows the ideal
throughput of the system under test. Theideal through-
put occursif all requests are served instantaneously. Be-
causehttperf uses a closed client loop with think
time, the actual rate depends on response time.

Each client session follows a simple pattern: go to
main page, sign in, browse products, add some products
to shopping cart, check out, repeat. Two parameters indi-
rectly define the number of operations within a session.
One is the probability that an item is added to the shop-
ping cart given that it has just been browsed. The other is
the probability of proceeding to the checkout given that
an item has just been added to the cart. These probabili-
ties vary sinusoidally between 0.42 and 0.7 with periods
of 67 and 73 minutes, respectively. The net effect is the
ideal time-varying checkout rate shown in Figure 5.

4.1.2 STEP: Background + Step Function

This 36-hour run has two workload components. The
first httperf creates a steady background traffic of
1000 requests per minute generated by 20 clients. The
second is an on/off workload consisting of hour-long
bursts with one hour between bursts. Successive bursts
involve 5, 10, 15, etc. client sessions, each generating
50 requests per minute. Figure 6 summarizes the ideal
request rate for this pattern, omitting fluctuations at fine
time scales.

The intent of this workload is to mimic sudden, sus-



tained bursts of increasingly intense workload against a
backdrop of moderate activity. Each “step” in the work-
load produces a different plateau of workload level, as
well as transients during the beginning and end of each
step as the system adapts to the change.

4.1.3 BUGGY: Numerous Errors

BUGGY was a five-hour run with 25 client sessions.
Aggregate request rate ramped from 1 request/sec to 50
requests/sec during the course of the experiment, with si-
nusoidal variation of period 30 minutes overlaid upon the
ramp. The probability of add-to-cart following browsing
an item and the probability of checkout following add-
to-cart vary sinusoidally between 0.1 and 1 with periods
of 25 and 37 minutes, respectively. This run occurred
before the Petstore deployment was sufficiently tuned as
described previously. The J2EE component generated
numerous Java exceptions, hence the title “BUGGY.”

5 Experimental Results

This section evaluates our approach using the system and
workloads described in Section 4. In these experiments
we varied the SLO threshold to explore the effect on the
induced models, and to evaluate accuracy of the models
under varying conditions. For each workload, we trained
and evaluated a TAN classifier for each of 31 different
SLO definitions, given by varying the threshold on the
average response time such that the percentage of inter-
vals violating the SLO varies from 40% to 10% in incre-
ments of 1%. As a baseline, we also evaluated the ac-
curacy of the 60-percentile SLO classifier (MOD) and a
simple “rule of thumb” classifier using application server
CPU utilization as the sole indicator metric. Table 2 sum-
marizes the testing procedure.

Table 3 summarizes the average accuracy of all models
across all SLO thresholds for each workload. Figure 7
plots the results for all 31 SLO definitions forSTEP. We
make several observations from the results:

1. Overall balanced accuracy of the TAN model is
high, ranging from 87%-94%. In a breakdown of
false alarms to detection rates we see that detection
rates are higher than 90% for all experiments, with
false alarms at about 6% for two experiments and
17% forBUGGY.

2. A single metric alone (CPU in this case) is not suf-
ficient to capture the patterns of SLO violations.
While CPU has a BA score of 90 forRAMP, it does
very poorly for the other two workloads. To illus-
trate, Figure 8 plots average response time for each
interval in theSTEPrun as a function of its average
CPU utilization. The plot shows that while CPU
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Figure 8: Average response time as a function of the ap-
plication server CPU user utilization forSTEP.

usage correlates with average latency when latency
is low, the correlation is not apparent for intervals
with high average latency. Indeed, Figure 7 shows
that the low BA score stems from a low detection
rate for the less stringent SLO thresholds.

3. A small number of metrics is sufficient to capture
the patterns of SLO violations. The number of met-
rics in the TAN models ranges from 3 to 8.

4. The models are sensitive to the workload and SLO
definition. For example, the accuracy of MOD (the
TAN model for the most stringent SLO) always has
a high detection rate on the less stringent SLOs (as
expected), but generates false alarms at an increas-
ing rate as the SLO threshold increases.

Determining the number of metrics. To illustrate the
role of multiple metrics in accurate TAN models, Fig-
ure 9 shows the top three metrics (in order) as a function
of average response time for theSTEPworkload with
SLO threshold of 313 msec (20% instances of SLO vio-
lations). The top metric alone yields a BA score of 84%,
which improves to 88% with the second metric. How-
ever, by itself, the second metric is not discriminative; in
fact, the second metric alone yields a BA of just 69%.
The TAN combines these metrics for higher accuracy by
representing their relationships. Adding two more met-
rics increases the BA score to 93.6%.

Interaction between metrics and values. The met-
rics selected for a TAN model may have complex rela-
tionships and threshold values. The combined model de-
fines decision boundaries that classify the SLO state (vio-
lation/no violation) of an interval by relating the recorded
values of the metrics during the interval. Figure 10 de-



SLO thresh Avg # TAN MOD CPU TAN MOD CPU TAN MOD CPU
experiment (msec) Metrics BA BA BA FA FA FA Det Det Det
RAMP 62 – 627 3 94 84 90 6.4 29 8.5 93 98 88.7

±2.4 ±5 ±8 ±2 ±11 ±4 ±2 ±0.3 ±19
STEP 111 – 541 8 92.7 89.9 56 6.6 16 13 91.9 96 27

±2 ±2.6 ±8.8 ±2.9 ±8.2 ±16 ±4.5 ±4.2 ±34
BUGGY 214 – 627 4 87.3 86.4 63.4 16.9 21.0 14.9 91.6 94.2 41.7

±3.3 ±3.2 ±12.1 ±6.8 ±7.2 ±13.3 ±3.1 ±1.02 ±37.6

Table 3: Summary of accuracy results. BA is balanced accuracy, FA is false alarm and Det is detection.
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Figure 7: Accuracy results forSTEPas a function of SLO threshold. The TAN trained for a given workload and SLO
balances the rates of detection and false alarms for the highest balanced accuracy (BA).

10
4

10
6

10
8

0

1

2

3

4
x 10

7

Average RT

va
r 

A
S

 C
P

U
  U

S
E

R
T

IM
E

10
5

10
6

Average RTm
ea

n 
D

B
 D

IS
K

 P
H

Y
S

W
R

IT
E

B
Y

T
E

10
4

10
6

10
8

0

1

2

3

4
x 10

9

Average RT

va
r 

D
B

 S
W

A
P

S
P

A
C

E
U

S
E

D

2 4 6 8 10
0.8

0.85

0.9

0.95

1

Number of Metrics

B
al

an
ce

d 
A

cc
ur

ac
y

No Violation
Violation

Figure 9: Plots of the top three metrics selected for a
TAN model for theSTEPworkload. Modeling the corre-
lations of five metrics yields a BA of93.6%, a significant
improvement over any of the metrics in isolation.

picts the decision boundary learned by a TAN model for
its top two metrics. The figure also shows the best deci-
sion boundary when these metrics are used in isolation.
We see that the top metric is a fairly good predictor of
violations, while the second metric alone is poor. How-
ever, the decision boundary of the model with both met-
rics takes advantage of the strength of both metrics and
“carves out” a region of value combinations that corre-

Metric/exper # RAMP STEP
meanAS CPU 1 USERTIME 27 7
meanAS DISK 1 PHYSREAD 14 0
meanAS DISK 1 BUSYTIME 6 0
var AS DISK 1 BUSYTIME 6 0
meanDB DISK 1 PHYSWRITEBYTE 1 22
var DB GBL SWAPSPACEUSED 0 21
var DB NETIF 2 INPACKET 2 21
meanDB GBL SWAPSPACEUSED 0 14
meanDB GBL RUNQUEUE 0 13
var AS CPU 1 USERTIME 0 12
var DB NETIF 2 INBYTE 0 10
var DB DISK 1 PHYSREAD 0 9
var AS GBL MEMUTIL 0 8
numReqs 0 7
var DB DISK 1 PHYSWRITE 0 6
var DB NETIF 2 OUTPACKET 5 6

Table 4: Counts of the number of times the most com-
monly selected metrics appear in TAN models for SLO
violations in theRAMP andSTEPworkloads. See Ta-
ble 1 for a definition of the metrics.

late with SLO violations.
Adaptation. Additional analysis shows that the mod-

els must adapt to capture the patterns of SLO violation
with different response time thresholds. For example,
Figure 7 shows that the metrics selected for MOD have
a high detection rate across all SLO thresholds, but the
increasing false alarm rate indicates that it may be neces-
sary to adjust their threshold values and decision bound-
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Figure 10: Decision boundary of a TAN model for the
values of its top two metrics. Horizontal and vertical
lines show decision boundaries for the individual met-
rics in isolation. Combining the metrics yields higher
accuracy than either metric in isolation.

aries. However, it is often more effective to adapt the
metrics as conditions change.

To illustrate, Table 4 lists the metrics selected for at
least six of the SLO definitions in either theRAMP or
STEPexperiments. The most commonly chosen metrics
differ significantly across the workloads, which stress the
testbed in different ways. ForRAMP, CPU usertime and
disk reads on the application server are the most com-
mon, while swap space and I/O traffic at the database
tier are most highly correlated with SLO violations for
STEP. A third and entirely different set of metrics is se-
lected forBUGGY: all of the chosen metrics are related
to disk usage on the application server. Since the instru-
mentation records only system-level metrics, disk traffic
is most highly correlated with the server errors occuring
during the experiment, which are logged to disk.

Metric “Attribution” . The TAN models iden-
tify the metrics that are most relevant—alone or in
combination—to SLO violations, which is a key step
toward a root-cause analysis. Figure 11 demonstrates
metric attribution forRAMP with SLO threshold set at
100msec (20% of the intervals are in violation). The
model includes two metrics drawn from the application
server: CPU user time and disk reads. We see that most
SLO violations are attributed to high CPU utilization,
while some instances are explained by the combination
of CPU and disk traffic, or by disk traffic alone. For this
experiment, violations occurring as sudden short spikes
in average response time were explained solely by disk
traffic, while violations occurring during more sustained
load surges were attributed mostly to high CPU utiliza-
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Figure 11: Plot of average response time forRAMP ex-
periment with instances of violation marked as they are
explained by different combinations of the model met-
rics. The horizontal line shows the SLO threshold.

tion, or to a combination of both metrics.
Forecasting. Finally, we consider the accuracy of

TAN models in forecasting SLO violations. Table 5
shows the accuracy of the models for forecasting SLO
violations three sampling intervals in advance (sampling
interval is 5 minutes forSTEPand 1 minute for the oth-
ers). The models are less accurate for forecasting, as ex-
pected, but their BA scores are still 80% or higher. Fore-
casting accuracy is sensitive to workload: theRAMP
workload changes slowly, so predictions are more accu-
rate than for the burstySTEPworkload. Interestingly,
the metrics most useful for forecasting are not always
the same ones selected for diagnosis: a metric that cor-
relates with violations as they occur is not necessarily a
good predictor of future violations.

exper. TAN BA TAN FA TAN Det
RAMP 91.8 9.1 93

±1.2 ±3 ±3.1
STEP 79.7 24 83

±4.6 ±5.5 ±7.4
BUGGY 79.7 24 83.4

±4.6 ±7.4 ±5.6

Table 5: Summary of forecasting results. BA is balanced
accuracy, FA is false alarm and Det is detection.

6 Validation with Independent Testbed

To further validate our methods, we analyzed data col-
lected by a group of HP’s OpenView developers on a dif-
ferent Web service testbed. The important characteris-



exper. SLO TAN BA TAN Det TAN FA
th (msec)

Disk 204 92.5 88.3 3.3
±12.9 ±15.3 ±10.5

Mem 98 99.5 99.6 0.6
± 0.3 ±0.01 ±0.6

I/O 73 97.9 97.8 1.9
± 1.4 ±2.4 ±0.4

Table 6: Summary of results from the OpenView testbed.

tic of these tests is that they induce performance behav-
iors and SLO violations with a second application that
contends for resources on the Web server, rather than by
modulating the Web workload itself.

The testbed consists of an Apache2 Web server run-
ning on a Linux 2.4 system with a 600 MHz CPU and
256 MB RAM. The Web server stores 2000 files of size
100 KB each. Each client session fetches randomly cho-
sen files in sequence at the maximum rate; the random-
access workload forces a fixed portion of the requests to
access the disk. This leads to an average response time
for the system of around 70 msec, with a normal through-
put of about 90 file downloads per second.

We analyzed data from four test runs, each with a com-
peting “resource hog” process on the Web server:

Disk The process writes a stream of data to the Web
server disk for 10 minutes of a 20 minute run.

Mem The process contends for memory for 2.5 hours of
a 10.5 hour run.

I/O A scheduled backup occurs during the run. The test
runs for 14.5 hours; the backup takes about an hour.

CPU The process contends for CPU throughout the run.

We used a single SLO threshold derived from the sys-
tem response time without contention. For each test the
system learns a TAN model based on 54 system-level
metrics collected using SAR at 15 second intervals. We
omit detailed results for the CPU test: for this test the in-
duced models obtained 100% accuracy using only CPU
metrics. Table 6 summarizes the accuracy of the TAN
models for the other three tests.

Table 7 shows the metrics selected for the TAN models
for each test. We see that for the Memory and I/O bottle-
neck tests, the TAN algorithm selected metrics that point
directly to the bottleneck. The metrics for the disk bot-
tleneck experiment are more puzzling. One of the met-
rics is the one-minute average load (loadavg1 ), which
counts the average number of jobs active over the previ-
ous minute, including jobs that have been queued waiting
for I/O. Since disk metrics were not recorded in this test,
and since the file operations did not cause any unusual

Disk
ldavg-1: System load average for the last minute
plist-sz: Number of processes in the process list
Mem
pgpgout/s Total number of blocks the system

paged out to disk per sec
txpck/s: Total number of packets transmitted

per sec (On the eth0 device)
I/O
tps: Transfers per second on I/O device
activepg: Number of active (recently touched)

pages in memory
kbbuffers: Amount of memory used as buffers

by the kernel in kilobytes
kbswpfree: Amount of free swap space in kilobytes
totsck: Total number of sockets used

Table 7: Metrics selected in each of the three experi-
ments, with short descriptions (from SAR man page).

CPU, network, memory or I/O load, this metric serves
as a proxy for the disk queues. To pinpoint the cause of
the performance problem in this case, it is necessary also
to notice that CPU utilization dropped while load aver-
age increased. With both pieces of information one can
conclude that the bottleneck is I/O-related.

These results provide further evidence that the analy-
sis and TAN models suggest the causes of performance
problems, either directly or indirectly, depending on the
metrics recorded.

7 Related Work

Jain’s classic text on performance analysis [25] surveys
a wide range of analytical approaches for performance
modeling, bottleneck analysis, and performance diag-
nosis. Classical analytical models are based ona pri-
ori knowledge from human experts; statistical analysis
helps to parameterize the models, characterize workloads
from observations, or selectively sample a space of de-
signs or experiments. In contrast, we develop methods
to induce performance models automatically from pas-
sive measurements alone. The purpose of these models
is to identify the observed behaviors that correlate most
strongly with application-level performance states. The
observations may include but are not limited to workload
measures and device measures.

More recent books aimed at practitioners consider
goals closer to ours but pursue them using different ap-
proaches. For example, Cockcroft & Pettit [12] cover
a range of facilities for system performance measure-
ment and techniques for performance diagnosis. They
also describe Virtual Adrian, a performance diagnosis



package that encodes human expert knowledge in a rule
base. For instance, the “RAM rule” applies heuristics to
the virtual memory system’s scan rate and reports RAM
shortage if page residence times are too low. Whereas
Virtual Adrian examines only system metrics, our ap-
proach correlates system metrics with application-level
performance and uses the latter as a conclusive measure
of whether performance is acceptable. If it is, then our
approach wouldnot report a problem even if, e.g., the
virtual memory system suffered from a RAM shortage.
Similarly, Virtual Adrian might report that the system
is healthy even if performance is unacceptable. More-
over, we propose to induce the rules relating performance
measures to performance states automatically, to aug-
ment or replace the hand-crafted rule base. Automatic
approaches can adapt more rapidly and at lower expense
to changes in the system or its environment.

Other recent research seeks to replace human expert
knowledge with relatively knowledge-lean analysis of
passive measurements. Several projects focus on the
problem of diagnosing distributed systems based on pas-
sive observations of communication among “black box”
components, e.g., processes or Java J2EE beans imple-
menting different tiers of a multi-tier Web service. Ex-
amples include WebMon [20], Magpie [4], and Pin-
point [10]. Aguileraet al. [2] provides an excellent
review of these and related research efforts. It also pro-
poses several algorithms to infer causal paths of mes-
sages related to individual high-level requests or trans-
actions, and to analyze the occurrences of those paths
statistically for performance debugging. Our approach is
similar to these systems in that it relates application-level
performance to hosts or software components as well as
physical resources. The key difference is that we con-
sider metrics collected within hosts rather than commu-
nication patterns among components; in this respect our
approach is complementary.

Others are beginning to apply model-induction tech-
niques from machine learning to a variety of systems
problems. Mesineret al. [27], for instance, apply
decision-tree classifiers to predict properties of files (e.g.,
access patterns) based on creation-time attributes (e.g.,
names and permissions). They report that accurate mod-
els can be induced for this classification problem, but
that models from one production environment may not
be well-suited to other environments; thus an adaptive
approach is necessary.

8 Conclusion

TANs and other statistical learning techniques are attrac-
tive for self-managing systems because they build sys-
tem models automatically with noa priori knowledge
of system structure or workload characteristics. Thus

these techniques—and the conclusions of this study—
can generalize to a wide range of systems and conditions.
This paper shows that TANs are powerful enough to cap-
ture the performance behavior of a representative three-
tier Web service, and demonstrate their value in sifting
through instrumentation data to “zero in” on the most rel-
evant metrics. It also shows that TANs are practical: they
are efficient to represent and evaluate, and they are inter-
pretable and modifiable. This combination of properties
makes TANs particularly promising relative to other sta-
tistical learning approaches.

One focus of our continuing work is online adapta-
tion of the models to respond to changing conditions.
Research on adapting Bayesian networks to incoming
data has yielded practical approaches [22, 6, 19]. For
example, known statistical techniques for sequential up-
date are sufficient to adapt the model parameters. How-
ever, adapting the model structure requires a search over
a space of candidate models [19]. The constrained tree
structure of TANs makes this search tractable, and TAN
model induction is relatively cheap. These properties
suggest that effective online adaptation to a continuous
stream of instrumentation data may well be feasible. We
are also working to “close the loop” for automated di-
agnosis and performance control. To this end, we are
investigating forecasting techniques to predict the likely
duration and severity of impending violations; a con-
trol policy needs this information to balance competing
goals. We believe that ultimately the most successful
approach for adaptive self-managing systems will com-
bine a priori models (e.g., from queuing theory) with
automatically induced models. Bayesian networks—
and TANs in particular—are a promising technology to
achieve this fusion of domain knowledge with statistical
learning from data.
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