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Abstract— In this paper, we present a distributed average-
consensus algorithm with non-linear updates. In particular,
we use a weighted combination of the sine of the state
differences among the nodes as a consensus update instead of
the conventional linear update which just includes a weighted
combination of the state differences. The non-linear update
comes from the theory of non-linear iterative algorithms that we
present elsewhere. We show the non-linear average-consensus
converges to the initial average under appropriate conditions
on the combining weights. By simulations, we show that the
convergence rate of our algorithm outperform the conventional
linear case.

I. INTRODUCTION

Recently, there has been a significant interest in linear
distributed average-consensus (LDAC) problem [1]. In this
problem, we are interested in computing the average of
several scalar quantities distributed over a sensor network.
These scalar quantities become the initial conditions of
the LDAC algorithm. In the LDAC algorithm, each sensor
updates its state as a linear combination of the neighboring
states. Under appropriate conditions [1], [2], the state at each
sensor converges to the average of the initial conditions. So
far, the focus in this research has been on linear updates,
where the convergence rate only depends on the network
connectivity (second largest eigenvalue of graph Laplacian).

In this paper, we introduce a distributed average-consensus
algorithm with non-linear updates. The state update in the
non-linear distributed average-consensus (NLDAC) consists
of the sensor’s previous state added to a linear combination of
the sine of the state differences among the neighboring nodes.
Due to the non-linearity introduced by the sine function, the
convergence rate now depends on the actual states of the
nodes. As will be shown in the paper, this fact makes the
convergence rate of NLDAC faster, by appropriate tuning the
combining weights.

The NLDAC using the sinusoids stems from our work
on the theory of distributed non-linear iterative algorithms
that we present elsewhere. In fact, non-linear functions other
than sinusoids can also be employed, if the chosen non-
linear function has certain properties that we elaborate in the
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paper. The sine function can be used as a combining function
in the distributed iterative algorithms since it is Lipschitz
continuous with Lipschitz constant strictly less than unity if
the frequency and the domain of the sine function is chosen
appropriately.

In this context, we note that our work can be tied to
results on networks of coupled oscillators (see, for example,
[3], [4], [5]). The aforementioned works concern qualitative
properties of such networks. In contrast, we propose schemes
for a design of algorithms with desirable properties (in
our case, average-consensus) and our methodology is differ-
ent. The framework, presented here, goes beyond average-
consensus and is likely to find applications in other areas of
distributed signal processing, like distributed phase-locked
loops [6], large-scale power networks [7], where such form
of dynamics arise naturally.

For simplicity of the exposition, we assume that each
sensor, l, possesses a scalar quantity, yl, such that yl ∈
[−π/4 + ε, π/4 − ε] ∀ l. This is needed because we would
like to operate in the domain of the sine function where
the cos(yl − yj) (as will be shown, the cosine determines
the convergence rate as it is the derivative of the sine) does
not take the value 0, for any l and j. It is noteworthy that
this assumption does not put any restriction on the algorithm
when yl’s are arbitrary as long as they are bounded, i.e.,
|yl| < M, ∀ l. In such case, we can always choose an
appropriate frequency, ζ, such that cos(ζ(yl − yj)) does
not vanish and the resulting convergence rate involves an
additional factor of ζ.

We now describe the rest of the paper. In Section II,
we recapitulate some relevant concepts from graph theory.
Section III discusses the problem formulation and introduces
the non-linear distributed average-consensus algorithm. We
analyze the algorithm in Section IV and derive the conditions
for convergence. In Section V, we present simulations and
finally, Section VI concludes the paper.

II. PRELIMINARIES

Consider a network of N nodes where the N nodes are
inter-connected through an undirected communication graph,
G = (V,A), where V = {1, . . . , N} is the set of vertices



and A = {alj} is the adjacency matrix of the communication
graph, G. Since the graph is undirected, the adjacency matrix,
A, is symmetric. We define K(l) as the neighbors of node
l, i.e.,

K(l) , {j | alj = 1}. (1)

Similarly, we define

Dl , {l} ∪ K(l). (2)

Let K be the total number of edges in G. Let C =
{clk}k=1,...,K

l=1,...,N be the N × K incidence matrix of G where
its kth column represents the kth edge, (i, j) ∈ G, such that
cik = 1 and cjk = −1. The Laplacian, L, of G is then defined
as

L = CCT . (3)

If wk is a weight associated to the kth edge in G, then the
weighted Laplacian matrix is defined as

Lw = CWCT , (4)

where W is a K × K diagonal matrix such that the kth
element on its diagonal (that represents the kth edge in G)
is wk.

Note that the Laplacian, L, is symmetric and positive-
semidefinite. Hence, its eigenvalues are real and non-
negative. If W ≥ 0 (where ≥ denotes element-wise inequal-
ity), then Lw is also symmetric, positive-semidefinite, see [8]
for details.

III. PROBLEM FORMULATION

Consider a network of N nodes communicating over a
graph G, where each node, l, possesses a scalar quantity, yl.
We would like to consider distributed updates on G of the
following form: at each sensor l, we have

xl(t+ 1) = xl(t) + hl (Dl) , xl(0) = yl, (5)

where hl is some function such that the above algorithm
converges to

lim
t→∞

xl(t+ 1) =
1
N

N∑
j=0

xj(0) =
1
N

N∑
j=0

yj , ∀l, (6)

i.e., to the average of the scalar quantities, yl, the sensors
possess. The conventional average-consensus (LDAC) algo-
rithm is linear where we choose

hl (Dl) = −µ
∑
j∈K(l)

(xl(t)− xj(t)), ∀l. (7)

In this paper, we allow the functions, hl, to be non-linear.
In particular, we choose

hl (Dl) = −µ
∑
j∈K(l)

sin(xl(t)− xj(t)), ∀l. (8)

The above algorithm falls into a general class of non-linear
distributed iterative algorithms that we present elsewhere. We
show that the iterative algorithm (5) converges to (6) when
we choose the functions hl to be of the form (8) under some
conditions on µ and on the network connectivity. In the rest
of the paper, we prove this result and establish the conditions
required for convergence.

IV. NLDAC ALGORITHM

In this section, we derive some important results relating
to our algorithm. This will be helpful in proving the conver-
gence to the average of the initial conditions. Recall from
the previous section, the NLDAC is given by the following
update at sensor l

xl(t+ 1) = xl(t)− µ
∑
j∈K(l)

sin(xl(t)− xj(t)), (9)

with xl(0) = yl. We now write the above algorithm in matrix
form. Define

x(t) , [x1, . . . , xN (t)]T , (10)
f(x(t)) , [f1(x(t)), . . . , fN (x(t))]T , (11)

where fl(x(t)) is defined as

fl(x(t)) , xl(t)− µ
∑
j∈K(l)

sin(xl(t)− xj(t)). (12)

With the above notation, algorithm (9) can be written com-
pactly as

x(t+ 1) = f(x(t)). (13)

A. Important results

We now explore some properties of the function f : RN →
RN . We have the following lemma.

Lemma 1: The functions fl are sum preserving, i.e.,∑
l

fl(x(t)) =
∑
l

xl(t) =
∑
l

yl. (14)

Proof: We start with the L.H.S of (14). We have

∑
l

fl(x(t)) =
∑
l

xl(t)− µ ∑
j∈K(l)

sin(xl(t)− xj(t))

 .

(15)
In order to establish (14), it suffices to show that∑

l

µ
∑
j∈K(l)

sin(xl(t)− xj(t)) = 0. (16)

Since the communication graph is symmetric, we have

j ∈ K(l)⇒ l ∈ K(j). (17)

Fix an l and a j ∈ K(l), then there are two terms in the
L.H.S of (16) that contain both l and j. For these two terms,
we have

µ sin(xl(t)− xj(t)) + µ sin(xj(t)− xl(t)) = 0, (18)

due to the fact that sine is an odd function. The above
argument is true ∀l, and hence, (14) follows. Clearly, from
(14), we also have∑

l

xl(t+ 1) =
∑
l

xl(t). (19)

In the following lemma, we establish the fixed point of
the algorithm (13).



Lemma 2: Let 1 denote an N × 1 column-vector of 1’s.
For any c ∈ R, x∗ = c1 is a fixed point of (13).

Proof: The proof is straightforward and relies on the
fact that sin(0) = 0.

To provide the next result, we let D(x) be a K × K
diagonal matrix such that the kth element on its diagonal is
cos(xi−xj), where i and j are those vertices that represent
the edge described by the kth column of the incidence matrix,
C.

Lemma 3: Let the derivative of the function f(x) with
respect to x be denoted by f ′(x), i.e.,

f ′(x) =
∂f(x)
∂x

=
{
∂fi(x)
∂xj

}
i,j=1,...,N

, (20)

then
f ′(x) = I− µCD(x)CT

. (21)
Proof: Note that

∂fi(x)
∂xj

=


1− µ∑j∈K(i) cos(xi − xj), i = j,

µ cos(xi − xj) i 6= j, (i, j) ∈ G,
0, i 6= j, (i, j) /∈ G.

(22)
With the above, we note that{

f ′(x)− I
−µ

}
ij

=


∑
j∈K(i) cos(xi − xj), i = j,

− cos(xi − xj) i 6= j, (i, j) ∈ G,
0, i 6= j, (i, j) /∈ G.

(23)
is a weighted Laplacian matrix with the corresponding
weight for each edge, (i, j) ∈ G, coming from the matrix
D(x).

B. Error Analysis

In this subsection, we present the error propagation and
provide an upper bound on the error norm. Let

xavg =
1
N

N∑
l=1

xl(0). (24)

Define the error in the iterations (13) as

e(t+ 1) , x(t+ 1)− xavg1. (25)

The following lemma provides an upper bound on the norm
of e(t).

Lemma 4: Let J =
11T

N
. Then, we have for some θ(t) ∈

[0, 1]

‖e(t+ 1)‖ ≤ ‖I− µCD(θ(t)e(t))CT − J‖‖e(t)‖. (26)
Proof: Note that

Jxavg1 = xavg1, Jx(t) = xavg1, (27)

where the first equation uses 1T1 = N , and the second
equation is a consequence of Lemma 1. Also note from
Lemma 2 that f(xavg1) = xavg1. From (25), (13), and
(27), we have

e(t+ 1) = f(x(t))− f(xavg1)− J(x(t)− xavg1),
= g(x(t))− g(xavg1), (28)

where g : RN → RN is defined as g(x) = f(x)− Jx. The
error norm is, thus, given by

‖e(t+ 1)‖ = ‖g(x(t))− g(xavg1)‖,
= ‖g′(η(t))

(
x(t))− xavg1

)
‖,

≤ ‖g′(η(t))‖‖e(t)‖,
= ‖I− µCD(η(t))CT − J‖‖e(t)‖, (29)

where the second equation follows from the mean value
theorem and the fact that g is continuously differentiable, so
that there exists some θ(t) ∈ [0, 1] where η(t) = θ(t)x(t) +
(1−θ(t))xavg1. The last equation follows from the definition
of g and Lemma 3.

Recall that the elements of D(η(t)) are of the form
cos(ηi(t)− ηj(t)). We have

ηi(t)− ηj(t) = θ(t)xi(t) + (1− θ(t))xavg
− (θ(t)xj(t) + (1− θ(t))xavg),
= θ(t)(xi(t)− xj(t)). (30)

Hence, we can write D(η(t)) as D(θ(t)e(t)) and (26)
follows.

We introduce the following notation, which we will use
in presenting the main result of this paper. Let

Lt = CD(θ(t)e(t))CT . (31)

Define L as the set of all possible Lt when the algorithm is
initialized with the initial conditions, x′(0), i.e.,

L = {Lt | x(0) = x′(0)}. (32)

Recall that the weighted Laplacian, Lt, is
symmetric, positive-semidefinite, when the diagonal
matrix, D(θ(t)e(t)), is non-negative. Let Qt =
[q1(t),q2(t), . . . ,qN (t)] be the matrix of N linearly
independent eigenvectors of Lt with the corresponding
eigenvalues denoted by λi(Lt), i = 1, . . . , N . Without loss
of generality, we assume that1 λ1 ≤ λ2 ≤ . . . ≤ λN , and
q1(t) = 1 with the corresponding eigenvalue λ1(Lt) = 0.
Define

p2 , inf
L
λ2(Lt), (33)

pN , sup
L
λN (Lt). (34)

Lemma 5: The eigenvectors of the matrix I−µLt−J are
the column vectors in the matrix Qt and the corresponding
eigenvalues are 0 and 1− µλi(Lt), i = 2, . . . , N .

Proof: The first eigenvector of the matrix I− µLt − J
is q1(t) = 1 with the eigenvalue 0. This can be shown as

(I− µLt − J)q1 = 1− µLt1− J1 = 0. (35)

That the rest of the eigenvectors, q2(t), . . . ,qN (t), of Lt, are
also the eigenvectors of I − µLt − J can be established by
the fact that J is rank 1 with eigenvector 1 and the identity
matrix can have any set of linearly independent vectors as
its eigenvectors.

1Note that Lt is symmetric, positive-semidefinite so its eigenvalues are
positive reals.



The next lemma establishes that xl(t) ∈ [−π/4+ ε, π/4−
ε], ∀ l, t, when the initial condition, x(0), lies in the same
range.

Lemma 6: Let the vector of network initial conditions,
x(0), be such that

xl(0) ∈ [−π/4 + ε, π/4− ε], ∀ l, (36)

where ε > 0 is a sufficiently small real number. Then for µ
in the range 0 < µ ≤ π

2dmax
, we have

xl(t) ∈ [−π/4 + ε, π/4− ε], ∀ l, t. (37)
Proof: We use the following bound to prove this lemma.

2
π
x ≤ sin(x) ≤ x, 0 ≤ x ≤ π

2
. (38)

For any arbitrary node, l, partition its neighbors, K(l), into
KL(l, t) and KG(l, t), where KL(l, t) = {j ∈ K(l) | xl(t) >
xj(t)}, and KG(l, t) = {j ∈ K(l) | xl(t) < xj(t)}. We can
write the NLDAC iterations (9) as

xl(t+ 1) = xl(t)− µ
∑

j∈KL(l,t)

sin(xl(t)− xj(t))

+ µ
∑

j∈KG(l,t)

sin(xj(t)− xl(t)),

≤ xl(t)− µ
∑

j∈KL(l,t)

2
π

(xl(t)− xj(t))

+ µ
∑

j∈KG(l,t)

(xj(t)− xl(t)),

=
(

1− 2µ
π
|KL(l, t)| − µ|KG(l, t)|

)
xl(t)

+
2µ
π

∑
j∈KL(l,t)

xj(t) + µ
∑

j∈KG(l,t)

xj(t), (39)

where the inequality follows from (37) and the bound in (38).
Similarly, we can show

xl(t+ 1) ≥ xl(t)− µ
∑

j∈KL(l,t)

(xl(t)− xj(t))

+ µ
∑

j∈KG(l,t)

2
π

(xj(t)− xl(t)),

=
(

1− µ|KL(l, t)| − 2µ
π
|KG(l, t)|

)
xl(t)

+ µ
∑

j∈KL(l,t)

xj(t) +
2µ
π

∑
j∈KG(l,t)

xj(t). (40)

Combining (39) and (40), xl(t+ 1) remains bounded above
and below by a convex combination of xj(t), j ∈ Dl, when

0 ≤ 2µ
π
|KL(l, t)|+ µ|KG(l, t)| ≤ 1, (41)

0 ≤ µ|KL(l, t)|+ 2µ
π
|KG(l, t)| ≤ 1. (42)

The L.H.S is trivially satisfied in both of the above equations.
To derive µ such that the R.H.S is satisfied for both of the

above equations, we use

µ ≤ 1
2
π (KL(l, t)|+ |KG(l, t)|) , (43)

≤ π

2dmax
. (44)

With µ satisfying the above equation, xl(t + 1) is bounded
above and below by a convex combinations of xj(t), j ∈
D(l). So, if xj(t) ∈ [−π/4 + ε, π/4 − ε], for j ∈ D(l), so
does its convex combinations and thus xl(t+ 1) ∈ [−π/4 +
ε, π/4− ε] and the lemma follows.

Using the above lemma, we now have the following result.
Lemma 7: Let (37) hold. Let the network communication

graph be connected, i.e., λ2(L) > 0, then p2 > 0, for 0 <
µ ≤ π/2dmax.

Proof: Consider Lw as defined in (4) with W > 0
(element-wise inequality, also recall W is a K×K diagonal
matrix with wk=1,...,K

k = wij on its diagonal denoting the
weight of the kth edge, (i, j) ∈ G). We have

zTLwz =
∑

(i,j)∈G

wij(zi − zj)2, (45)

for any z ∈ RN . Since wij > 0,∀(i, j) ∈ G, the quadratic
form (45) is 0 if and only if z = c1, for any c ∈ R. So
Lw has only one eigenvalue of 0 with eigenvector 1. Hence,
λ2(Lw) > 0. Also, note that λ2(Lw) is a continuous function
of wij’s [9]. So the infimum of λ2(Lw) is attainable if the
elements of W lie in a compact set. To this end, define

C = {W ∈ RK×K | wii ∈ [cos(π/2−2ε), 1], wij = 0(i 6= j)},
(46)

and note that D(θ(t)e(t)) ∈ C from Lemma 6. Since Lt =
CD(θ(t)e(t))CT and D(θ(t)e(t)) ∈ C, we note that

p2 = inf
L
λ2(Lt) ≥ inf

W∈C
λ2(Lw). (47)

We now use a contradiction argument to show p2 > 0.
Assume on the contrary that p2 = 0. Then infW∈C λ2(Lw) =
0 and there exists some W ∈ C such that λ2(Lw) = 0.
But, for all W ∈ C, we have λ2(Lw) > 0, which is a
contradiction. Hence, p2 > 0.

We now present the convergence of NLDAC in the fol-
lowing theorem.

Theorem 1: Let the vector of network initial conditions
be denoted by x(0) such that (37) holds. Let the network
communication graph, G, be connected, i.e., λ2(L) > 0. If
µ is such that

0 < µ <
2
pN

, (48)

then

lim
t→∞

‖e(t)‖ = 0. (49)
Proof: From (34) and (48), we have for i = 2, . . . , N

1− µλi(Lt) ≥ 1− µpN > 1− 2
pN

pN = −1. (50)

From (33), we have for i = 2, . . . , N

1− µλi(Lt) ≤ 1− µp2 < 1, (51)
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Fig. 1. Figure corresponding to Remark (i).

from (48) the fact that p2 > 0 from Lemma 7. Combining
(50) and (51), we have

−1 < 1− µλi(Lt) < 1, i = 2, . . . , N, (52)

With the above, we have |1 − µλi(Lt)| < c < 1, i =
2, . . . , N and for some c ∈ [0, 1). Thus, the error norm is
given by

‖e(t+ 1)‖ ≤ max
2≤i≤N

|1− µλi(Lt)|‖e(t)‖ < c‖e(t)‖, (53)

and (49) follows.
We, further, have pN ≤ 2dmax [8], where dmax is the
maximum degree of the graph generated by the Laplacian,
L = CCT . We now have convergence for

0 < µ <
1

dmax
≤ 2
pN

. (54)

Remarks: We now make some relevant remarks.
(i) We explain our assumption in (37) with the help of

Fig. 1. When the data, xl(0), ∀ l, lies in the interval [−π/4+
ε, π/4 − ε], then xl(t) − xj(t) for all t and l 6= j must lie
in the interval [−π/2 + 2ε, π/2− 2ε]. This is true for all t,
since the choice of µ in (48) guarantees a contraction from
Theorem 1. Hence, cos(xl(t) − xj(t)), ∀ t, must lie in the
interval [cos(π/2 − 2ε), 1], which is strictly greater than 0
for ε > 0, as shown in Fig. 1. With cos(xl(t) − xj(t)) ∈
[cos(π/2 − 2ε), 1], ∀ t, we note that Lt does not lose the
sparsity (zero-one) pattern of L and hence, λ2(Lt) > 0, ∀ t.

Clearly, if (37) does not hold but the initial data has
a known bound, we can introduce a frequency parameter,
ζ, in the sine function such that cos(ζ(xl(t) − xj(t))) ∈
[cos(π/2 − 2ε), 1]. Hence, the assumption in (48) does not
lose generality.

(ii) Note that pN may not be known or easily computable
a priori.In that case, one may work with 0 < µ < 1/dmax

as established in (54), which is readily determined.
(iii) Choosing µ away from the bound in (54), results

into a divergence of the algorithm, as we will elaborate in
the simulations. This is a manifestation of the bifurcation
phenomena as arise in the non-linear theory.

V. SIMULATIONS

We consider a network of N = 100 nodes, shown in
Fig. 2(a). We implement the conventional linear distributed
average-consensus algorithm with optimal constant weights,
i.e., we choose

µOPT
LIN =

2
λ2(L) + λN (L)

, (55)

in (7). The error norm in this case is shown in Fig. 2(b) as
a red dotted curve. To show the performance of the NLDAC
algorithm (9), we choose the following values of µ

µ =
{

0.99
dmax

,
2

dmax
,

1
2dmax

,
1

3dmax

}
(56)

and show the error norm in Fig. 2(b) and Fig. 2(c).

VI. CONCLUSIONS

In this paper, we present a non-linear distributed average-
consensus (NLDAC) algorithm that uses the sine of the state
differences among the nodes instead of the conventional
linear update. The convergence rate of the NLDAC algorithm
now depends on the cosine of the state differences (as cosine
is the derivative of the sine) and, thus, depends on the actual
state values. Due to this dependence, the convergence rate
has an additional degree of freedom as the convergence rate
in LDAC only depends on the network connectivity. We
provide simulations to assert the theoretical findings.
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Fig. 2. (a) An N = 100 node network. (b) Comparison of the NLDAC
with LDAC using constant optimal edge weights. (c) The error norm of
NLDAC for different values of µ.


