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Abstract—Distributed energy resources and demand side man-
agement are expected to become more prevalent in the future
electric power system. Coordinating the increased number of grid
participants in an efficient and reliable way is going to be a major
challenge. A potential solution is the employment of a distributed
energy management approach which uses intelligence distributed
over the grid to balance supply and demand. In this paper, we
specifically consider the situation in which distributed resources
and loads form microgrids within the bulk power system in which
load is supplied by local generation. A distributed energy man-
agement approach based on the consensus + innovations method
is presented and used to coordinate local generation, flexible
load and storage devices within the microgrid. The approach
takes advantage of the fact that in the optimum the marginal
costs given as a function of the power output/consumption needs
to be equal for all the network entities (agents). Solutionsfor
single time step as well as multi time step optimization including
inter-temporal constraints are presented.

Index Terms—Economic Dispatch, Consensus + Innovations
Algorithm, Distributed Optimization, Multi-Step Optimiz ation

I. I NTRODUCTION

The trend in the electric power system is to move towards
more and more distributed generation resources, distributed
storage capabilities and participation of the load in the gen-
eration/demand balancing process. This leads to a significant
increase in the number of entities in the system which need
to be coordinated and to electric energy often being generated
closer to the loads. Hence, a possible structure of the future
electric power system could consist of a number of self-
sufficient cells of various sizes which internally coordinate
their generation and load but also exchange or trade some
amount of power with neighboring cells.

Such a self-sufficient cell is referred to as a microgrid [1]–
[3]. Microgrids have the capability to disconnect from the
main grid if needed and locally supply their loads. Prominent
examples for microgrids include university campuses, military
microgrids and islands. Similar to the bulk power system,
the key questions are how to ensure the balance between
generation and demand and how to achieve this in the most
cost-effective way. Hence, the main focus of this paper is to
design an efficient energy management system for a microgrid.

There are two fundamentally different approaches for the
design of such an energy management system. One is to assign
the responsibility of coordinating generation, demand, storage
and main grid connection to a central entity, e.g. [4], [5]. An
optimization problem is solved at the central location and sig-
nals are sent to the individual components. Another approach
is based on multi-agent systems in which the decisions are
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made in a distributed way, e.g. [6], [7]. While any distributed
approach can be implemented at a centralized location for
the purpose of being able to parallelize computation and
therefore improve computation speed, two situations in which
physically distributed computations make sense include (1)
when the participating entities do not want to share all of their
operational information with any other entity and (2) when it is
of importance to ensure that a failure of a single computational
entity, i.e. the central coordinator, will not lead to an inability
to control the system.

For distributed approaches in microgrids, research has
mostly focused on setting up the multi-agent structure, ensur-
ing interoperability to allow for plug-and-play capability and
defining the communication structure. In this paper, we present
an algorithm to be implemented in such a multi-agent structure
and by which the participants in the microgrid coordinate their
control settings in a distributed way. The proposed approach
is based on the consensus + innovations method [8] and does
not require any central coordinator or master agent. Such
an algorithm forms the basis for realizing the plug-and-play
capability of a microgrid. Agents are assigned to nodes to
which generators, loads and/or storage devices are connected.
These agents define incremental cost/demand functions and
constraints for the local energy production and consumption.
The consensus portion of the algorithm facilitates the agree-
ment on an incremental price for the energy provided and the
innovation portion ensures that total generation matches total
demand [9].

Prior distributed approaches to schedule generation and/or
load are mostly based on Lagrangian and Augmented La-
grangian Relaxation [10]. Applications of these methods to
model predictive control in electric power systems include
[11]–[13]. The approach presented in this paper is concep-
tually very different from these decomposition theory based
approaches. It is based on obtaining a distributed iterative
solution of the system of first order optimality equations
(KKT conditions) associated with the constrained optimization
problem. Specifically, by exploiting the special structureof the
optimality equations, we show that the problem of obtaining
optimal generator allocations can be reduced to adistributed
restricted agreement problem – at any given stage the optimal
generator allocations are uniquely determined by a single pa-
rameter which coincides with the marginal price of generation
at the non-binding generators, i.e., the generators which do
not reach their capacity limits at the optimal allocation. We
propose a consensus + innovations approach to ensure that the
generators reach an agreement on this parameter. Another key
difference, as far as implementation is concerned, is that in
the decomposition based approaches, the coordinating entities
actually need to solve a local optimization problem whereasin
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the presented approach the computational effort of each entity
is limited to evaluating simple algebraic variable updatesand
projecting the values into the feasible space for these variables.

The most relevant related work with regards to consensus
based methods has been presented in [14]–[17] where a
decentralized economic dispatch approach based on the con-
sensus algorithm has been introduced. The two key differences
between our approach and this work are that we do not assign
any leading role (for achieving global coordination) to any
of the generators and we consider a multi-step optimization
including inter-temporal constraints allowing for optimal in-
tegration of storage devices and consideration of generation
ramp rates. Usage of the consensus algorithm for the purpose
of ancillary service provision is presented in [18]. However,
the focus is on ensuring resilience against potential packet
drops and it also uses a coordinator which determines the total
amount of required power. Compared to our earlier work [9],
where we employed the consensus + innovations approach to
derive a distributed economic dispatch algorithm, we extend
the approach to optimize over multiple time steps enabling
distributed Model Predictive Control and we include flexible
loads and storage devices as controllable components.

The remaining part of the paper is structured as follows:
Sect. II introduces the problem formulation for single and
multi-step economic dispatch. In Sect. III, the proposed
distributed approach based on the consensus + innovations
algorithm is derived. Sect. IV discusses the robustness of the
algorithm. Sect. V provides simulation results and Sect. VI
concludes the paper.

II. PROBLEM FORMULATION

We consider a microgrid which includes dispatchable
and non-dispatchable generators, critical/inflexible andnon-
critical/flexible loads and storage devices. A storage could be
a battery but also plug-in electric vehicles which are available
only intermittently. In this section, we provide the mathemat-
ical problem formulation which we will use subsequently in
the next section to derive the distributed algorithm. First, we
focus on a single time step formulation and then extend it to
include inter-temporal constraints in a multi-step formulation.

A. Single Time Step

We assign a quadratic cost/demand function to each com-
ponentn given by

Cn(Pn) =
1

2
anP

2
n + bnPn + cn (1)

with an, bn, cn ≥ 0 and Pn > 0 if the power is generated
or injected into the system andPn < 0 if it is consumed or
drawn from the system. For generators, the function reflects
the costs of producing the powerPn whereas for loads, it is
the (negative) cost the load is willing to pay for power|Pn|.
For a storage device,Pn is positive whenever the storage is
discharging, i.e. the function corresponds to the amount the
storage is willing to accept for the provision ofPn, and it is
negative whenever the storage is charging which corresponds
to acting like a load. The powerPn is upper and lower bounded

Pn ≤ Pn ≤ Pn (2)

with Pn, Pn ≥ 0 for generators,Pn, Pn ≤ 0 for loads and
Pn ≤ 0, Pn ≥ 0 for storage devices. Inflexible loads and
“must take” generation such as from PV or wind generation
can be modeled by setting upper and lower limits equal to each
other resulting in the correspondingPn variables becoming
constants instead of optimization variables.

The objective is to determine the settings of the components,
i.e.Pn’s, that maximize the (concave) social welfare given by

SW = −
N
∑

n=1

Cn(Pn) (3)

In addition, the power balance
N
∑

n=1

Pn = 0 (4)

and the upper and lower bounds on the power in-
jected/consumed as defined in (2) forn = 1, . . . , N need to
be fulfilled whereN is the total number of components to be
coordinated.

It can be derived from the first order optimality conditions of
this optimization problem that the following conditions need to
hold for the optimal solution: the marginal costs at the solution

dCn(Pn)/dPn = anPn + bn
.
= λn (5)

for all system componentsn for which Pn has not reached
the upper or lower limit have to be equal to the same value,
namely thesystem price λ∗ at the optimal solution, and the
power balance (4) needs to be fulfilled. Components for which
the optimal setting isPn, yield a marginal cost as defined in
(5) that is lower thanλ∗ and components for which the optimal
setting isPn, yield a marginal cost that is greater thenλ∗. The
system priceλ∗ is also the Lagrange Multiplier associated with
the power balance equation (4).

Nonetheless, assuming that the primal problem admits a
feasible solution, it may be shown (see [9]) that the optimal
settings at all the system entities can be uniquely parameter-
ized in terms of the quantityλ∗, in that, the optimal setting
P ∗
n at an entityn is given by

P ∗
n = Pn

[

λ∗ − bn
an

]

, (6)

wherePn[·] denotes the projection operator associated with
entityn, i.e., it projects the argument into the feasible solution
space[Pn, Pn].

Now, given the power balance constraint (4), the goal of
a distributed algorithm can be formalized as arestricted
agreement problem, in which the entities seek to reach an
agreement on the quantityλ∗ that satisfies (see also [9]):

N
∑

n=1

P ∗
n =

N
∑

n=1

Pn

[

λ∗ − bn
an

]

= 0. (7)

Furthermore, note that each entityn is only aware of its local
marginal cost/demand function parameters and capacity con-
straints, and hence, cannot directly solve (7). Hence, the need
for collaboration through inter-entity information exchange
arises, which motivates our distributed algorithm in Sect.III
to determineλ∗ satisfying (7) at each entity.

For illustrative purposes, characteristic marginal cost curves
for generation, load and storage are shown in Fig. 1.
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Fig. 1. Marginal cost functions for (a) generator, (b) load and (c) storage.

B. Multiple Time Steps

When introducing storage into the system, it is indispensable
to optimize over multiple time steps concurrently because not
only instantaneous power is limited but also energy. In order
to take into account these inter-temporal constraints and to
make efficient use of the available storage capacity, we extend
the single step problem to a multi-step optimization problem.
This allows us to also include other inter-temporal constraints
such as ramping limitations on generation output. Hence, the
problem formulation is given by

max
Pn,k

K−1
∑

k=0

N
∑

n=1

(−Cn,k(Pn,k)) (8)

s.t.

N
∑

n=1

Pn,k = 0, k = 0, . . . ,K − 1 (9)

Pn,k ≤ Pn,k ≤ Pn,k, k = 0, . . . ,K − 1 (10)

∆Pn ≤ Pn,k − Pn,k−1 ≤ ∆Pn, k = 0, . . . ,K − 1 (11)

and for storage devices additionally

En ≤ En,0 −

k
∑

l=0

Pn,l ≤ En, k = 0, . . . ,K − 1 (12)

wherePn,k is the power output of componentn at time step
k and K is the number of steps considered in the multi-
step optimization. Constraint (9) corresponds to the power
balance at each step, (10) is the limit on instantaneous power
injection/consumption, (11) corresponds to ramping limits
with lower and upper ramping limits∆Pn,∆Pn and (12)
incorporates the upper and lower limitsEn, En on stored
energyEn,k. The initial values for power injection/withdrawal
are denoted byPn,−1 andEn,0, respectively.

Furthermore, we add a terminal constraint

En,N = En,0 −

K−1
∑

l=0

Pn,l = Ef
n (13)

for the storage which ensures that the energy levelEn,N at
the end of the optimization horizon is equal to a fixed value
Ef

n , e.g.Ef
n = 0.5 ·En. Adding such a terminal constraint in

essence corresponds to adjusting the cost function parameter
bn. This valuebn is equal to the price below which the storage
charges and above which it discharges.

The optimal solution to the above problem is given by

N
∑

n=1

Pn,k = 0, (14)

and marginal costsλn,k, k = 1, . . . ,K being equal to the
optimal system prices, namelyλ∗

k, k = 1, . . . ,K. Power
outputs are given by

Pn,k =
λ∗
k − bn
an

(15)

and projecting it into the feasible solution space defined by
constraints (10) – (13) applicable to componentn. Here,λ∗

k

is the marginal cost / price at time stepk of the horizon at
the optimum which is also equal to the Lagrange Multiplier
associated with the power balance equation at time stepk
in the optimization problem andλn,k is a local copy of this
variable of componentn.

III. D ISTRIBUTED SCHEDULING

It is assumed that generators, loads and storage devices
are connected to nodes in the microgrid and an agent is
assigned to each node. The proposed algorithm by which the
agents coordinate is based on the consensus + innovations
approach. In this section, we first give a general introduction
to this approach, describe how it is used in the single step
optimization and then extend it to the multi-step case.

A. Distributed Decision-Making: Consensus + Innovations

We briefly review the consensus + innovations method
and its variants, a generic approach for solving distributed
decision-making problems in multi-agent networks, e.g. [8].
The decision-making setups that fall under the purview of con-
sensus + innovations typically involve collaborative distributed
information processing such as estimation, optimization and
control in agent networks, in which each network agent has
a priori access to only local information, such as knowledge
of model parameters and sensed data, and inter-agent com-
munication (interaction) is restricted to a pre-assigned sparse
communication graph. Broadly speaking, in the consensus
+ innovations architecture, the autonomous network agents
or decision-makers engage in local information processing
and neighborhood communication to achieve or optimize the
global decision-making task of interest.

For definiteness in this paper we restrict the discussion
of the consensus + innovations method to the distributed
restricted agreement problem in multi-agent distributed net-
works. Formally, in an information processing network, ofJ
agents, the restricted agreement problem consists of having the
J agents agree on a common valueν subject to the equality
constraint (restriction)

g(ν) =
J
∑

j=1

hj(ν) =
J
∑

j=1

∑

n∈Ωj

dn(ν) = 0 (16)

and inequality constraints

dn ≤ dn(ν) ≤ dn, n ∈ Ωj , j = 1, · · · , J, (17)

where
∑J

j=1 |Ωj | = N for some positive integerN , i.e., the
sets{Ωj}j∈J constitute a partition of[1, · · · , N ], dn(·), n =
1, · · · , N are certain real-valued functions, anddn, dn ∈
[−∞,∞], for n = 1, · · · , N , are constants. Moreover, we are
interested in a distributed solution of the restricted agreement
problem in which, (i) to start with, each agentj is only
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aware of its set oflocal functions dn(·), n ∈ Ωj and the
corresponding inequality constraints (17), and (ii) inter-agent
communication for information exchange is restricted to a pre-
assigned communication graph. Under broad assumptions on
the local functionsdn(·)’s and the inter-agent communication
topology (to be made precise later) an iterative algorithm of
the consensus + innovations type may be applied to solve the
above distributed restricted agreement problem.

Before proceeding to the general consensus + innovations
solution, as a side remark, we comment on a specific instance
of the above distributed restricted agreement problem in which
the (aggregate) local functionshj(·)’s are affine functions of
the form hj(ν) = ν − xj where thexj ’s are real constants
anddn = −∞ anddn = ∞ for all n ∈ Ωj andj = 1, · · · , J ,
i.e., the inequality constraints are relaxed. In other words, the
agents want to agree on the average value(1/J)

∑J

j=0 xj .
Historically, this version of the restricted agreement problem
is referred to as the average consensus problem or simply
the agreement problem and has been studied extensively over
the last few years, e.g. see the review papers [19], [20].
The problem with generic functionsdn(·)’s and inequality
constraints is more involved and in the following we describe
the consensus + innovations method [8] for a general solution
methodology.

In the consensus + innovations method, each agentj main-
tains a local copyνj(i) of the variableν which is iteratively
updated, withi denoting the iteration index, as follows:

1) Update local copy of common variable according to

νj(i + 1) = νj(i)− βi

∑

l∈ωj

(νj(i)− νl(i))

− αi

∑

n∈Ωj

d̂n(i) (18)

where αi and βi are weight parameters,ωj is the
communication neighborhood of agentj as prescribed
by the given inter-agent communication topology, i.e.
the subset of network agents with which agentj can
exchange information directly, and

d̂n(i) = Pn [dn(νj(i))] , n ∈ Ωj , (19)

where Pn[·] denotes the projection operator onto the
interval [dn, dn];

2) Update dependent variables according to (19) to obtain
d̂n(i + 1), n ∈ Ωj ;

3) Exchange local valueνj(i + 1) with agents in the
communication neighborhoodωj and increase iteration
counteri.

Typical conditions that ensure convergence, i.e.,νj(i) → ν
as i → ∞ for all j with ν satisfying (16)-(17), are as follows
(see, e.g. [8]):

• The local functionsdn(·)’s are sufficiently regular1.
• The inter-agent communication network needs to be

connected2.

1Several regularity conditions of the form of Lipschitz continuity, mono-
tonicity etc. are presented in [8] that ensure convergence.

2By connectivity, we mean that there exists a path, possibly multi-hop,
between any pair of agents. As such, the communication network may be
quite sparse and in fact, much sparser, than the physical grid topology which
is typically dense.

• The weight parametersαi, βi are positive and satisfy the
following conditions:

– As i → ∞, the sequences{αi} and {βi} are
decaying, i.e.,αi → 0, βi → 0.

– The excitations are persistent, i.e.,
∑

i≥0

αi =
∑

i≥0

βi = ∞ (20)

– The consensus potential asymptotically dominates
the innovation potential, i.e.,βi/αi → ∞ asi → ∞.

B. Single Step

In the single step application, only the scheduling for one
time step is considered. To this end, letj = 1, · · · , J denote
the nodes (agents) in the microgrid and letn ∈ Ωj index the
components (generators, loads and storage devices) connected
to nodej. Also, let N =

∑

n∈Ωj
|Ωj | be the total number

of microgrid components. The common variableν that the
agents need to agree on corresponds to the marginal cost of
supplyλ for that time step whereas the constraintg(ν) which
needs to be fulfilled is the power balance between supply and
demand. Specifically, according to (7) and the development in
Sect. III-A, the local component function̂dn(λ) is the power
Pn injected/drawn by componentn which can be given as a
function ofλ by

d̂n(λ) = Pn(λ) = Pn

[

λ− bn
an

]

, (21)

wherePn[·] is the projection operator corresponding to the
local capacity constraints which as explained later are adjusted
from (7) to also include generator ramp rate and energy storage
constraints for this single time step.

According to (18), each agentj carries out the following
iterative calculations

λj(i+ 1) = λj(i)− βi

∑

l∈ωj

(λj(i)− λl(i))

− αi

∑

n∈Ωj

Pn(i) (22)

Hence, the part of the innovation term assigned to agentj
corresponds to the sum of power injections/consumptions of
the components connected to nodej, i.e. n ∈ Ωj .

Then, the power injected/consumedPn(i) for n ∈ Ωj is
updated according to

Pn(i+1) =



























λj(i+1)−bn
an

, Pmin
n <

λj(i+1)−bn
an

< Pmax
n

Pmax
n , λj(i+1)−bn

an
≥ Pmax

n

Pmin
n , λj(i+1)−bn

an
≤ Pmin

n

(23)
where Pmin

n and Pmax
n are defined as in Table I. Hence,

the upper and lower capacity constraints are adjusted to take
into account generation ramp rate and energy level constraints
for this one single time step. The initial generator output
and storage energy level are denoted byPn,−1 and En,0,
respectively, andT is the length of one time step.
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TABLE I
INCORPORATION OF INTER-TEMPORAL CONSTRAINTS INTO UPPER AND

LOWER BOUND FOR POWER INJECTION/WITHDRAWAL .

Pmin
n Pmax

n

Gen. max(Pn, Pn,−1 +∆Pn) min(Pn, Pn,−1 +∆Pn)
Load Pn Pn

Stor. max(Pn,
1

T
(En,0 − En)) min(Pn,

1

T
(En,0 − En))

Note that the inter-agent communication topology (i.e., who
talks to whom) may differ significantly from the physical
power system electrical coupling among the agents and is,
in fact, typically much sparser than the physical coupling
topology. In particular, we only assume that there exists a path
comprising, perhaps, of multiple communication hops between
any two pair of agents, i.e., the inter-agent communication
network is connected. Moreover, note that, in the update
rule (22) each agent needs to be aware of its local model
parameters (an’s and bn’s) only; this is unlike a centralized
optimization approach in which each agent needs to commu-
nicate and coordinate with a fusion center, the latter having
access to the model parameters of all the agents. Interestingly
enough, we show that, even under such restrictions on agent
communication and lack of global model information, the
proposed update rule converges to the optimal schedules at
each agent (see also [9]).

C. Multi-Step

In the multi-step application as described in Sect. II-B, a
horizon of multiple time steps in the future is considered
concurrently. This results in an overall decrease in cost of
supply as preventive actions such as charging the storage
device in anticipation of needed energy in the future can be
taken. In this case, the consensus + innovations application
becomes multi-dimensional, i.e.,λj and P n, n ∈ Ωj are
vectors including the prices/marginal costs and the power
output/consumption for the time steps within the horizon,
respectively. The update given in (22) still applies but now
as a vector update resulting in the following update for each
time stepk

λj,k(i + 1) = λj,k(i)− βi

∑

l∈ωj

(λj,k(i)− λl,k(i))

− αi

∑

n∈Ωj

Pn,k(i) (24)

with k = 0, . . . ,K − 1.
The projection into the solution space can be achieved by

the following constrained least square minimization for each
componentn ∈ Ωj

3

min
Pn

K−1
∑

k=0

(

Pn,k −
λj,k − bn

an

)2

(25)

s.t. Pn ≤ Pn,k ≤ Pn, k = 0, . . . ,K − 1 (26)

∆Pn ≤ Pn,k − Pn,k−1 ≤ ∆Pn, k = 0, . . . ,K − 1 (27)

En ≤ En,0 −

k
∑

l=1

Pn,l ≤ En, k = 0, . . . ,K − 1 (28)

3For simplicity, the iteration counter(i+1) is omitted inPn,k(i+1) and
λj,k(i+ 1).

En,N = En,0 −

K−1
∑

l=0

Pn,l = Ef
n (29)

Constraints (28) and (29) are only applicable if componentn
is a storage device. If the component is a load and ramping
of the load is unlimited, then constraint (27) can either be
neglected or limits are set to infinity.

The same statements concerning communication topology
and connectivity hold as in the single step application.

D. Overview Application Flow

The application of the multi-step consensus approach is
visualized in Fig. 2. At timet = t1 the goal is to determine
the optimal settingsPn,k for the generators, loads and storage
devices for the nextk = 0, . . . ,K − 1 steps fulfilling all
constraints on ramp rates, maximum generation output, energy
level, etc. Hence, the optimization horizon corresponds to
t = t1, . . . , t1 + K. The consensus algorithm as described
in Sect. III-C is used to determine these settings withi
corresponding to the iteration counter. Once the agents have
agreed onλj,k, k = 0, . . . ,K − 1 and optimal settings
Pn,k, k = 0, . . . ,K − 1 have been found, the first stepPn,1 is
applied, the optimization horizon is moved by one time step
and the consensus algorithm is restarted fort2.

The choice of the initial starting point in the iterative
process of the consensus algorithm has great influence on the
convergence of the algorithm. In the considered application for
the coordination in a microgrid, it can be assumed that most
of the time the external inputs such as the parametersan, bn
and any upper and lower limits do not change drastically from
one time step to the next. Hence, a reasonable approach is to
use the solution determined at the previous time stept− 1 as
a starting point for the time stept.

Figure 3 gives an overview over the entire application flow
where the solution for time stept is denoted byλt

j ,P
t
n. In

the very first time stept = 0, no solutionλt−1
j ,P t−1

n for
the previous time step is available to use as starting point in
the consensus algorithm. Hence, an initialization is required,

t = t1

t = t2

i

i

0

0

0

0

λj(i),P n(i)

λj(i),P n(i)

Pn,k

Pn,k

λj,k

λj,k

K

K

k

k
t1

t2
t

t

C
on

se
ns

us

C
on

se
ns

us

Optimization Horizon

Optimization Horizon

Fig. 2. Visualization of multi-step consensus algorithm.
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Set t := 0
Initialize λ

t−1

j ,P t−1
n

Set i := 0

λj(i) = [λt−1

j,2...K
,λ

t−1

j,K
]

P n(i) = [P t−1

n,2...K
,P

t−1

n,K
]

Updateλj(i+ 1)
Single-Step: (22), Multi-Step: (24)

UpdateP n(i+ 1)
Single-Step: (23), Multi-Step: (25)-(29)

|λj(i+ 1) − λj(i)| < ǫ1?

|P n(i+ 1)− P n(i)| < ǫ2?

Solution for t:

λ
t
j = λj(i + 1)

P
t
n = P n(i+ 1)

yes

no

i := i+ 1

t := t+ 1

Fig. 3. Flow chart consensus update.

e.g. by using a flat start or by using historic solution data.
In the following time stepst, λt−1

j ,P t−1
n corresponds to the

solution at the previous stept− 1. An advantage of the multi-
step application is that good initial settings fork = 0, . . . ,K−
1 are available from the solution at the previous time step.
Only the initial settings for the newly included time stepk =
K need to be found. We make the assumption that the settings
for k = K will be close to the settings atk = K−1 resulting
in initial settings

λj(0) = [λt−1
j,2...N ,λt−1

j,N ] (30)

P n(0) = [P t−1
n,2...N ,P t−1

n,N ] (31)

for the consensus algorithm. Then, the iterative process ofthe
consensus approach is carried out, i.e.λj ,P n are updated and
after each iteration the stoping criteria is checked. If changes
in λj and P n are lower thanǫ1 and ǫ2, respectively, the
consensus iterations are stopped and restarted for a shifted
optimization horizon with initial values given by (30) and (31).

For the single step approach, the procedure is very similar
to setting the horizon equal toK = 1. In that case,λj , Pn

are scalars and the initial values for the consensus algorithm
correspond the values obtained at the previous time step.

IV. ROBUSTNESS

The proposed distributed scheduling algorithms of the con-
sensus + innovations type are robust to a wide class of
perturbations resulting from intermittent inter-agent commu-
nication failures, noisy or quantized data exchange, and other
forms of randomness in the communication infrastructure.
For instance, due to data-packet scheduling and interference

issues in multi-agent scenarios involving wireless agent-to-
agent communication or infrastructure failures in wired com-
munication environments, the designated communication links
may not be active at all instants; moreover, even in the event
of an active communication link between a pair of agents, the
transmitted data may be noisy or distorted due to quantization
and other channel effects. The proposed consensus + inno-
vations scheduling structure stays valid under a wide range
of such communication imperfections; for instance, by adding
the square summability requirement

∑

i≥0 α
2
i < ∞ on the

innovations weight sequence{αi}, the effect of independent
and identically distributed additive communication noisemay
be mitigated. For random communication link failures, as long
as the network isconnected in the mean, the convergence
of the proposed iterative procedure to the optimal will be
retained, see, for example, [8].

V. SIMULATIONS

In this section, simulation results are provided as a proof of
concept. Due to limited space, we focus on simulations for the
multi-step application. For single step simulations, the reader
is referred to [9].

A. Simulation Setup

The considered microgrid consists of 14 nodes as shown in
Fig. 4. Dispatchable generators are located at buses 1, 2, 3,6
and 8, a wind generator is placed at bus 9 and a storage device
is placed at bus 7. The connections indicate communication
lines between components in the microgrid. The test system
has been derived from the IEEE 14 bus system using the
physical connections as indications for communication lines.
However, physical and communication connections do not
necessarily have to coincide.

The parameters for generators, loads and storage are given
in Tables II - IV. It is assumed that the minimum generation
level for all dispatchable generators is 0pu and that the ramp
up and down limits are equal, i.e.∆Pn = −∆Pn. The
simulations are carried out for an entire day in 5 minute
intervals and the prediction horizonK is chosen to be equal
to 20 time steps.

It can be assumed that the parameters for the generators
and storage stay the same over a longer time period whereas

1

2 3

45

6 7

89

1011

12 13 14

W

Fig. 4. Test System.
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TABLE II
GENERATORPARAMETERS (MU = MONETARY UNITS)

Bus an [mu/pu2] bn [mu/pu] ∆Pn [pu/5min] Pn [pu]
1 0.084 2.0 20 100
2 0.056 3.0 5 105
3 0.070 4.0 10 100
6 0.060 4.0 50 90
8 0.080 2.5 15 80

TABLE III
LOAD PARAMETERS (MU = MONETARY UNITS)

Bus an [mu/pu2] bn [mu/pu] Pn [pu] Pn [pu]
2 0.080 7.5 -50 -5
3 0.060 6.0 -40 -3
4 0.070 8.0 -80 -6
5 0.064 6.5 -30 -2
6 0.040 7.5 -70 -8
9 0.060 8.0 -80 -10
10 0.076 7.0 -40 -5
11 0.070 7.5 -25 -2
12 0.080 8.0 -90 -8
13 0.070 7.0 -30 -2
14 0.084 8.0 -80 -10

TABLE IV
STORAGEPARAMETERS (MU = MONETARY UNITS)

Bus an [mu/pu2 ] ∆Pn [pu] Pn [pu/5min] En [puh]
7 0.02 50 50 20

the parameters for the load change to reflect varying needs
over the course of the day. Each load is an aggregation of
multiple loads, including flexible and inflexible loads. Varying
needs for such an aggregated load are modeled by adjusting
the parameterbn in the demand function and the minimum
and maximum demand limitsPn andPn, respectively. It is
assumed that the agent of each load predicts the parameters
required to cover its consumption and then schedules the load
according to the outcome of the distributed energy balancing
management. The upper limitsPn, i.e. lowest absolute values
for the demand, correspond to the portion of the fixed loads.

As predictive optimization is employed, the agents need to
predict the consumption for the entire prediction horizonK but
these predictions may be inaccurate. Hence, such uncertainty
is simulated by introducing prediction errors. To simulatethe
varying demand over the day, we multiplybn, Pn, Pn with
the values given in Fig. 5. To distinguish between prediction
and actually occurring load, the bold line in Fig. 5 gives the
multiplication factor which actually occurs and the dottedline
what has been predicted. Hence,bn, Pn, Pn are multiplied
with the values of the dotted line for the predictions and
multiplied with the values of the bold line for the actual
realizations of the load. It is assumed that predictions improve
the closer the predicted time step to the current time step, i.e.
for the first five time stepsk = 0, . . . , 4 in the prediction
horizon the errors are reduced from what is shown in Fig. 5
inversely proportionally tok.

Similarly, also the output from the non-dispatchable genera-
tor at bus 9 needs to be predicted. The actual and the predicted
power output over the entire day is given in Fig. 6. Again, it
is assumed that predictions for the near term future are more
accurate than the predictions for the rest of the optimization
horizon. Hence, again, for the first five time stepsk = 0, . . . , 4
in the prediction horizon the prediction errors are reduced
inversely proportionally tok.
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Fig. 5. Load Curve.
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Fig. 6. Wind Curve.

The tuning parametersα andβ are set to

αi =
0.055

i0.98
, βi =

0.2

i0.001
(32)

wherei is the iteration counter. Stopping tolerances as defined
in Fig. 3 are set to

ǫ1 = 0.0001, ǫ2 = 0.001. (33)

B. Simulation Results: Normal Operation

The number of iterations required to converge given the
convergence criteria and simulation parameters defined in the
previous section are given in Fig. 7. Depending on the time
step, the algorithm converges within 50 to 250 iterations.
The computational effort required at each of these iteration
steps is limited to evaluating the algebraic equations (24)and
projecting the values of the variables into the feasible solution
space. Hence, computationally each iteration step is very
inexpensive. Compared to approaches based on decomposition
theory, the number of iterations of the proposed approach is
most likely higher, however the computational complexity at
each individual iteration is significantly lower.

High accuracy has been chosen as convergence criterion.
If accuracy is to be improved even further, more iteration
steps will be necessary. On the other hand, if accuracy can
be reduced, also the number of required iterations reduces.It
should be noted that the same settings forαi andβi as defined
in (32) are used for each time stept. The values decay over
the iterations but the initial values and the speed of decay is
the same for every simulated time step. Hence, making these
settings adaptive for different levels of loading based e.g. on
learning would improve convergence.

It is also possible to choose fixed, non-decaying values for
α and β which will speed up convergence, in which case
the algorithm in fact converges exponentially fast, however,
this will result in a deviation from the optimal solution. The
magnitude of the error is a function of the chosen values forα
andβ [9]. Furthermore, it is possible to trade-off convergence
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Fig. 11. Ramping of generators.

rate with accuracy, i.e., by properly selecting the fixed values
of α and β, the deviation from the optimal solution can be
made arbitrary small at the cost of slower convergence rate.

Figure 8 shows the generation and the storage power output
settings over the course of the simulated time range. It can be

6.77
6.78

6.78

6.78

6.79

6.79

6.79

6.80

6.80

6.81

6.82

6.84

6.86

2020

2020

4040

4040

6060

6060

8080

8080

λ
1

[m
.u

.]

λ
8

[m
.u

.]

λ
1
4

[m
.u

.]

λ
2
0

[m
.u

.]

IterationIteration

IterationIteration

Fig. 12. Evolution ofλ’s for all nodes for prediction stepsk = {1, 8, 14, 20}
at time stept = 160.

seen that the proposed algorithm is capable of successfully
taking into account upper and lower limits on generation
capacity. Figure 9 provides the consumption by the individual
loads. At the beginning and the end of the simulation there are
multiple time steps during which loads reach their lower limits
indicating that only inflexible/fixed loads are supplied at these
nodes. In Fig. 10, the resulting level of energy in the storage
device is given. The storage is mostly used for arbitrage,
i.e. charging in low load situations and discharging in highload
situations allowing for a reduced required generation capacity.
Furthermore, it provides support in balancing out some of the
short term variability. Figure 11 provides the ramping of the
generators, indicating that constraints on ramp rates are met.

To provide insight into the convergence behavior, Fig. 12
shows the evolution ofλ for the consensus iterations at time
stept = 160. The dimension ofλ for each nodej is equal to
the prediction horizon. Here, we show theλ’s at all nodes for
stepsk = 1, 8, 14, 20 in the prediction horizon.

C. Simulation Results: Generator Disconnect

An advantage of the fully distributed approach is that it
allows for a plug-and-play mechanism. Hence, in the following
simulation, the performance of the proposed algorithm is tested
for the case in which the generator at node 3 is disconnected
at time stept = 80 and reconnected at timet = 90. Fig. 13
gives the number of iterations to converge, the generator
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Fig. 13. (a) Number of iterations, (b) generator and storageoutputs, (c)
generator ramping for generator disconnect att = 80 and reconnect att = 90.
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outputs and the ramp rates. It can be seen that convergence
is achieved within∼ 450 iterations in the time steps of the
disconnection and reconnection. The iterations for the other
time steps stay in the range as in Fig. 7. The reason for the
increased number of iterations is the fact that we assume that
the disconnection/reconnection has not been predicted, hence,
the initial point for the consensus algorithm is not as accurate
as with no disconnection. Figs. 13(b) and 13(c) show the
disconnect of the generator and the increase in power injection
at the maximum ramp rate as soon as it is reconnected.

Figures 14 and 15 show the evolution of theλ’s over the
iteration of the consensus algorithm. It is obvious that a greater
correction from the initial point is required which leads toa
higher number of iterations to fulfill the stopping criterion.

D. Simulation Results: Additional Communication

The convergence rate, measured in number of iterations
until a pre-defined convergence criterion is fulfilled, of any
distributed algorithm is dependent on the choice of the com-
munication graph. It is not the focus of this paper to derive the
optimal communication graph, however, in this section, simu-
lations are provided which indicate how the convergence rate
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Fig. 16. Iteration steps required to converge with additional communication
links.

can be improved by adding a few additional communication
links.

In addition to the communication network shown in Fig. 4,
we add three communication links, namely between nodes
3 and 12, between nodes 1 and 8 and between nodes 6
and 7. The additional communication links have been chosen
such as to connect buses which are at opposite ends of the
communication network with the result that the diameter of
the network defined as the maximum number of nodes over
which information needs be communicated to travel from one
node to another in the network is reduced. The effect is that
information spreads faster in the network leading to improved
convergence.

The resulting numbers of iterations for the normal operation
case, i.e. the same simulation setup as in Sect. V-B but with
additional communication links, are provided in Fig. 16. Itcan
be seen that the required number of iterations has decreased
significantly.

VI. CONCLUSION

In this paper, an approach for the coordination of agents in
a microgrid is presented. It is assumed that each generator,
load and storage device is connected to a specific node which
is shadowed by an agent. The respective agent defines cost
and demand functions for the producers and consumers at
its node and communicates with the agents of neighboring
nodes. The goal of the communication process is to find
an agreement on an incremental “price” for power provision
while ensuring that overall generation is equal to load. The
proposed approach uses the consensus + innovations method
allowing for a robust and fully distributed coordination of
the components in the microgrid. Optimal usage of available
storage and incorporation of ramp rate limitations is achieved
by applying the method to a multi-step economic dispatch. In
the multi-step case, agents need to agree on prices for each
time interval in the prediction horizon. Operational constraints
are observed by projecting the obtained temporary solution
into the feasible solution space. Adding a receding horizon
to the multi-step optimization enables a distributed Model
Predictive Control approach and allows for good initial starting
points for the consensus algorithm.
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