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Abstract—Distributed energy resources and demand side man- made in a distributed way, e.g. [6], [7]. While any distriedt
agement are expected to become more prevalent in the future gpproach can be implemented at a centralized location for
electric power system. Coordinating the increased numberfarid the purpose of being able to parallelize computation and

participants in an efficient and reliable way is going to be a rajor theref . tati d t T incivhi
challenge. A potential solution is the employment of a distbuted ~ 11€r€10ré Improve computation speed, two situations incwhni

energy management approach which uses intelligence distited  Physically distributed computations make sense include (1
over the grid to balance supply and demand. In this paper, we when the participating entities do not want to share all efrth

specifically consider the situation in which distributed resources operational information with any other entity and (2) wheis i
and loads form microgrids within the bulk power system in which s importance to ensure that a failure of a single computatio

load is supplied by local generation. A distributed energy ran- L . - "
agement approach based on the consensus + innovations megho ENtILY: 1-€- the central coordinator, will not lead to anbitiy

is presented and used to coordinate local generation, flexip 0 control the system.
load and storage devices within the microgrid. The approach  For distributed approaches in microgrids, research has
takes advantage of the fact that in the optimum the marginal mostly focused on setting up the multi-agent structureyens
costs given as a function of the power output/consumption resls ing interoperability to allow for plug-and-play capabjliand
to be equal for all the network entities (agents). Solutiongor - L .

defining the communication structure. In this paper, wegnes

single time step as well as multi time step optimization inelding . : : ¢
inter-temporal constraints are presented. an algorithm to be implemented in such a multi-agent stnectu

Index Terms—Economic Dispatch, Consensus + Innovations and by which the participants in the microgrid coordinatsrth

Algorithm, Distributed Optimization, Multi-Step Optimiz ation ~ control settings in a distributed way. The proposed apgroac
is based on the consensus + innovations method [8] and does

not require any central coordinator or master agent. Such
_ ) ) an algorithm forms the basis for realizing the plug-and¢pla
The trend in the electric power system is to move towar@@pability of a microgrid. Agents are assigned to nodes to
more and more distributed generation resources, disétbutyhich generators, loads and/or storage devices are cathect
storage capabilities and participation of the load in the-geThese agents define incremental cost/demand functions and
eration/demand balancing process. This leads to a sigmific@onstraints for the local energy production and consumptio
increase in the number of entities in the system which negfie consensus portion of the algorithm facilitates the egre
to be coordinated and to electric energy often being gee@rafent on an incremental price for the energy provided and the
closer to the loads. Hence, a possible structure of the dutyznovation portion ensures that total generation matcbs t
electric power system could consist of a number of selffemand [9].
SuffiCient Ce||S Of Various Sizes Wh|Ch interna"y COOI‘dEla Prior distributed approaches to schedule generation and/o
their generation an_d Ioaq but _also exchange or trade SOBgd are mostly based on Lagrangian and Augmented La-
amount of power with neighboring cells. grangian Relaxation [10]. Applications of these methods to
Such a self-sufficient cell is referred to as a microgrid [1Jmodel predictive control in electric power systems include
[3] MiCI’OgridS have the Capablllty to disconnect from tthl]_[ls] The approach presented in this paper is Concep_
main grid if needed and locally supply their loads. Promtneqally very different from these decomposition theory lshse
examples for microgrids include university campuses temifi approaches. It is based on obtaining a distributed iterativ
microgrids and islands. Similar to the bulk power systempution of the system of first order optimality equations
the key questions are how to ensure the balance betwgRRT conditions) associated with the constrained optirticza
generation and demand and how to achieve this in the mggbplem. Specifically, by exploiting the special structaf¢he
cost-effective way. Hence, the main focus of this paper is gytimality equations, we show that the problem of obtaining
design an efficient energy management system for a microgidghtimal generator allocations can be reduced hsiributed
There are two fundamentally different approaches for thestricted agreement problem — at any given stage the optimal
design of such an energy management system. One is to asgi@ferator allocations are uniquely determined by a sinate p
the responsibility of coordinating generation, demanaiiegfe  rameter which coincides with the marginal price of generati
and main grid connection to a central entity, e.g. [4], [Sh Aat the non-binding generators, i.e., the generators whizh d
optimization problem is solved at the central location aigd s not reach their capacity limits at the optimal allocatione W
nals are sent to the individual components. Another apirogsropose a consensus + innovations approach to ensure ¢hat th
is based on multi-agent systems in which the decisions ajénerators reach an agreement on this parameter. Anotper ke
, , . difference, as far as implementation is concerned, is that i
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ghug@ece.cmu.edu, soummyak@andrew.cmu.edu actually need to solve a local optimization problem wheieas

I. INTRODUCTION



the presented approach the computational effort of eagty enwith P, , P,, > 0 for generatorsP, , P,, < 0 for loads and

is limited to evaluating simple algebraic variable updated P, < 0,P, > 0 for storage devices. Inflexible loads and

projecting the values into the feasible space for thesalbbs. “must take” generation such as from PV or wind generation
The most relevant related work with regards to consenscan be modeled by setting upper and lower limits equal to each

based methods has been presented in [14]-[17] whereother resulting in the corresponding, variables becoming

decentralized economic dispatch approach based on the cmmstants instead of optimization variables.

sensus algorithm has been introduced. The two key diffeenc The objective is to determine the settings of the components

between our approach and this work are that we do not assign P,,’s, that maximize the (concave) social welfare given by

any leading role (for achieving global coordination) to any N

of the generators and we consider a multi-step optimization SW = — Z Cn(P,) ©)

including inter-temporal constraints allowing for optiiria- =1

tegration of storage devices and consideration of gemeraty, addition, the power balance

ramp rates. Usage of the consensus algorithm for the purpose N

of ancillary service provision is presented in [18]. Howeve

the focus is on ensuring resilience against potential gacke ZP" =0

drops and it also uses a coordinator which determines thé tot n=1 )

amount of required power. Compared to our earlier work [of"d the upper and lower bounds on the power in-

where we employed the consensus + innovations approach&gied/consumed as defined in (2) for= 1,..., N need to

derive a distributed economic dispatch algorithm, we axtepe fulfilled whereN is the total number of components to be

the approach to optimize over multiple time steps enablifgordinated. , - .
distributed Model Predictive Control and we include flegibl !t can be derived from the first order optimality conditioris o

loads and storage devices as controllable components. this optimization problem that the following conditionseakto

The remaining part of the paper is structured as followhold for the optimal solution: the marginal costs at the otu

Sect. Il introduces the problem formulation for single and dCy(Py)/dPy = an Py + by = A\, (5)
multi-step economic dispatch. In Sect. Ill, the proposed .
distributed approach based on the consensus + innovati saII system components for which P, has not reached

algorithm is derived. Sect. IV discusses the robustneshef £1€ UPPer or lower limit have to be equal to the same value,

algorithm. Sect. V provides simulation results and Sect. \ﬂamely thesystem price A* at the pptimal solution, and the_
concludes the paper. power balance (4) needs to be fulfilled. Components for which

the optimal setting isP,,, yield a marginal cost as defined in
(5) that is lower than\* and components for which the optimal
setting isP,,, yield a marginal cost that is greater thih The

We consider a microgrid which includes dispatchableystem price\* is also the Lagrange Multiplier associated with
and non-dispatchable generators, critical/inflexible aoat- the power balance equation (4).
critical/flexible loads and storage devices. A storage adng Nonetheless, assuming that the primal problem admits a
a battery but also plug-in electric vehicles which are amé feasible solution, it may be shown (see [9]) that the optimal
only intermittently. In this section, we provide the matham settings at all the system entities can be uniquely paramete
ical problem formulation which we will use subsequently inzed in terms of the quantity*, in that, the optimal setting
the next section to derive the distributed algorithm. Fivg¢ P at an entityn is given by
focus on a single time step formulation and then extend it to [)\* _ bn:|

(4)

Il. PROBLEM FORMULATION

(6)

Snale T where P,,[] denotes the projection operator associated with
A. Sngle Time Step entity n, i.e., it projects the argument into the feasible solution
We assign a quadratic cost/demand function to each cospace[P,,, P,].

include inter-temporal constraints in a multi-step foratidn. P, =P, o
n

ponentn given by Now, given the power balance constraint (4), the goal of
1 a distributed algorithm can be formalized asrestricted
Crn(Pp) = §anP§ +bnPr +cn (1) agreement problem, in which the entities seek to reach an
agreement on the quantity* that satisfies (see also [9]):

with a,,b,,c, > 0 and P, > 0 if the power is generated
- . s N N N
or injected into the system anBl, < 0 if it is consumed or N A —by,
. P = P,
drawn from the system. For generators, the function reflects ‘ n ‘ an,
n= n=

the costs of producing the powét, whereas for loads, it is o )
the (negative) cost the load is willing to pay for powet,|. Furthermore, note that each entityis only aware of its local

For a storage deviceb, is positive whenever the storage ignarginal cost/demand function parameters and capacity con
discharging, i.e. the function corresponds to the amouat tiraiNts, and hence, cannot directly solve (7). Hence, éeein
storage is willing to accept for the provision &, and it is 1oF collaboration through inter-entity information exciye
negative whenever the storage is charging which correspoﬁ(ﬁ'ses' which motivates our distributed algorithm in Séitt.

to acting like a load. The powe?, is upper and lower bounded© determine\” satisfying (7) at each entity.
For illustrative purposes, characteristic marginal cosves

P, <P, <P, (2) for generation, load and storage are shown in Fig. 1.

} =0. ©)



and marginal costs., ;, £ = 1,..., K being equal to the
optimal system prices, namely;, £ = 1,..., K. Power
outputs are given by
* bn
. Py = 2= be (15)

‘ Pq Py Py, ‘ Pg ‘ Po On
(@) (b) () and projecting it into the feasible solution space defined by
Fig. 1. Marginal cost functions for (a) generator, (b) loadi 4c) storage. ~constraints (10) — (13) applicable to componentHere, A},
is the marginal cost / price at time stépof the horizon at
the optimum which is also equal to the Lagrange Multiplier
B. Multiple Time Steps associated with the power balance equation at time &tep
n the optimization problem and,, ; is a local copy of this
variable of component.

When introducing storage into the system, it is indispehzsaB
to optimize over multiple time steps concurrently becauste n
only instantaneous power is limited but also energy. In orde
to take into account these inter-temporal constraints and t I1l. DISTRIBUTED SCHEDULING
make efficient use of the available storage capacity, weneixte It is assumed that generators, loads and storage devices
the single step problem to a multi-step optimization proble are connected to nodes in the microgrid and an agent is
This allows us to also include other inter-temporal coristsa assigned to each node. The proposed algorithm by which the
such as ramping limitations on generation output. Hencee, thgents coordinate is based on the consensus + innovations

problem formulation is given by approach. In this section, we first give a general introauncti
K1 N to this approach, describe how it is used in the single step
optimization and then extend it to the multi-step case.
x>0 3 (~CoalPas) ®
k=0 n=1

A. Digtributed Decision-Making: Consensus + Innovations

s.t. Z P,y =0, k=0,....K—1 (9 We briefly review the consensus + innovations method
and its variants, a generic approach for solving distrithute

decision-making problems in multi-agent networks, e.g4. [8
P, < Pk <Pui, k=0,...,K —1 (10) The decision-making setups that fall under the purview ofco
AP, < Pop—Por1 <APy k=0,...,K—1 (11) sensus + |nnovat|on_styp|cally mvolvg coI_Iaboratl\_/e !dtm_ted

’ ’ information processing such as estimation, optimizatiod a
and for storage devices additionally control in agent networks, in which each network agent has
a priori access to only local information, such as knowledge
of model parameters and sensed data, and inter-agent com-
munication (interaction) is restricted to a pre-assignearse
communication graph. Broadly speaking, in the consensus
where P, 1, is the power output of componentat time step + innovations architecture, the autonomous network agents
k and K is the number of steps considered in the multer decision-makers engage in local information processing
step optimization. Constraint (9) corresponds to the powand neighborhood communication to achieve or optimize the
balance at each step, (10) is the limit on instantaneous powébal decision-making task of interest.
injection/consumption, (11) corresponds to ramping Bmit For definiteness in this paper we restrict the discussion
with lower and upper ramping Iimitz&ﬁn,AP and (12) of the consensus + innovations method to the distributed
incorporates the upper and lower limifs,,, F,, on stored restricted agreement problem in multi-agent distributed net-
energyk,, . The initial values for power injection/withdrawalworks. Formally, in an information processing network,.of

k
E,< Eno—» Pui<E, k=0,..K-1 (12)
=0

are denoted by>, _; and E,, o, respectively. agents, the restricted agreement problem consists of ¢nétvin
Furthermore, we add a terminal constraint J agents agree on a common valeubject to the equality
K1 constraint (restriction)

En,N - En,() - Z Pn,l - Erfy, (13) J J
= gw) =Y "hi)=>"> du(v)=0  (16)
for the storage which ensures that the energy lévgly at =1 =1 neqy
the end of the optimization horizon is equal to a fixed valuend inequality constraints
E/, e.g.El = 0.5 E,. Adding such a terminal constraint in - o
essence corresponds to adjusting the cost function pagamet dy S dn(v) Sdn, n €y, j=1,--,7, (17)
b,. This valueb,, is equal to the price below which the storagq\,herez ' 19| = N for some posmve integel, i.e., the

charges and above which it discharges. Sets{Q }76J constitute a partition ofl, - - , N|, d, (), n =

The optimal solution to the above problem is given by 1 ... N are certain real-valued func“ons, ant,d, <
N [—oo, oo], forn=1,---, N, are constants. Moreover, we are

Z Py =0, (14) interested in a distributed solution of the restricted agrent

problem in which, (i) to start with, each ageiitis only



aware of its set ofocal functionsd,(-), n € ; and the « The weight parameters;, 5; are positive and satisfy the

corresponding inequality constraints (17), and (i) irdgent following conditions:

communication for information exchange is restricted toex p - As i — oo, the sequencega;} and {8;} are
assigned communication graph. Under broad assumptions on decaying, i.e.q; — 0, 3; — 0.

the local functionsl,,(-)’s and the inter-agent communication — The excitations are persistent, i.e.,

topology (to be made precise later) an iterative algoritfm o

the consensus + innovations type may be applied to solve the Z o = Zﬁi =00 (20)
above distributed restricted agreement problem. i>0 i>0

Before proceeding to the general consensus + innovations
solution, as a side remark, we comment on a specific instance
of the above distributed restricted agreement problem iichvh
the (aggregate) local functioris;(-)’s are affine functions of
the form h;(v) = v — z; where thez;’s are real constants B. Sngle Step

gndglﬁ - alndd" = coforalln EIQJ' 3n(|jj :hl’ "' "t]i’ In the single step application, only the scheduling for one
i.e., the inequality constraints are relaxed. In other wotHle e sien is considered. To this end, jet 1, ,.J denote

agents V‘l’lant;.() agree onf t?‘e averz_;\gedva(lhﬁ]) >j-0%j-  the nodes (agents) in the microgrid and de€ ©2; index the
Historically, this version of the restricted agreementipem components (generators, loads and storage devices) dednec

is referred to as the average consensus problem or sim ynodej Also, let N = 3 ;| be the total number
: ' = Zineqy; 154

the agreement problem and has been studied extensively ianicrogrid components. The ‘common variablethat the

the last few years, €.g. see th_e revieyv Papers [19]'_ [2 ents need to agree on corresponds to the marginal cost of
The pr(_)bler_n with generic functl_onsn(-)s aqd |nequal|ty_ supply A for that time step whereas the constrajt) which
constraints Is more mvolyed and in the following we dese”t]weeds to be fulfilled is the power balance between supply and
the consensus + innovations method [8] for a general S"’iuuaemand. Specifically, according to (7) and the developrent |
methodology. Sect. llI-A, the local component functiaf, ()) is the power

.In the consensus * Innovations method,_ eaf?h_au@“""?"”' P, injected/drawn by componemt which can be given as a
tains a local copy/; (i) of the variabler which is iteratively function of A by

updated, withi denoting the iteration index, as follows:

— The consensus potential asymptotically dominates
the innovation potential, i.ed;/a; — oo asi — cc.

1) Update local copy of common variable according to d (\) = Pa(\) = P [)\ — bn] 21)
(27
vi(i+1) = v(i) =B Y (v(i) — m(i)) _ o .
lew, where P,,[-] is the projection operator corresponding to the

. local capacity constraints which as explained later arasteg
-G Z dn (1) (18) from (7) to also include generator ramp rate and energygtora
ey constraints for this single time step.
where «; and j3; are weight parametersy; is the According to (18), each agent carries out the following
communication neighborhood of ageptas prescribed iterative calculations
by the given inter-agent communication topology, i.e.

the subset of network agents with which aggntan A1) = X)) = B Z (Aj (@) = Au(D)
exchange information directly, and 1€w;
dn(i) = P ldn(vs ()], n€Qy,  (19) o n%; Fali) (22)

m?;:/eaﬁg[-]ad]e.notes the projection operator onto th?ience, the part of the innovation term assigned to agent
= b . . corresponds to the sum of power injections/consumptions of
2) Update dependent variables according to (19) to Obt%]e components connected to nodé.e. n €
dn(i +1), 1 € 23 . . . Then, the power injected/consuméti (i) for n € Q; is
3) Exchange local value;(i + 1) with agents in the undated according to
communication neighborhoad; and increase iteration P ¢

counters. g (i) —bn min _ Aj(i+1)—=bn maz
_ N _ = , Pt < ™ < P7
Typical conditions that ensure convergence, i£(;) — v
asi — oo for all j with v satisfying (16)-(17), are as follows P (i+1)={ pmaz, 2504 =0n praz

Qn,

(see, e.g. [8]):
« The local functionsi, (-)'s are sufficiently reguldr

« The inter-agent communication network needs to be
connectedl

; A, (i41)—=by, ;
P:lTLZn’ J . S P:lTLZn
(23)
where P and P*** are defined as in Table I. Hence,
Several regularity conditions of the form of Lipschitz danity, mono- .the upper and |0wer_ capacity constraints are adjusted ® t?-k
tonicity etc. are presented in [8] that ensure convergence. into account generation ramp rate and energy level consdrai

2By connectivity, we mean that there exists a path, possibjtishop, for this one single time step. The initial generator output
between any pair of agents. As such, the communication metway be

quite sparse and in fact, much sparser, than the physiaaktgpblogy which and Sthage e”ergy level are denOteq B,}(_1 and En 0,
is typically dense. respectively, and’ is the length of one time step.



TABLE | K-1
INCORPORATION OF INTERTEMPORAL CONSTRAINTS INTO UPPER AND _ Z _nf
LOWER BOUND FOR POWER INJECTIORVITHDRAWAL . En,n = Enp Py = E; (29)
=0

P:ann P:Lna:v . i .
Gen. | max(P, . Pr_1 + AP} | min(Pr, Po_1 + AP,) Constraints (28) and (29) are only applicable if component
Load —p - ’ P, is a storage device. If the component is a load and ramping
Stor. max(ﬂn,%_(%n 0= E,)) | min(P,, £(Eno — E,)) of the load is unlimited, then constraint (27) can either be

neglected or limits are set to infinity.

Note that the inter-agent communication topology (i.e.owh 1he same statements concerning communication topology
talks to whom) may differ significantly from the physica®nd connectivity hold as in the single step application.
power system electrical coupling among the agents and is,
in fact, typically much sparser than the physical couplinp. Overview Application Flow
topology. In particular, we only assume that there existata p
comprising, perhaps, of multiple communication hops bewvevisualized in Fig. 2. At time = t; the goal is to determine

any two pair of agents, ie., the mter-agent. communlcatl(me optimal setting$>, ;. for the generators, loads and storage
network is connected. Moreover, note that, in the uPdat?gqvices for the nexk — 0 K — 1 steps fulfilling all

rule (22,[) eacr,1 ag%n; ?eedsl t.otr::)_e _awarlgkof its Iotca:_ m(cj) nstraints on ramp rates, maximum generation outputggner
parametersd,’s andb,’s) only; this is unlike a centralize level, etc. Hence, the optimization horizon corresponds to

optimization approach in which each agent needs to commu-_ f1.....t1 + K. The consensus algorithm as described

nicate and coordinate with a fusion center, the latter Ravily, <.+ |1, is used to determine these settings with
access to the model parameters of all the agents. IntegBstin

enouah. we show that. even under such restrictions on a corresponding to the iteration counter. Once the agents hav
gh, we ’ . . 938 eed on)\;x,k = 0,...,K — 1 and optimal settings
communication and lack of global model information, th b

X ,k=0,..., K —1 have been found, the first stép, ; is
zgiaozggnl:Fzgg;ea:g(l)e[g](;nverges to the optimal schedulesa lied, the optimization horizon is moved by one time step

and the consensus algorithm is restartedtfor
. The choice of the initial starting point in the iterative
C. Multi-Sep . .
) o ) ) process of the consensus algorithm has great influence on the

In the multi-step application as described in Sect. II-B, onvergence of the algorithm. In the considered appliodtio
horizon of multiple time steps in the future is considerehe coordination in a microgrid, it can be assumed that most
concurrently. This results in an overall decrease in cost gf the time the external inputs such as the parametgrs,,
supply as preventive actions such as charging the storaggy any upper and lower limits do not change drastically from
device in anticipation of needed energy in the future can B@e time step to the next. Hence, a reasonable approach is to
taken. In this case, the consensus + innovations applitatigse the solution determined at the previous time stefl as
becomes multi-dimensional, i.ed; and P,, n € §; are 4 starting point for the time step
vectors including the prices/marginal costs and the powerrigyre 3 gives an overview over the entire application flow
output/consumption for the time steps within the horizoRynere the solution for time stepis denoted by\’, P’ . In

. . . . . J? n*

respectively. The update given in (22) still applies but noyy,q very first time steg = 0, no solution)\z‘l,Pfjl for

as a vector update resulting in the following update for €aghle hrevious time step is available to use as starting paint i

The application of the multi-step consensus approach is

time stepk the consensus algorithm. Hence, an initialization is nesgli
N +1) = Nwli) = B > (Nkli) — Mx(d)
lewj il
—ai Y Pui(i) (24) 2
nef; 8 120, Pai
] t=1t @ (1), Pn (1)
with £k =0,...,K — 1. S S _
The projection into the solution space can be achieved by 0 Optimization Horizon
the following constrained least square minimization foctea e
components € ;3 i
P, K
K-1 Nor b\ 2 ;’k
min (Pn,;C _ 2ok n) 43 R 7 k 777777777777777777777777777777777
n k=0 n .
(2
_ g
st. P, < P <P, k=0,.,K-1(26) 2 |
5 1. L=t 3 +Ai(@), Pn(i)
AP, < Py —Pur1 <AP,, k=0,....,. K —1 (27) 2 g
k o OO Optimization Horizon
EnSEn,O_ZPn,ZSE’na k:OavK_l (28) f f f f I I I I I I | ) | Lt
t2! T T T T T T T T T L
=1 4t
0 P K

SFor simplicity, the iteration countefi + 1) is omitted inP,, 5, (i + 1) and v
Ajk(E+1). Jik

Fig. 2. Visualization of multi-step consensus algorithm.



Sett :=0 issues in multi-agent scenarios involving wireless agent-

Initialize A, P! agent communication or infrastructure failures in wireaneo
i munication environments, the designated communicatis li
may not be active at all instants; moreover, even in the event
Seti:=0 of an active communication link between a pair of agents, the
() = NS AR < transmitted data may be noisy or distorted due to quamnizati
Po(i) = [P} o PiL anq other channel effects. The propo_sed consensus + inno-
’ ’ vations scheduling structure stays valid under a wide range
i of such communication imperfections; for instance, by addi
UpdateX, (i + 1) _the square summability requiremeﬁiji20 a? < oo on the
Single-Step: (22), Multi-Step: (24) [ innovations weight sequendey;}, the effect of independent
and identically distributed additive communication noisay
i be mitigated. For random communication link failures, aglo
Update P, (i + 1) as the network isconnected in the mean, the convergence
Single-Step: (23), Multi-Step: (25)-(29 of the proposed iterative procedure to the optimal will be
i retained, see, for example, [8].
A +1) =A@ < ea? o V. SIMULATIONS
[Pnlit1) = Pr(@)l < e i—it1 In this section, simulation results are provided as a préof o
i yes concept. Due to limited space, we focus on simulations fer th
Solution fort: multi—step application. For single step simulations, thader
b=t 1 is referred to [9].

AL = Xj(i+1)
P! = Pp(i+1)

A. Smulation Setup

Fig. 3. Flow chart consensus update. The considered microgrid consists of 14 nodes as shown in
Fig. 4. Dispatchable generators are located at buses 1,&, 3,
gnd 8, a wind generator is placed at bus 9 and a storage device
IS placed at bus 7. The connections indicate communication
lines between components in the microgrid. The test system
has been derived from the IEEE 14 bus system using the

hysical connections as indications for communicatioedin

owever, physical and communication connections do not
rgbeiessarily have to coincide.

he parameters for generators, loads and storage are given

in Tables Il - IV. It is assumed that the minimum generation
level for all dispatchable generators is Opu and that thepram
A (0) = [AE’—Q}HN’X;—J\}] (30) up anq down Iimits_are equal, i.eﬁﬁn. = —AE. Thg
P.(0) = [P} . P} (31) _S|mulat|ons are carrle_d out for_ an entire day in 5 minute

" n,2..N> % n,N intervals and the prediction horizald is chosen to be equal

e.g. by using a flat start or by using historic solution dat
In the following time steps, A}~', P/, corresponds to the
solution at the previous step- 1. An advantage of the multi-
step application is that good initial settings foe= 0, ..., K —

1 are available from the solution at the previous time ste
Only the initial settings for the newly included time step=
K need to be found. We make the assumption that the setti
for £ = K will be close to the settings @& = K — 1 resulting
in initial settings

for the consensus algorithm. Then, the iterative processeof © 20 time steps.
consensus approach is carried out, Ag. P,, are updated and It can be assumed that the parameterg for the_ generators
after each iteration the stoping criteria is checked. Ifnges 2nd storage stay the same over a longer time period whereas
in A; and P,, are lower thane; and ez, respectively, the
consensus iterations are stopped and restarted for adshifte
optimization horizon with initial values given by (30) ariil(.

For the single step approach, the procedure is very similar
to setting the horizon equal t& = 1. In that case);, P,
are scalars and the initial values for the consensus atgorit
correspond the values obtained at the previous time step.

IV. ROBUSTNESS

The proposed distributed scheduling algorithms of the con-
sensus + innovations type are robust to a wide class of
perturbations resulting from intermittent inter-agenteou-
nication failures, noisy or quantized data exchange, ahdrot
forms of randomness in the communication infrastructure.
For instance, due to data-packet scheduling and inteltferer'1:ig A

Test System.
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GENERATORPARAMETERS (MU = MONETARY UNITS) 5 o //”ﬂr N
Bus | an [mu/pt?] | b, [mulpu] | AP, [pu/Smin] | P, [pu] L%l 5 Y \»x\ / N\
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TABLE III 0 50 100 150 200 250
LOAD PARAMETERS (MU = MONETARY UNITS) Time Steps (5 min)
_ Fig. 5. Load Curve.
Bus | an [mu/pt?] | bn [mu/pu] | P, [pu] | Pn [pu] ‘
2 0.080 75 -50 5
3 0.060 6.0 -40 -3 ’
4 0.070 8.0 -80 6 30 A
5 0.064 6.5 -30 2 =
6 0.040 75 -70 -8 =
9 0.060 8.0 -80 -10 =20
10 0.076 7.0 -40 5 S
11 0.070 75 -25 2 100
12 0.080 8.0 -90 -8
13 0.070 7.0 -30 -2
14 0.084 8.0 -80 -10 0 25 150 150 350 555
Time Steps (5 min)
TABLE IV Fig. 6. Wind Curve.
STORAGE PARAMETERS (MU = MONETARY UNITS)
Bus | an [mu/pi?’] | AP, [pu] | Pn [pu/smin] | E, [puh] The tuning parameters and 5 are set to
7 0.02 50 50 20 0.055 0.9
@i =—g550  Pi= oo (32)

erei is the iteration counter. Stopping tolerances as defined
Fig. 3 are set to

1 = 0.0001,

the parameters for the load change to reflect varying neq%
over the course of the day. Each load is an aggregationi
multiple loads, including flexible and inflexible loads. Yarg
needs for such an aggregated load are modeled by adjusting
the parameteb,, in the demand function and the minimum
and maximum demand limit®, and P,,, respectively. It is
assumed that the agent of each load predicts the parameler§imulation Results: Normal Operation
required to cover its consumption and then schedules thit loa The number of iterations required to converge given the
according to the outcome of the distributed energy balancigonvergence criteria and simulation parameters defineklen t
management. The upper limit3,, i.e. lowest absolute valuesprevious section are given in Fig. 7. Depending on the time
for the demand, correspond to the portion of the fixed loadstep, the algorithm converges within 50 to 250 iterations.
As predictive optimization is employed, the agents need Tthe computational effort required at each of these itenatio
predict the consumption for the entire prediction horiZzout steps is limited to evaluating the algebraic equations é24)
these predictions may be inaccurate. Hence, such undgrtajprojecting the values of the variables into the feasibletimh
is simulated by introducing prediction errors. To simulite space. Hence, computationally each iteration step is very
varying demand over the day, we multiply,, P, , P, with inexpensive. Compared to approaches based on decompositio
the values given in Fig. 5. To distinguish between predicticheory, the number of iterations of the proposed approach is
and actually occurring load, the bold line in Fig. 5 gives thmost likely higher, however the computational complexity a
multiplication factor which actually occurs and the dotte® each individual iteration is significantly lower.
what has been predicted. Hends,, P,,, P,, are multiplied High accuracy has been chosen as convergence criterion.
with the values of the dotted line for the predictions anff accuracy is to be improved even further, more iteration
multiplied with the values of the bold line for the actuakteps will be necessary. On the other hand, if accuracy can
realizations of the load. It is assumed that predictionsaw@ be reduced, also the number of required iterations redilices.
the closer the predicted time step to the current time step, ishould be noted that the same settingsdfpand3; as defined
for the first five time steps: = 0,...,4 in the prediction in (32) are used for each time stépThe values decay over
horizon the errors are reduced from what is shown in Fig.the iterations but the initial values and the speed of desay i
inversely proportionally tck. the same for every simulated time step. Hence, making these
Similarly, also the output from the non-dispatchable ganersettings adaptive for different levels of loading based ergy
tor at bus 9 needs to be predicted. The actual and the prddidarning would improve convergence.
power output over the entire day is given in Fig. 6. Again, it It is also possible to choose fixed, non-decaying values for
is assumed that predictions for the near term future are maereand 5 which will speed up convergence, in which case
accurate than the predictions for the rest of the optinorati the algorithm in fact converges exponentially fast, howgeve
horizon. Hence, again, for the first five time stéps: 0,...,4 this will result in a deviation from the optimal solution. &h
in the prediction horizon the prediction errors are reducedagnitude of the error is a function of the chosen valuesfor
inversely proportionally td. and g [9]. Furthermore, it is possible to trade-off convergence

€2 = 0.001. (33)
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Time Steps (5 min) seen that the proposed algorithm is capable of successfully
Fig. 8. Power output from generation and storage. taking into account upper and lower limits on generation

capacity. Figure 9 provides the consumption by the indiaidu

80 loads. At the beginning and the end of the simulation thege ar
60 multiple time steps during which loads reach their loweritém
Bl indicating that only inflexible/fixed loads are suppliedlage
§40 nodes. In Fig. 10, the resulting level of energy in the sterag
S device is given. The storage is mostly used for arbitrage,

i.e. charging in low load situations and discharging in Higd
situations allowing for a reduced required generation ciya
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) 100 150 560 550 Furthermore, it provides support in balancing out some ef th
Time Steps (5 min) short term variability. Figure 11 provides the ramping oé th
Fig. 9. Consumption by the loads. generators, indicating that constraints on ramp rates ate m
20 i} . To provide insight into the convergence behavior, Fig. 12
shows the evolution ol for the consensus iterations at time
=15/ | stept = 160. The dimension ol for each nodg is equal to
3 the prediction horizon. Here, we show this at all nodes for
glo, | stepsk = 1, 8,14, 20 in the prediction horizon.
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Fig. 10. Energy level in the storage simulation, the performance of the proposed algorithmstet
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made arbitrary small at the cost of slower convergence rate. (@ (b) (©

Figure 8 shows the generation and the storage power outpigt 13. (a) Number of iterations, (b) generator and storagguts, ()
settings over the course of the simulated time range. It @an dgnerator ramping for generator disconneat-at80 and reconnect at= 90.
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links.

can be improved by adding a few additional communication
links.

In addition to the communication network shown in Fig. 4,
we add three communication links, namely between nodes
3 and 12, between nodes 1 and 8 and between nodes 6
and 7. The additional communication links have been chosen
such as to connect buses which are at opposite ends of the
communication network with the result that the diameter of
the network defined as the maximum number of nodes over
which information needs be communicated to travel from one
node to another in the network is reduced. The effect is that
information spreads faster in the network leading to imprbv
convergence.

The resulting numbers of iterations for the normal operatio
case, i.e. the same simulation setup as in Sect. V-B but with
additional communication links, are provided in Fig. 16can
be seen that the required number of iterations has decreased
significantly.

VI. CONCLUSION

In this paper, an approach for the coordination of agents in
a microgrid is presented. It is assumed that each generator,
load and storage device is connected to a specific node which
is shadowed by an agent. The respective agent defines cost
and demand functions for the producers and consumers at

outputs and the ramp rates. It can be seen that convergeiteehode and communicates with the agents of neighboring
is achieved within~ 450 iterations in the time steps of thenodes. The goal of the communication process is to find
disconnection and reconnection. The iterations for themthan agreement on an incremental “price” for power provision
time steps stay in the range as in Fig. 7. The reason for tivdile ensuring that overall generation is equal to load. The
increased number of iterations is the fact that we assunte theoposed approach uses the consensus + innovations method
the disconnection/reconnection has not been predictettehe allowing for a robust and fully distributed coordination of
the initial point for the consensus algorithm is not as aataur the components in the microgrid. Optimal usage of available
as with no disconnection. Figs. 13(b) and 13(c) show thstorage and incorporation of ramp rate limitations is agie
disconnect of the generator and the increase in power iojectby applying the method to a multi-step economic dispatch. In

at the maximum ramp rate as soon as it is reconnected.

the multi-step case, agents need to agree on prices for each

Figures 14 and 15 show the evolution of this over the time interval in the prediction horizon. Operational coasits
iteration of the consensus algorithm. It is obvious thateatgr are observed by projecting the obtained temporary solution
correction from the initial point is required which leads&o into the feasible solution space. Adding a receding horizon

higher number of iterations to fulfill the stopping critetio

D. Smulation Results: Additional Communication

to the multi-step optimization enables a distributed Model
Predictive Control approach and allows for good initiatttey
points for the consensus algorithm.

The convergence rate, measured in number of iterations

until a pre-defined convergence criterion is fulfilled, ofyan
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