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Abstract— A sample path large deviations principle is es-
tablished for the (scaled) vector of number of customers in
a Jackson network of many-server queues, in the asymptotic
regime where the arrival rate at each queue and the number
of servers increase to infinity in a specified fashion. This
result is obtained under the assumption of (possibly time-
inhomogeneous) Markovian service and routing, and a condi-
tion on the scaled sequence of cumulative arrival processes,
which holds for a wide class of long-range dependent and
batch arrival processes. Moreover, the explicit form of the rate
function is obtained in the single-queue setting, and the most
likely way in which a large number of customers build up in
the system is identified by solving a variational problem.

I. INTRODUCTION

A. Background and Motivation

Large deviations in stochastic networks is a widely studied
field with a vast literature. Prior work in this field has mostly
emphasized the large buffer and the many sources regimes.
Good accounts of this body of work have been presented
in [1], [2], [3] and references therein. In this paper, we
consider a different large deviations regime, which we refer
to as the many-servers regime, where the number of servers
in the system increases (in a suitable scale) as the arrival
traffic increases. This regime is motivated by applications in
decentralized data networks and call centers, where there are
a large number of servers at each node. It is therefore natural
to study the behavior of such systems in the asymptotic
limit as the number of servers increases as the external
traffic increases at each node. We consider a Jackson network
of such multi-server queues or nodes, where the service
and routing processes are assumed to be (possibly time-
inhomogeneous) Markovian, and the arrival sequence can
be general, but is required to satisfy the conditions 1 and
2 stated in Section I-C, which hold for a large class of long-
range dependent and batch arrival processes. Our main result
obtains a sample path large deviation principle (LDP) for
the sequence of scaled number in system in the many server
regime, with the rate function expressed in terms of the rate
function associated with the scaled arrival sequence and a
certain continuous map. In some cases, the obtained rate
function is very well-characterized and the corresponding
variational problems for estimating the exponential decay
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rate of probabilities of certain rare events are explicitly
solvable, thus enabling the characterization of the most likely
way in which the rare event occurs. It is worthwhile to point
out that our conditions on the cumulative arrival processes
preclude certain short-range dependent processes such as
the Poisson process. In fact, the large deviations exhibits a
phase transition in the sense that for Poisson arrivals (more
generally, for processes for which condition 1 on the arrival
sequence stated in Section I-C is satisfied by a sequence κN

that remains bounded as N → ∞), the form of the rate
function is significantly different, as shown in a forthcoming
paper.

We briefly summarize the organization of the rest of the
paper. Section I-B introduces some common notation used
throughout the paper, and the main results are summarized
in Section I-C. The model description and assumptions are
introduced in Section II. In Section III we rigorously state our
main theorems in the Jackson network setting, and present
the proofs of the theorems in Section IV. As an illustration
of the usefulness of our main results, in Section V, we
determine the LDP rate function in the specific setting of
batch arrivals, for which the variational problem is solvable.
The details of this solution will be presented in a subsequent
paper. Concluding remarks are presented in Section VI.

B. Notation and Terminology

We denote the set of reals by R, the set of non-negative
reals by R+. Let R = R ∪ {∞} and R+ = R+ ∪ {∞}.
A superscript M applied to any of these sets denotes the
corresponding M dimensional Euclidean space. For example,
the set R

M
+ denotes the non-negative orthant in R

M . For
a, b ∈ R, a∧b denotes the minimum of a and b. When applied
to vectors, ‖·‖ denotes the standard Euclidean 2-norm, while
for matrices it corresponds to the induced 2-norm.

For T > 0, let D[0, T ] be the space of real-valued,
right-continuous functions on [0, T ] having left limits. Let
D+[0, T ] and AC[0, T ] be the respective subsets of non-
negative and absolutely continuous functions in D[0, T ]. Let
AC+[0, T ] be the subset of absolutely continuous functions
in D+[0, T ]. A superscript M applied to any of these sets
denotes the corresponding M dimensional Euclidean space.
For a set of functions, we abuse notation by denoting the
subset of functions f with f(0) = x by putting a superscript
x. For example, the set DM,x

+ [0, T ] denotes the space of R
M
+

valued, right-continuous functions on [0, T ] having left limits
starting at x.

The tuple
(DM [0, T ],BM (T )

)
denotes the space

DM [0, T ] with the Borel-algebra BM (T ) generated by
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either the Skorokhod J1 topology or the topology of
uniform convergence. It will be clear from the context
which topology we are using.

In the sequel we adopt the convention that the supremum
of an empty set is −∞, 0 ln(0) = 0, and ln(x) = −∞, ∀x ≤
0.

We assume there exists a complete probability space,
(Ω,F , P), where all processes of interest are defined. When
the initial state of a process is fixed, say at the point x, then
we write the probability and expectation operators as Px (·)
and Ex [·], respectively.

C. Summary of Main Results

We first recall the definition of a large deviation principle
(LDP). For a given T > 0, a sequence, {EN}N∈N of
processes in

(DM [0, T ],BM (T )
)

is said to satisfy an LDP
at scale Nβ (β > 0) with good rate function IT (·) (see [4]),
if ∀B ∈ BM (T )

− inf
φ∈B◦

IT (φ) ≤ lim inf
N→∞

1

Nβ
log P

(
E

N ∈ B
)

≤ lim sup
N→∞

1

Nβ
log P

(
E

N ∈ B
)
≤ − inf

φ∈B

IT (φ) (1)

where B◦ and B denote the interior and closure of B
respectively.

As mentioned above, we study a sequence of Jackson
networks (see [5]), indexed by N , where each network
consists of M queues and the service and routing disci-
plines are Markovian (possibly time-inhomogeneous.) Let
E

N (t),XN (t) ∈ DM [0, T ], denote the vectors of cumulative
arrival streams over the interval [0, t] and the number in
system (including both those waiting and those being served)
at time t, respectively. The main result of this paper states,
that, if the following conditions are satisfied:

1: There exists β > 0 and a sequence, {κN}N∈N, such
that κN → ∞ as N → ∞,

2: The sequence of scaled arrival processes, {EN}N∈N,
where

E
N

(t) =
1

κNNβ
E

N (t) (2)

satisfies an LDP in
(DM [0, T ],BM (T )

)
at scale Nβ as

given in eqn. (1) with good rate function IT (·),
3: The number of servers at each of the M queues in the

N -th network scales as κNNβ ,
then the sequence of scaled processes, {XN}N∈N, where

X
N

(t) =
1

κNNβ
X

N (t) (3)

satisfies an LDP in
(DM [0, T ],BM (T )

)
at scale Nβ with

a certain rate function JT (·). As will be evident later, the
scaling κNNβ of the number of servers is the right scaling
to satisfy a non-trivial LDP. Our results also characterize
explicitly the resulting rate function JT (·) in terms of IT (·)
and a continuous map. We note that the form of LDP in
item 2 above is not very abstract and there are a wide
class of arrival processes which fall under this category. As
illustration, we provide two motivating examples.

Example 1) Arrival Processes with Long Range Depen-
dence: Consider a sequence of single multi-server queues,
indexed by N , where the arrival is a superposition of N
sources with long range dependence. Let {EN}N∈N be the
sequence of arrival streams (possibly centered.) In many
cases, it can be shown that the scaled sequence, {EN}N∈N

satisfies an LDP at scale N2(1−H), where H > 1/2 is the
Hurst parameter and

E
N

(t) =
1

N
EN (t) (4)

When β = 2(1 − H) and κN = N2H−1, the sequence
of arrival processes satisfy the conditions stated above.
Hence, if the N -th queue contains N identical servers, each
offering service at rate μ, the sequence of scaled processes,
{XN}N∈N, with the scaling in (3) satisfies an LDP at scale
N2(1−H). Note, in this case, because of possible centering,
the arrival sequence, {EN}N∈N, may take negative values.
This will not pose a problem, as the queueing functionals
remain well-defined in this case, as will be shown later.

Example 2) Batch Arrival Processes: Consider a sequence
of single multi-server queues, indexed by N , with external
batch arrivals. As N increases, both the arrival rate and
batch size increase. This form of arrival process would, for
example, model data networks in which a central hub (the
queue in our case) receives requests from a large number
of local stations. Then, as the number of users increases, the
traffic from each station, and at the same time the number of
stations, would also increase. We model the overall arrival
process to the N -th queue (the central hub) by a process,
EN ∈ D[0, T ], where

EN (t) = κNA(λNt) (5)

where κN is the fixed batch size and λN is the arrival rate.
Here A is a unit rate Poisson process. We assume that κN →
∞ as N → ∞ and β = 1 in this case. It is easy to see that,
with the scaling in item 2, the sequence {EN}N∈N satisfies
an LDP at scale N . Since the mean number of arrivals per
unit time is κNN , it is not hard to see that a fair policy
should scale the number of servers in the N -th queue as
κNN , which is the scaling in item 3, each server having a
constant service rate μ. We can show that the sequence of
scaled processes, {XN}N∈N, with the scaling in (3), satisfies
an LDP at scale N .

II. MODEL DESCRIPTION AND ASSUMPTIONS

In this section, we precisely formulate our model of a Jack-
son network of many-server queues. Specifically, we consider
a sequence of such networks, indexed by N ∈ N, where the
N -th system is a network of M many-server queues (nodes)
with Markovian (possibly time inhomogeneous) service and
routing. In the following we summarize the dynamics of the
N -th network.

A.1) External Arrival Processes: The cumulative arrival
process EN

i at the i-th node, 1 ≤ i ≤ M , in the
N -th system is a stochastic process with sample paths
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that are non-decreasing and lie in D[0, T ]1 We denote
by E

N (t) = [EN
1 (t) · · ·EN

M (t)] the vector of arrival
processes for the N -th system. We assume that there
exists a sequence {κN}N∈N with κN → ∞ as N → ∞
and β > 0, such that the scaled arrival sequence
{EN}N∈N satisfies an LDP in

(DM [0, T ],BM (T )
)

at
scale Nβ as given in eqn. (1) with good rate function
IT (·), where

E
N

(t) =
1

κNNβ
E

N (t) (6)

No restrictions, like Markovian etc., are imposed on the
arrival processes.

A.2) Time-Inhomogeneous Markovian Service: We as-
sume that the i-th node in the N -th system is equipped
with κNNβ identical Markovian servers. We model
such generic Markovian service by assigning a rate
function μi(t) : R+ 
−→ R+ to each server in the i-th
node. We assume that the service rate functions, μi(t),
are measurable and locally bounded such that for every
T > 0

μi(t) ≤ kT < ∞, ∀1 ≤ i ≤ M (7)

We define

Υ(t) = diag (μ1(t), · · · , μM (t)) , ∀t ≥ 0 (8)

As a matter of fact, all our results will hold if the
assumption of local boundedness of the rates is replaced
by local integrability. For clarity of presentation, in this
manuscript we assume local boundedness.

A.3) Time-Inhomogeneous Routing and Exit Probabil-
ities: The probability of getting transferred to node
j after service completion at node i is given by the
measurable function pij(t) : R+ 
−→ [0, 1]. Similarly,
the probability of departure upon service completion
at node i is given by the measurable function pi(t) :
R+ 
−→ [0, 1]. We assume the following holds:

M∑
j=1

pij(t) + pi(t) = 1, ∀t, i (9)

We define the following M × M matrices ∀t ≥ 0:

[P (t)]i,j = pij(t), 1 ≤ i, j ≤ M (10)

A.4) Independence Assumptions: We assume that the ser-
vice/routing processes are independent of the arrival
processes and the initial number in the system.

For the N -th system, we denote by XN
i (t) the actual

number of customers (both waiting and being served) in
the i-th node at time t. From the construction below, it is
easy to deduce that XN

i is a process with sample paths
in D[0,∞). Let X

N = [XN
1 · · ·XN

M ]. We now provide a
pathwise construction (based on the pathwise construction
used in [6], [7]) of the process X

N
i under Assumptions A.1)-

A.4). To this end, define {Tij}1≤i,j≤M and {Di}1≤i≤M to

1We assume that the number of jumps of E
N

i
(t) is a.s. at most finite in

a finite time interval.

be independent rate 1 Poisson processes, independent of the
arrival processes and the initial number X

N (0) in the system.
We then have the following representation (in the sense of
the distribution induced in path space) for the process X

N :
for 1 ≤ i ≤ M ,

XN
i (t) = XN

i (0) + EN
i (t)

+
M∑

j=1

Tji

(∫ t

0

μj(s)pji(s)
(
XN

j (s) ∧ κNNβ
)+

ds

)

−
M∑

j=1

Tij

(∫ t

0

μi(s)pij(s)
(
XN

i (s) ∧ κNNβ
)+

ds

)

−Di

(∫ t

0

μi(s)pi(s)
(
XN

i (s) ∧ κNNβ
)+

ds

)
(11)

The above pathwise construction was used in [6], [7] for
the many-server queue with Poisson arrival, where fluid
and diffusion limits of many-server models were analyzed,
though under a different scaling. We note, that, in our case,
the cumulative arrivals may become negative occasionally
(see, Example 1 in Subsection I-C), and which is taken into
account by considering the non-negative part of XN

j (s) ∧
κNNβ in the time-change expression in eqn. (11).

III. STATEMENT OF MAIN THEOREMS

We briefly summarize the main results in this manuscript.
For a suitably scaled sequence of the processes,
{XN (t)}N∈N, we establish a sample path LDP. To
this end, define the scaled sequence of processes:

X
N

i (t) =
1

κNNβ
X

N
i (t) (12)

For a given T > 0, our results will be of the following
general form: ∀B ∈ BM (T )

− inf
φ∈B◦

JT (φ) ≤ lim inf
N→∞

1

N
log P

(
X

N ∈ B
)

≤ lim sup
N→∞

1

N
log P

(
X

N ∈ B
)
≤ − inf

φ∈B

JT (φ) (13)

We characterize the rate function JT (φ) : DM [0, T ] 
−→
R+ explicitly, so that, evaluation of probabilities reduce
to solving variational problems, as given in eqn. (13). As
mentioned earlier, characterizing the rate function explicitly
not only gives the asymptotic decay rate of the probabilities,
but also identifies the most likely path in which a rare event
occurs, providing much more insight on the system behavior.

Let us consider the following scaled sequence:

X
N

(0) =
1

κNNβ
X

N (0) (14)

We now state the main result regarding the LDP for the
sequence of scaled processes, {XN}N∈N, corresponding to
the number in system for the sequence of Jackson networks
indexed by N .

Theorem 1 Consider the sequence of Jackson networks, in-
dexed by N ∈ N, under the Assumptions A.1)-A.4). For
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any T > 0, let the space DM [0, T ] be equipped with the
Skorokhod J1 topology (or the topology of uniform con-
vergence.) Let the space RM ×DM [0, T ] be equipped with
the product topology and the sequence {XN

(0),E
N}N∈N

satisfy an LDP at scale Nβ in RM×DM [0, T ] with good rate
function. Then, the sequence, {XN}N∈N, satisfies an LDP
at scale Nβ in DM [0, T ] under the Skorokhod J1 topology
(or the topology of uniform convergence) with good rate
function.

Given the LDP rate function for the sequence
{XN

(0),E
N}N∈N we can explicitly characterize the

LDP rate function for the sequence {XN}N∈N. To this end,
define the function Λ : R

M×DM [0, T ] 
−→ DM [0, T ], which
maps the pair (a, φ̃) ∈ R

M ×DM [0, T ] to φ ∈ DM [0, T ] by

φ(t) = a + φ̃(t) −
∫ t

0

(
I − PT (s)

)
Υ(s) (φ(s) ∧ 1)

+
ds

(15)
Note, under Assumption A.2), it can be shown eqn. (15) con-
stitutes a well-defined map from the space RM ×DM [0, T ]
to DM [0, T ]. In fact, it can be shown that the function Λ(·)
is continuous both in the topology of uniform convergence
and the Skorokhod J1 topology (see [6], [7].)

We now state the following theorem which characterizes
the LDP rate function of the sequence {XN}N∈N. As con-
veniently assumed in most LDP results, we assume that the
scaled initial number X

N
(0) is equal to a constant x ∈ R

M

for all N ∈ N.

Theorem 2 Let the sequence {EN}N∈N satisfy an LDP at
scale Nβ in DM [0, T ] under the Skorokhod J1 topology
(or the topology of uniform convergence) with good rate
function IT (·). Then, the sequence, {XN}N∈N, satisfies an
LDP at scale Nβ in Dx,M [0, T ] under the Skorokhod J1

topology (or the topology of uniform convergence) with good
rate function Jx

T , where

Jx

T (φ) = inf
φ̃∈DM [0,T ] φ=Λ(x,φ̃)

IT (φ̃) (16)

where x ∈ R
M is the scaled initial number at each system

and Λ(·) is the function defined in eqn. (15). In particular,
for every x ∈ R

M , we have ∀B ∈ Bx,M (T )

− inf
φ∈B◦

Jx

T (φ) ≤ lim inf
N→∞

1

Nβ
log Px

(
X

N ∈ B
)

≤ lim sup
N→∞

1

Nβ
log Px

(
X

N ∈ B
)
≤ − inf

φ∈B

Jx

T (φ)(17)

where Bx,M (T ) is the Borel algebra in Dx,M [0, T ] generated
either by the Skorokhod J1 topology (or the topology of
uniform convergence.)

IV. PROOF OF THEOREMS 1 AND 2

This section is devoted to the proofs of Theorems 1 and
2. We start by briefly sketching the main steps of the proof.
Define the sequence of auxiliary processes, {ZN}N∈N with

sample paths in DM [0, T ] by

Z
N

(t) = X
N

(0) + E
N

(t)

−
∫ t

0

(
I − PT (s)

)
Υ(s)

(
Z

N
(s) ∧ 1

)+

ds (18)

Under the assumptions of Theorems 1,2 we show that the se-
quence {ZN}N∈N satisfies an LDP at scale Nβ in DM [0, T ]
with good rate function and we explicitly characterize this
rate function. We then show that the sequences {XN}N∈N

and {ZN}N∈N are exponentially equivalent at scale Nβ , thus
leading to Theorems 1 and 2.

We start by developing a representation for the sequence
of scaled processes, {XN}N∈N, as indicated in eqn. (12.)

A Representation: For 1 ≤ i, j ≤ M , define the process

M
N

ij (t) =
1

κNNβ
Tij

(
κNNβ

∫ t

0

μi(s)pij(s) (19)

(X
N

i (s) ∧ 1)+ds
)
−

∫ t

0

μi(s)pij(s)(X
N

i (s) ∧ 1)+ds

Similarly, define the processes

M
N

i (t) =
1

κNNβ
Di

(
κNNβ

∫ t

0

μi(s)pi(s) (20)

(X
N

i (s) ∧ 1)+ds
)
−

∫ t

0

μi(s)pi(s)(X
N

i (s) ∧ 1)+ds

Then, for each i, the scaled process, X
N

i (t), in eqn. (14) can
be written as

X
N

i (t) = X
N

i (0) + E
N

i (t) +
M∑

j=1

(∫ t

0

μj(s)pji(s)

(X
N

j (s) ∧ 1)+ds
)

−
M∑

j=1

(∫ t

0

μi(s)pij(s)(X
N

i (s) ∧ 1)+ds

)

−
∫ t

0

μi(s)pi(s)(X
N

i (s) ∧ 1)+ds

+
M∑

j=1

M
N

ji(t) −
M∑

j=1

M
N

ij (t) − M
N

i (t) (21)

In a compact form, eqn. (21) becomes

X
N

(t)

= X
N

(0) + E
N

(t) −
∫ t

0

[(
I − PT (s)

)
Υ(s)

(
X

N
(s) ∧ 1

)+

ds + M
N

(t)

]
(22)

where:[
M

N
(t)

]
i
=

M∑
j=1

M
N

ji(t)−
M∑

j=1

M
N

ij (t)−M
N

i (t), 1 ≤ i ≤ M

(23)
Using the representation in eqn. (22), we now prove the
exponential equivalence of {XN}N∈N and {ZN}N∈N at
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scale Nβ .

Lemma 3 Under the assumptions of Theorem 1, the se-
quences {XN}N∈N and {ZN}N∈N are exponentially equiv-
alent at scale Nβ in both the Skorokhod J1 topology or the
topology of uniform convergence.

Proof : In the following we work with the stronger topol-
ogy of uniform convergence. Clearly, the results follow
for the weaker J1 topology. We start by showing that the
sequence {MN}N≥0 converges to 0 in probability at a scale
κNNβ . For any ε > 0

P

{
sup

0≤t≤T

∥∥∥MN
(t)

∥∥∥ > ε

}

≤
M∑
i=1

P

{
sup

0≤t≤T

∣∣∣[MN
(t)

]
i

∣∣∣ >
ε√
M

}
(24)

From eqn. (22) we have

P

{
sup

0≤t≤T

∣∣∣[MN
(t)

]
i

∣∣∣ >
ε√
M

}

≤
M∑

j=1

P

{
sup

0≤t≤T

∣∣∣MN

ji(t)
∣∣∣ >

ε√
M(2M + 1)

}

+

M∑
j=1

P

{
sup

0≤t≤T

∣∣∣MN

ij (t)
∣∣∣ >

ε√
M(2M + 1)

}

+P

{
sup

0≤t≤T

∣∣∣MN

i (t)
∣∣∣ >

ε√
M(2M + 1)

}
(25)

Now, using the fact, that,∫ T

0

μi(s)pij(s)
(
X

N

i (s) ∧ 1
)+

ds ≤ kT T (26)

we have

P

{
sup

0≤t≤T

∣∣∣MN

ij (t)
∣∣∣ >

ε√
M(2M + 1)

}

= P

{
sup

0≤t≤T

∥∥∥∥ 1

κNNβ
Tij

(
κNNβ

∫ t

0

μi(s)pij(s)

(X
N

i (s) ∧ 1)+ds
)
−

∫ t

0

μi(s)pij(s)(X
N

i (s) ∧ 1)+ds

∥∥∥∥
>

ε√
M(2M + 1)

}

≤ P

{
sup

0≤t≤kT T

∥∥∥∥ 1

κNNβ
Tij(κNNβt) − t

∥∥∥∥
>

ε√
M(2M + 1)

}
≤ C1(ε, T )e−κN NβC2(ε,T ) (27)

for C1(ε, T ), C2(ε, T ) > 0, and the last step follows from
Kurtz’ Theorem for scaled Poisson processes (c.f. Theo-

rem 5.3 in [3].) Similarly,

P

{
sup

0≤t≤T

∣∣∣MN

i (t)
∣∣∣ >

ε√
M(2M + 1)

}
≤ C1(ε, T )e−κN NβC2(ε,T ) (28)

It then follows from eqns. (24,25)

P

{
sup

0≤t≤T

∥∥∥MN
(t)

∥∥∥ > ε

}
≤ (M(2M + 1)C1(ε, T )) e−κN NβC2(ε,T ) (29)

From eqns. (22,18) we have

X
N

(t) − Z
N

(t)

=

∫ t

0

[
I − PT (s)

]
Υ(s)

((
Z

N
(s) ∧ 1

)+

−
(
X

N
(s) ∧ 1

)+
)

ds + M
N

(t) 0 ≤ t ≤ T (30)

Now choose kT > 0 sufficiently large, such that,∥∥(
I − PT (s)

)
Υ(s)

∥∥ ≤ k̄T , 0 ≤ s ≤ T (31)

Using the fact that∥∥∥∥(
X

N
(s) ∧ 1

)+

−
(
Z

N
(s) ∧ 1

)+
∥∥∥∥ ≤

∥∥∥XN
(s) − Z

N
(s)

∥∥∥
(32)

we have from eqn. (30)∥∥∥XN
(t) − Z

N
(t)

∥∥∥
≤ kT

∫ t

0

∥∥∥XN
(s) − Z

N
(s)

∥∥∥ ds

+
∥∥∥MN

(t)
∥∥∥ 0 ≤ t ≤ T (33)

To show exponential equivalence, consider the set Ωε ⊂ Ω,
where sup0≤t≤T

∥∥∥MN
(t)

∥∥∥ ≤ ε. Then from eqn. (33) we
have on Ωε ∥∥∥XN

(t) − Z
N

(t)
∥∥∥

≤ kT

∫ t

0

∥∥∥XN
(s) − Z

N
(s)

∥∥∥ ds

+ε 0 ≤ t ≤ T (34)

Then by Gronwall’s inequality, on Ωε∥∥∥XN
(t) − Z

N
(t)

∥∥∥ ≤ εekT t 0 ≤ t ≤ T (35)

Thus, on Ωε, we have

sup
0≤t≤T

∥∥∥XN
(t) − Z

N
(t)

∥∥∥ ≤ εekT T (36)

Therefore, we obtain

P

{
sup

0≤t≤T

∥∥∥XN
(t) − Z

N
(t)

∥∥∥ ≤ εekT T

}
≥ P {Ωε} (37)
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From eqns. (29,37)

P

{
sup

0≤t≤T

∥∥∥XN
(t) − Z

N
(t)

∥∥∥ > εekT T

}
≤ 1 − P {Ωε}
= 1 − P

{
sup

0≤t≤T

∥∥∥MN
(t)

∥∥∥ ≤ ε

}

= P

{
sup

0≤t≤T

∥∥∥MN
(t)

∥∥∥ > ε

}
≤ (M(2M + 1)C1(ε, T )) e−κN NβC2(ε,T ) (38)

Now consider any δ > 0. Then taking ε = δe−kT T in
eqn. (38) we have

P

{
sup

0≤t≤T

∥∥∥XN
(t) − Z

N
(t)

∥∥∥ > δ

}
≤ C3(δ, T )e−κN NβC4(δ,T )

(39)
where

C3(δ, T ) = (M(2M + 1)C1(δe
−kT T , T ) > 0 (40)

C4(δ, T ) = C2(δe
−kT T , T ) > 0 (41)

Since, κN → ∞, it follows from eqn. (39) that

lim sup
N→∞

1

Nβ
log P

{
sup

0≤t≤T

∥∥∥XN
(t) − Z

N
(t)

∥∥∥ > δ

}
= −∞

(42)
thus establishing exponential equivalence at scale Nβ .

We now complete the last step in the proof of Theorems 1
and 2, which is establishing the LDP for the sequence {ZN}.

Lemma 4 Under the assumptions of Theorem 1, the se-
quence {ZN} satisfies an LDP at scale Nβ with good rate
function in DM [0, T ] equipped with either the Skorokhod
J1 topology or the topology of uniform convergence. In
particular, if I(·) be the rate function of {EN}N∈N and the
sequence of the scaled initial states are fixed at x ∈ R

M
+ , the

rate function Jx

T (·) for {ZN} is given by eqn. (17.)

Proof : We note that

Z
N

= Λ
(
X

N
(0),E

N
)

, ∀N ∈ N (43)

As established earlier, the function Λ(·) is continuous in
both the Skorokhod J1 topology and the topology of uniform
convergence. Hence the claim follows from the contraction
principle (c.f. Lemma 3.13 in [4].)

Theorems 1 and 2 now follow as immediate consequences
of Lemmas 3 and 4.

V. AN EXAMPLE OF BATCH ARRIVALS

Consider the batch arrival process described in Example 2
of Section I-C in heavy traffic. Without loss of generality
assume λ = μ = 1. Let the “local rate function” �(·, ·) be
defined by

�(x, y) = (y + (x ∧ 1)) ln (y + ln (x ∧ 1))−(y + (x ∧ 1))+1.

Then, it can be shown from Theorems 1 and 2 that the
sequence of the scaled number in system, {XN}N≥0 satisfies

an LDP at scale Nβ in Dx[0, T ] (equipped with the Sko-
rokhod J1 topology) with good rate function, Jx

T (·), where

Jx
T (φ) =

⎧⎨
⎩

∫ T

0

�(φ(s), φ̇(s)) ds if φ ∈ ACx
+[0, T ]

∞ otherwise
(44)

and ACx
+[0, T ] is the space of non-negative absolutely con-

tinuous functions starting at x.
The variational problems leading to the decay rate of the

probabilities of rare events are solvable in this case and will
be presented in a forthcoming paper.

VI. CONCLUSION

The paper presents a sample path large deviations anal-
ysis in the many-server regime, which is very relevant for
applications but appears not to have received much attention
in the literature thus far. Specifically, a sample path large
deviations is established in the setting of a Jackson network
of many-server queues for a certain class of arrival processes
that includes long range dependent and batch arrivals. We
show that the LDP rate function of the sequence of scaled
number in system is related to the LDP rate function of the
arrival sequence through a continuous map. This reduces the
problem of estimating the decay rate of probabilities of rare
events into solving variational problems, which also shed
light into the way rare events occur. As an illustration of
the usefulness of our result, we present an example, namely
the batch arrival case, for which the variational problem is
explicitly solvable. The analysis presented here complements
forthcoming work on sample path large deviations in the
many-server regime with different assumptions on the cu-
mulative arrival processes, that allows for the consideration
of Poisson arrival processes.
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