
All-domain fine grain dynamic speed/voltage scaling for GALS
processors

Anand Eswaran, Shelley Chen

Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

Email: {aeswaran, schen1}@andrew.cmu.edu

Abstract

Dynamic voltage scaling (DVS) has emerged as a
successful and scalable solution to deal with the
growing power consumption associated with
increased chip complexity. We describe two schemes
that allow the extension of DVS across multiple clock
domains specific to GALS out-of-order superscalar
processors. One scheme addresses the issues
involved in the commonly shared front end of the
pipeline. The other enhances the effectiveness of
voltage scaling within the various functional units of
a superscalar processor by addressing dependency
issues. We plan to implement our design on
simGALS [1].

1 Introduction

Every generation, CMOS transistors are getting
smaller in area, allowing processor designers to
increase the complexity of a processor chip. A
detrimental fall-out of this increasing complexity and
integration in modern microprocessors is the fact that
power density is rising at a significant rate. One
significant component of the power budget is clock
power.
As processors become more and more complex, the
complexity of the interconnects increases
significantly. Since most processors today are single-
clock driven, the clock signal must be propagated to
the furthest parts of the chip without increasing clock
skews. However, chips today have become so
complicated and clocks frequencies are so high that
the effects of clock skew, though small, would have a
significant effect on the functionality of the
processor.
Fortunately, GALS, Globally Asynchronous, Locally
Synchronous, processors have emerged as a good
solution to the clock skew problem. The processor
chip is divided into smaller clusters, each cluster
having its own clock.

An added incentive of having the processor split into
separate clusters, each running on their own clock, is
that this gives each cluster the freedom to have its
clock frequencies and voltage sources independently
manipulated. These conditions will be discussed later
in this paper.
This paper is organized according to the following
sections. Section 2 will talk about some previous
research that has been done concerning dynamic
voltage scaling in GALS processors. Section 3 will
describe what we intend to do in order to make power
consumption in GALS more efficient. Section 4 will
list out the schedule that we hope to follow
concerning the testing and implementation of our
new design. Finally, Section 5 will list out previous
publications that we used as references to this area of
research.

2 Previous or Related work

In all data flow paths other than the critical path, the
locally-synchronous blocks can be slowed down ,
thus producing significant power savings. This is
because the energy consumption in CMOS is
proportional to the square of the Vdd. Our work aims
at the development of a GALS architecture that can
dynamically adapt the supply frequency and voltage
delivered in a particular window of execution in order
to achieve maximal utilization of power savings
without significantly affecting performance of the
machine.
The implementation issues involved in power saving
mechanisms using dynamic clock management for
high-performance GALS out-of-order superscalar
processors have been discussed in [1] and [2] . There
exists an inverse relation between supply voltage and
logic delay due to switching capacitances involved.
Thus any change in voltage needs to be accompanied
by a proportional change in the frequency. Power
dissipated in the chip is quadratically proportional to
the supply voltage and hence reduction of Vdd would
result in significant power savings.

The implementations of current architectures of
GALS out-of-order superscalar
processors[1],[2],[3],[4] performs no voltage (and
hence frequency) scaling for the fetch, decode and
other front-end stages on the assumption that slowing
down these stages might be detrimental to net
throughput of non-blocking stages further down the
pipeline. Most current implementations are based on
some mechanism by which the queuing buffers and
asynchronous FIFOs that lie in between two
differently-clocked stages of a GALS processor
informs the producer or receiver to slow down the
clock frequency.

3 Technical Description

We plan to investigate two solutions for reducing
power consumption in the pipeline. One solutions
targets the commonly shared front end of the pipeline
(the fetch and decode stages). The second is an
extension of [1], to accommodate the cross-cutting
issues like data dependencies between functional
units in the execute stage.

3.1 Front End Voltage Scaling

For particular windows of execution, the issue rate
and the commit rate might vary considerably. This,
in turn, implies that the pipeline as a whole is not
balanced with respect to throughput. Ideally, the
commit rate should be equal to the issue rate. In
practice, the various stages of the pipeline can be
clocked so as to ensure that the difference is minimal.
When this is accomplished by reducing clock
frequency, power savings rises. The issue rate is
primarily governed by the clock frequency of the
fetch and decode stages, while the commit rate is
dependent on the write back stage. Therefore, we
propose to equalize these two rates through timely
feedback. It is to be noted that this feedback is fed
only to the commonly shared fetch and decode
stages.

3.2 Data Dependencies among Functional
Units

The queue algorithm for scaling the clock frequencies
of the functional units mentioned in [1] and [2] does
not account for data cross-dependencies among the
various functional units themselves. This may
actually lead to scenarios where the queue length may
not be an accurate estimate for the power scaling
requirements of the functional unit. In fact, queue
length based estimates may result in vastly reduced
throughput for the same power usage.

4 Schedule, Milestones, and Deliverables

Milestone 1 (10/3):
• Identify the dependencies among functional units

that will, in turn, be exploited by 3.1.
• Familiarize ourselves with simGALS

environment.
• Create module for determining issue and commit

rates.

Milestone 2 (10/17):
• Implement 3.1.

Milestone 3 (10/31):
• Implement 3.2.

Milestone 4 (11/4):
• Integration of 3.1 and 3.2.

Final Milestone (12/2):
• Simulation/verification of proposed schemes.
• Drawing inferences.

5 References

[1]A. Iyer and D. Marculescu. Power-Performance

Evaluation of Globally Asynchronous, Locally
Synchronous Processors. Intl. Symposium on
Computer Architecture (ISCA). May 2002.

[2]A. Iyer and D. Marculescu. Power Efficiency of
Multiple Clock, Multiple Voltage Cores.
IEEE/ACM Intl. Conference on Computer-Aided
Design (ICCAD). Nov. 2002.

[3]G. Semeraro, D.H. Albonesi, S.G. Dropsho, G.
Magklis, S. Dwarkadas, and M.L. Scott. Dynamic
Frequency and Voltage Control for a Multiple
Clock Domain Microarchitecture. 35th
International Symposium on Microarchitecture.
November 2002.

[4]G. Semeraro, G. Magklis, R. Balasubramonian,
D.H. Albonesi, S. Dwarkadas, and M.L. Scott.
Energy-Efficient Processor Design Using
Multiple Clock Domains with Dynamic Voltage
and Frequency Scaling. 8th International
Symposium on High-Performance Computer
Architecture. pp. 29-40, February 2002.

