Milestone 3:
 Dynamic Speed \& Voltage Scaling for GALS Processors

Shelley Chen Anand Eswaran

\{schen1, aeswaran\}@andrew.cmu.edu

October 31, 2002

Outline

- Milestone Objective
- Methodology

■ Milestone update

Milestone Objective: Dependency Checker

- Original dynamic speed adjustments for the functional units were dependent only upon the absolute queue length
- Add check for number of ready instructions in the queue for each functional unit
- Need to determine high and low thresholds
- Add check for number of direct dependencies for executing instructions
- Need to determine threshold

Methodology (1/4)

■ Added counters to each functional unit
■ Number of dependencies on instruction in functional unit

- int_dep_cnt, mem_dep_cnt, fp_dep_cnt

■ Number of independent instructions in the
FU issue queue
■ int_idep_cnt, mem_idep_cnt, fp_idep_cnt

Methodology (2/4)

When each instruction is dispatched to the issue queue of a functional unit (gals_*_dispatch2)

- If no dependency is associated with it, increment independent counter
- Else, increment dependent counter of the source of the dependency

Methodology (3/4)

- When an instruction is written back (gals_*_wb)
- Wake up waiting entries in the issue queue

■ Decrement dep counter of functional unit that committing instruction is dependent on

- Increment idep counter of issue queue that the dependent instruction is waiting in

Methodology (4/4)

- When an instruction commits (gals_*_commit)
■ Decrement idep counter of function unit that it was issued to

Determining Parameters

- Need to determine values for:
- High and low thresholds for independent instructions in each issue queue
- High threshold for dependencies of each functional unit
- To determine variables values:
- Iterate through possible values for each variable, holding all other variables constant

Milestone Update

- Incorporated dependency checking across functional units into speed/voltage adjustments of DVS algorithm
- Few bugs to be sorted out
$■$ Need to determine optimal values of parameters for the enhanced algorithm

Questions?

