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Abstract 
 
 Dynamic voltage scaling (DVS) has 
emerged as a successful and scalable solution to 
deal with the growing power consumption 
associated with increased chip complexity. We 
describe two schemes that allow the extension of 
DVS across multiple clock domains specific to 
GALS out-of-order superscalar processors. One 
scheme addresses the issues involved in the 
commonly shared front end of the pipeline. The 
other enhances the effectiveness of voltage 
scaling within the various functional units of a 
superscalar processor by addressing dependency 
issues. We plan to implement our design on 
simGALS [1], figure shown at right.  
 
1 Introduction 
 
 Every generation, CMOS transistors are 
getting smaller in area, allowing processor 
designers to increase the complexity of a 
processor chip. A detrimental fall-out of this 
increasing complexity and integration in modern 
microprocessors is the fact that power density is 
rising at a significant rate. One significant 
component of the power budget is clock power. 
 As processors become more and more 
complex, the complexity of the interconnects 
increases significantly. Since most processors 
today are single clock driven, the clock signal 
must be propagated to the furthest parts of the 
chip without increasing clock skews. However, 
chips today have become so complicated and 
clocks frequencies are so high that the effects of 
clock skew, though small, would have a 
significant effect on the functionality of the 
processor.  Fortunately, GALS, Globally 
Asynchronous, Locally Synchronous, processors 
have emerged as a good solution to the clock 
skew problem. The processor chip is divided into 
smaller clusters, each cluster having its own 
clock. 
 An added incentive of having the 
processor split into separate clusters, each 
running on their own clock, is that this gives 

each cluster the freedom to have its clock 
frequencies and voltage sources independently 
manipulated. These conditions will be discussed 
later in this paper. 

 
Figure 1: High-level block diagram of the GALS 
architecture.  The sections encapsulated by the dotted lines 
represent independent clock domains. 

 We investigated two solutions for 
reducing power consumption in the pipeline. 
One solution targets the commonly shared front 
end of the pipeline (the fetch and decode stages). 
The second is an extension of [1], to 
accommodate issues like data dependencies 
among the functional units in the execute stage. 
 
2 Previous or Related Work 
 
 In all data flow paths other than the 
critical path, the locally-synchronous blocks can 
be slowed down, thus producing significant 
power savings. This is because the energy 
consumption in CMOS is proportional to the 
square of the Vdd. Our work aims at the 
development of a GALS architecture that can 
dynamically adapt the supply frequency and 



voltage delivered in a particular window of 
execution in order to achieve maximal utilization 
of power savings without significantly affecting 
performance of the machine. 
 The implementation issues involved in 
power saving mechanisms using dynamic clock 
management for high-performance GALS out-
of-order superscalar processors have been 
discussed in [1] and [2] . There exists an inverse 
relation between supply voltage and logic delay 
due to switching capacitances involved. Thus 
any change in voltage needs to be accompanied 
by a proportional change in the frequency. Power 
dissipated in the chip is quadratically 
proportional to the supply voltage and hence 
reduction of Vdd would result in significant 
power savings. 
 The implementations of current 
architectures of GALS out-of-order superscalar 
Processors [1],[2],[3],[4] performs no voltage 
(and hence frequency) scaling for the fetch, 
decode and other front-end stages on the 
assumption that slowing down these stages might 
be detrimental to net throughput of non-blocking 
stages further down the pipeline. Most current 
implementations are based on some mechanism 
by which the queuing buffers and asynchronous 
FIFOs that lie in between two differently-
clocked stages of a GALS processor informs the 
producer or receiver to slow down the clock 
frequency. 
 Baniasadi and Moshovos [5] discuss 
throttling of the fetch and decode stages 
accordingly with the commit rate.  In addition, 
another technique that they introduce is throttling 
of the front end when the number of instructions 
waiting for dependencies exceeds a pre-defined 
threshold.  These techniques are meant to 
complement existing speculation-based 
confidence methods. 
 
3 Paper Overview 
 
 This paper is organized as follows. In 
Section 4, we talk about some implementation 
details concerning the different issues that we 
proposed to attack in this paper:  front end 
throttling and data dependencies. Section 5 
describes the simulator that was used for the 
testing and verification of the results.  Section 6 
describes the baseline model that we used for 
comparison to the modified GALS processor.  In 
addition, it summarizes the results obtained from 
implementing the new techniques.  Section 7 
draws some conclusions about the effectiveness 
of the techniques introduced.  Section 8 focuses 

on possible future work that can be done and 
how to extend our research further. 
4 Implementation Details 
 
 This section describes the steps that 
were taken to implement the dynamic scaling of 
the fetch stage and the dependency check for the 
execute stages of the pipeline.  The details about 
the algorithms implemented are described as 
well as the hardware requirements for each 
solution. 
 
4.1 Front End Throttling of the Pipeline 
 
 A common problem that accompanies 
asynchronous designs is that the system becomes 
unbalanced.  The more common case is that the 
fetch rate exceeds the commit rate.  Usually, this 
problem can be averted by inserting queues 
between pipeline stages to handle short spurts of 
unevenness in the instruction flow.  However, 
this is not ideal for low power or good 
performance.  When the queues are empty, the 
system is still executing at the same clock rate 
and consuming the same power, but not doing 
anything productive.  When the queues are full, 
performance drops significantly.  Queues only 
work for short periods of fluctuations.    
 It would be ideal to incorporate some 
intelligence into the fetch and decode stages so 
that they will know when to slow down due to 
earlier bottlenecks in the system.  For example, if 
the queues to the functional units are at capacity, 
then the fetch and decode stages should stop 
issuing instructions until the queues start to 
empty.  On the other hand, if the system is 
empty, then there is inefficient usage of the 
available resources, which is just wasting power.  
Thus, the fetch and decode stages should readily 
adapt to this and begin issuing instructions at a 
faster rate if resources in the pipeline are 
underutilized and slower if there is congestion in 
the pipeline. 
 
4.1.1 Fetch/Decode Adaptive Algorithm 
 
 The algorithm we developed keeps 
track of the number of instructions committed 
and fetched within a set window size.  The 
window size determines the number of 
instructions executed between each sampling 
period.  Every sampling period, the number of 
committed instructions and the number of 
fetched instructions are compared.  If the 
number of instructions fetched exceeds the 
number of instructions committed by a 



predetermined threshold, then the fetch and 
decode units are clocked down.  On the other 
hand, if number of instructions fetched and the 
number of instructions committed is higher than 
a certain threshold, then that means that the 
instruction flow is once again pretty smooth and 
the fetch clock can be sped up again.  The tricky 
thing is to determine the window size, the 
threshold values, and the amount to adjust the 
clock by.  These issues will be addressed in the 
next section. 
 

 
Figure 2: Pseudocode of algorithm for adjusting the clock 
frequency of the fetch unit. 

 
 Ideally, we would just like to switch the 
clock between a high frequency and a low state.  
The amount of clock adjustment is very 
important because it is possible to continually 
overshoot and undershoot the desired clock rate.  
Thus, the system will be infinitely switching its 
clock frequency every sampling period, never 
reaching an optimal execution speed.  However, 
if it is too small, then the system will not be able 
to adapt to the needs of the application quickly 
enough.  Semeraro and Albonesi [3] suggest that 
the amount of change should be 3-12% to 
produce optimal results.  However, our system 
cannot handle dynamic thresholds.  We only 
support two clock frequencies for the fetch unit.  
Not only is this simpler to implement in 
hardware, but also more power efficient because 
complicated computation tends to drain more 
power. 
 The window size of the fetch stage 
determines the frequency of sampling that 
occurs.  This affects the reactivity of the fetch 
stage to changes in the system.  If the window 
size is too large, then there will be a significant 
amount of delay before the system adapts to 

changes.  On the other hand, if the window size 
is too small, then the system will be excessively 
sensitive to changes and adapting superfluously. 
[3] uses a window size of 10,000 instructions, 
whereas [5] uses a window of only 1024 
instructions.  In Section 6, we will explain how 
we came to our optimal window size, 40,000 
instructions. 
 The values of the high and low 
thresholds of the fetch stage determine the 
sensitivity of the system to performance changes.  
If the values of the thresholds are too narrow, 
once again, the system will be adjusting too 
frequently.  If the values are too wide, then the 
system will not adapt to performance changes at 
all. [3] suggests that a threshold of 0.75 – 1.75% 
produces optimal performance and low power 
gains.  We found that strategically chosen 
narrow values actually work best.  We will go 
further in detail about the specifics of this in the 
Experimental Results section later on. 
 
4.1.2 Hardware Requirements 
 
 To implement the above scheme, we 
basically need two instruction counters, one for 
the fetch unit and one for the commit unit, to 
keep track of the number of fetches or commits 
done between sampling periods.  In addition, a 
counter is needed for determining when the end 
of a window size has ended.  In addition, a 
shifter and an adder can be used to compare the 
values of the number of instructions fetched and 
the number of instructions committed within a 
sampling period.  In [5], the optimal power-
performance gain was achieved when the front 
end was throttled when three times the number 
of instructions was being fetched as were being 
committed.  Our optimal threshold was much 
stricter.  This will be discussed in more detail 
later on.  Overall, the hardware needed to 
implement this algorithm is not that complex, 
making this implementation very feasible. 
 
4.2 Data Dependencies among Functional 
Units 
 
 The queue algorithm for scaling the 
clock frequencies of the functional units 
mentioned in [1] and [2] determines operating 
frequency of the functional units based solely on 
queue length.  This stems from the assumption 
that there is a direct correlation between the 
number of entries in the issue queue for each 
clock domain over an interval of instructions and 
the desired frequency of that particular domain.  

 
if (num_inst >= window_size) { 
 
 // commit rate too high 
 if (commit_rate – fetch_rate > 
  threshold_high) 
   // increase fetch rate 
   clock_rate_fetch =  HIGH_MODE; 
 
 // fetch rate too high 
 if (commit_rate – fetch_rate <   
 threshold_low) 
    // slow it down 
    clock_rate_fetch = LOW_MODE; 
 
 // else do nothing. 
} 



The queue length is indicative of the rate at 
which instructions are flowing through the 
instruction core.  If the queue length increases, it 
implies that instructions aren't flowing into the 
functional units fast enough. 
 However, this approach might be 
unacceptable in conditions where there are 
dependencies across various functional units. For 
example, the memory unit might be stalling on 
an operand that to be generated in the integer 
unit. In this example, all memory operations 
subsequent to the memory instruction that is 
stalled will queue up in the memory unit issue 
queue. If the clock frequency uses the queue 
length of the memory unit as an estimator for 
frequency scaling, it would speed up the clock of 
memory unit. However this is unnecessary, 
considering that the dependency resides in the 
integer unit. Thus increasing the frequency 
would result in no significant effective increase 
in performance of the memory unit. 
 Thus we believe that when there are 
inter-dependencies between the functional units 
it might be more sensible to base the frequency 
scaling upon the number of ready instructions in 
the queue, those which have no dependencies at 
all associated with them.  Thus, it would be more 
appropriate to base the frequency on the number 
of uncommitted instructions starting from the 
head of the queues that have no dependencies 
associated with them. 
 In addition, we need to keep count of 
the number of dependencies there are for each 
functional unit.  This would help for situation 
such as if the memory issue queue is full of 
instructions that are waiting for an instruction 
executing in the integer queue.  Ideally, the 
integer queue operating frequency would be sped 
up, reducing the wait time for the instructions in 
the memory queue. 
 We plan to integrate this with our 
earlier mechanism that aims at minimize the 
difference between the fetch and commit rates. 
We believe that corrective actions based on 
fetch-commit rate should take place over a larger 
window. Thus there should  be no need to adjust 
the clock rates of the front stages of the pipeline 
unless the adjustment  cannot be sorted locally 
within a particular clock domain, especially 
considering the fact  that commit-rate based 
throttling is more coarse-grained and affects the 
propagation speed through all the pipe stages. 
 
4.2.1 Dependency Tracking Algorithm 
 

 We describe below the modified 
implementation of the dependency-tracking 
algorithm. The pseudocode for the dependency 
checking algorithm is shown in Figure 1 below.  
The implementation of the Dynamic Voltage 
scheme has not changed significantly from the 
original algorithm used by [1] and [2].  The 
difference is that we use the number of ready 
instructions rather than the occupancy in the 
queue. 
 

 

Figure 3: Modified dependency-checking algorithm for 
dynamically adjusting the operating speed and voltage of a 
functional unit. 

 We associate two counters with each 
functional unit. One of these tracks the number 
of independent instructions associated with that 
unit. The other keeps track of the number of 
dependencies that are waiting for the completion 
of an instruction with that particular functional 
unit. 
 When an instruction is first dispatched 
to the queue of a functional unit, its operands are 
checked.  If the operands are ready, then the 
independent counter for that functional unit is 
incremented.   This increment signifies that there 
is another ready instruction in the queue to be 
issued.  However, if the instruction’s operands 
are not ready yet, then a linear search through the 
execution units of each functional unit is 
executed to find the instruction that this current 
waiting instruction is dependent on.  When such 
an instruction is found, the dependent counter is 
incremented.  This conveys to the other 
functional unit that there is a dependant 
instruction waiting for an executing instruction. 
 When an instruction completes 
execution, it must notify all dependent 
instructions that its result is ready.  Thus, it must 

if (state == HIGH_STATE) { 
 
  if (ready inst in queue < threshold) 
    increment count; 
 
} else { 
 
  if ((ready inst in queue < threshold) 
      || (dep_cnt > dep_threshold)) 
     increment count; 
 
} 
 
if (count > CLOCK_INTERVAL) { 
 
  state = !state;  //switch states 
  count = 0;       //reset counter  
 
} 



once again linearly search through all the queues 
of the functional units and wake all instructions 
that are dependent upon its result.  At this point, 
for each instruction woken up, the dependent 
counter for its associated functional unit is 
decremented and the independent counter for the 
functional unit of the waiting instruction is 
incremented.  Thus, when all dependencies are 
resolved, the dependent counters for all 
functional units should be zero. 
 Finally, when an instruction commits, 
the independent counter of the associated 
functional unit is decremented. 
/* 
 Unfortunately, dealing with 
synchronizing the counters for the functional 
units spanning different clock domain proved to 
be a more daunting task than it seemed.  
Synchronizing the counters correctly was 
difficult when writebacks were done at different 
times (each functional unit writes back to its own 
queue first, then buffers the writebacks to the 
queues of the other functional units).  In the end, 
we simulated the counters by searching through 
the queues whenever we needed an independent 
count and a dependency count for each 
functional unit.  Although this made the 
simulator run much slower, the correctness of the 
counters is still ensured. 
*/ 
 
4.2.2 Hardware Requirements 
 
 The hardware needed to implement this 
algorithm is not substantial.  Two counters are 
needed for each functional unit to keep track of 
the number of independent instructions and the 
number of dependent instructions.  In addition, 
there needs to be a counter for keeping track of 
the instruction count in the window size for each 
functional unit.  In addition, two comparators are 
needed for each functional unit, one each for 
signaling when the sampling period of the 
algorithm has been reached and another one each 
for determining if the number of ready 
instructions is larger than the thresholds.  In 
addition, one more comparator for each 
functional  unit is needed for determining if the 
number of dependent instructions is larger than 
the dependent instruction threshold. 
 
5 Simulator Details 
 
 We conducted our experiments on a 
modified version of the simGALS simulator 
presented in [1] and pictured in Figure 1.  This 

simulator has been modified to support the 
dynamic clock/voltage scaling of the fetch stage 
in the pipeline in addition to the data dependency 
checks described earlier in Section 4.2.  Below 
lists the specific configuration of the simulator 
used. 
 

 
Figure 4:  Configuration of the simGALS simulator. 

 
6 Experimental Results 
 
6.1 Baseline Model 
 
 [1] and [2]  describe a GALS 
architecture with distinct clock domains for each 
functional unit group.  We use their dynamic 
voltage scaling algorithm as the baseline for 
comparison of our results.  This configuration 
does not include either front end scaling or 
dependency checking for speed and voltage 

decode width:   4  
number int registers:   72 
number fp registers:  72 
 
int queue size:   20 
int issue width:   4 
int commit width:  4 
  
fp queue size:    16 
fp issue width:   4 
fp commit width:  4 
 
mem queue size:   16 
mem issue width:  4 
mem commit width:  4 
 
level 1 data cache 
# sets:    128 
block size:   32 
associativity:   4 
replacement policy:  LRU 
 
level 1 instruction cache 
# sets:    1024  
block size:   64 
associativity:   1 
replacement policy:  LRU 
 
level 2 unified cache 
# sets:    512 
block size:   32 
associativity:   1 
replacement policy:  LRU 
 



adjustments of the functional units, which makes 
it an appropriate baseline model for determining 
if the front-end throttling and the dependency 
checks reduce the power consumption of the 
system.  It supports up to five different clock 
domains, but [1] and [2] only use four (the fetch 
and decode stages use the same clock). 
 Experiments were done only on two 
benchmarks from Spec95:  compress95, which is 
a very regular integer benchmark, and fpppp, 
which is an irregular floating point benchmark.  
The IPC, power and energy values for the 
baseline model are tabulated in Table 1 below.  
 
Benchmark IPC Power Energy 
Compress95 1.9526 20.1892 10.4847 
fpppp 0.7596 23.9086 31.4743 

Table 1:  Results of the baseline simulator. 

 
6.2 Fetch Stage 
  
 The two variables concerned with the 
fetch stage throttling algorithm that needed to be 
fine-tuned were the fetch stage upper and lower 
thresholds, and the fetch stage window size. 
 The fetch stage upper and lower 
thresholds determine when the fetch stage should 
dynamically change its operating clock 
frequency and operating voltage.  If the 
thresholds are too lax, then the clock frequency 
will never be scaled thus limiting the extent of 
voltage scaling.  However, if the thresholds are 
too tight, then the algorithm will be switching 
the frequency of the fetch clock after every 
sampling period, resulting in greater power 
consumption than the baseline due to switching 
energy. 
 The upper and lower thresholds were 
determined by observing the behavior of the 
fetch stage at different thresholds and making an 
educated guess of reasonable values to narrow 
down the number of simulations conducted.  The 
chosen values were:  

• Set 1:  High threshold:  10 
  Low threshold:  100 

• Set 2: High threshold:  10 
  Low threshold:  250 

• Set 3: High threshold:  10 
  Low threshold:  500 

The threshold values correspond to the 
difference between the number of instructions 
fetched and the number of instructions 
committed for a sampling period.  If the 
difference is less than the High threshold, then 
the fetch stage will switch into HIGH mode.  If 

the difference between the number of 
instructions committed and the number of 
instructions fetched is greater than the Low 
threshold value, then the fetch stage will clock 
down into a LOW mode.  Thus, looking at the 
first set of values, if the difference between the 
fetch and the commit numbers is less than 10, 
then the fetch stage will switch to HIGH power 
(high frequency) mode if it is not already 
running in the HIGH power state.  If the 
difference is greater than 100, then the fetch 
stage will switch to a LOW power (low 
frequency) mode. 
 The graphs below plot the results of 
varying the threshold while holding the window 
size constant.  The experiments for Figures 5 
through 7 were done with the window size fixed 
at 40,000 instructions.   
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Figure 5: IPC for various thresholds 
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Figure 6:  Power for various thresholds 
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Figure 7: Energy for various thresholds 

 Figure 5 shows that the IPC from 
running the modified simulator on compress95, 
an integer benchmark, and fpppp, a floating point 
benchmark.  The results clearly indicate that 
running the simulator on compress95 does not 
really provide any performance benefits.  
Although the IPC increase for the second data set 
is higher than the other two, the difference is too 
negligible to account for by any rational 
explanation.  

Figures 6 and 7 show that the power 
and the energy consumption of the system do not 
change with window size. This is due to the fact 
that compress95 is a very regular benchmark.  In 
fact, there is no significant switching of the fetch 
stage of the processor, ensuring that the fetch 
stage clock is in the performance mode over the 
entire run of the benchmark. Thus, it is 
reasonable that the results show neither 
performance benefits nor power savings.   
 For the floating point benchmark, 
fpppp, however, there is significant variation in 
the IPC with the thresholds.  With a low 
threshold of 100, the system really does not have 
much scope for any variation in the fetch and 
commit rates.  Once the fetch rate and the 
commit rate are slightly skewed, then the system 
will switch into the LOW power state.  On the 
other hand, having a low threshold of 500 is not 
ideal either because the system will continue 
fluctuating between HIGH and LOW power 
states.   

For the floating point benchmark, 
fpppp, however, there is more variation in the 
IPC due to the thresholds.  With a low threshold 
of 100, the system does not have much scope for 
any variation in the fetch and commit rates.  
Once the fetch rate and the commit rate are 
slightly unbalanced,  the system will 
immediately switch into the LOW power state.  
This will cause the system to quickly decrease its 
fetch rate, equalizing the fetch and commit rates 

and sending the system back into a HIGH power 
state.  Thus, the system is constantly fluctuating 
between the HIGH and LOW power states.  On 
the other hand, when the low threshold is 
increased to 500, the system will wait for the 
commit rate and fetch rates to become very 
unbalanced before switching to a LOW power 
state.  So, the system will take a period of time 
for the commit rate to catch up to the fetch rate, 
putting the system back into a balanced state.  Of 
the three chosen sets of high and low thresholds, 
the middle set, (high threshold: 10, low 
threshold: 250) seems to be the best compromise 
between the two. 
 
 In addition to determining the high and 
low switching thresholds for the fetch logic, the 
optimal window size of the fetch logic also had 
to be determined.  To do this, we simulated 
running the two spec95 benchmarks on the 
modified simulator with window sizes of 20,000 
instructions through 50,000 instructions, 
incrementing by 10,000 instructions and keeping 
all other factors static.  The threshold used for 
the results is high = 10 and low = 250 based on 
the earlier experiments conducted to calculate 
optimal thresholds.  The results can be seen in 
Figures 8 through 10.  Once again, compress95 
doesn’t show any improvement because there is 
practically no fetch stage throttling.  For fpppp, it 
is seen that a window size of 40000 yields best 
results with respect to power and energy savings.   
Here, the power consumption is 67% of that of 
the baseline, with only a 12% drop in IPC.  
Energy consumption is only 86% of that of the 
baseline simulator. 
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Figure 8:  Normalized IPC with respect to the baseline. 

 



Power vs. Window Size of Fetch Unit
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Figure 9:  Normalized Power with respect to the baseline. 
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Figure 10:  Normalized Energy with respect to the baseline. 

 
6.3 Data Dependency 
 
 The results for the influence of the 
proposed dynamic voltage scaling algorithm on 
the various parameters were studied through 
simulations conducted across two benchmarks: 
compress95 and fpppp.  
 Since the solution space to the problem 
of finding a set of parameters that scale well 
across extensively varying program behavior is 
extremely large, rational decisions were called 
upon to quickly prune the solution space to 
converge on a group of parameters that would 
yield high power savings without significant 
performance degradation. 
    The following results were simulated 
with two sets of thresholds. One set (upper 
threshold, lower threshold) pair with low 
thresholds corresponds to a performance mode 
because only when soon the buffer occupancy 
drops below a very low value does the transition 
to the LOW STATE (power state) take place and 
as soon as buffer occupancy rises above a 
slightly higher value for a continuous period that 
is equal to the window size, a transition to the 

HIGH STATE (performance state) takes place. 
The other set of thresholds with higher values 
and a bigger difference between low and high 
thresholds corresponds to a power mode because 
the functional unit flips to a low power state 
soon and only if the independent instructions in 
the issue queue rises above the large high 
threshold value for a period that is equal to the 
window size is there a transition to a HIGH 
power state. The values chosen for the 
experiments for the performance mode were 
(2,4) and for the power mode were (4,12). 

The variation of the IPC (Instructions 
per Cycle) of the test benchmarks with window 
size is depicted below. As can be seen , as the 
window size increases there is a slight decrease 
in the IPC because of the increase in the average 
instructions that the program stays in the power 
mode. Overall there is no conspicuous 
degradation in the IPC. 
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IPC for low frequency = 1.5 for various window sizes
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Figure 11: Variation of IPC with window size (a) Frequency: 
1.2 (b) Frequency: 1.5. 

  The variation of the average power per 
cycle normalized to the baseline implementation 
of  [1]  is shown below. The graphs show that 
there is practically no power savings for window 
sizes 2048 and 4096 for the compress 
benchmark. This is because the compress95 is a 



fairly regular predictable benchmark without 
significantly varying performance behavior. In 
fact the only window size for compress for 
which there is switching is for window size 
1024.However, due to the excessive switching 
there is high switching power loss and hence 
normalized power is greater than the baseline. 
For the fpppp benchmark , there are significant 
power savings( 78% for performance mode and 
up to 73% for power mode). It was noted that 
beyond a window size of 4096, there were no 
significant improvement in the power savings 
with  window sizes to justify the loss in the IPC. 
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Power for low frequency = 1.5 for various window sizes
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(b) 

Figure 12: Variation of power_cc3 with window size  (a) 
Frequency: 1.2 (b) Frequency: 1.5 

 
 The trends in the energy savings with 
window size is consistent with the power savings 
graph shown in Fig 5. It is seen that for the fpppp 
there is significant energy savings while for the 
compress there is no savings because the 
processor perpetually stays in the high-
performance state. 
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Energy for low frequency = 1.5 for various window sizes
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(b) 

Figure 13: Variation of energy_cc3 with window size (a) 
Frequency: 1.2 (b) Frequency: 1.5 

 
From the graphs, it is clearly visible that 

the dominant parameter that affects the size of 
the dynamic voltage scaling algorithm is the 
window size. As the window size increases the 
effect of the thresholds become less prominent. 
Besides, the period of the low performance mode 
clock can be relatively large (up to 1.5 times that 
of the high-performance mode clock) without 
any significant drop in the IPC. 

The typical profile of each of the 
separately clocked functional units in a GALS 
architecture for the fpppp benchmark is shown in 
Figure 14. This program trace uses a small 
window size of 256 over 1 million instructions to 
depict the activity of the functional unit to a high 
degree of accuracy. We depict the state-graphs of 
each functional unit: memory unit, integer unit 
and floating unit.  The state 1 corresponds to the 
high performance mode while state 0 
corresponds to the power mode (low 
performance mode). 

It can be seen that the memory 
functional unit stays in the high-performance 
mode more than 50% of the time. This seems 
intuitively correct because memory operations 
will be associated both integer and floating 



operations when of the respective functional 
units are active. The floating point unit on the 
other hand depicts a very low average utilization. 
It lies in the inactive state most of the time. The 
utilization of the integer unit is around 50% in 
the first million cycles due to its high usage early 
on. 
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Profile of FP Functional Unit
(window size 256 instructions)
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Profile of Int Functional Unit
(window size 256 instructions)
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(c) 

Figure 14: Profile of fpppp benchmark over 1 million 
instructions of functional unit state vs time  (a) Memory unit 
(b) Floating point unit (c) Integer Unit 

 
 Figure 14 depicts the profile of the 
fpppp benchmark over its entire run-cycle. As 
can be seen, the integer unit switches states (to a 
LOW) at cycle 547963 which is consistent with 

the expected profile behaviour from Figure 
14(c). This is because, as shown in Figure 14(c), 
the integer unit remains fairly active till around 
cycle 550,000, after which activity drops. The 
larger window size in Figure 14 prevents the 
excessive switching that is evident in Figure 15. 
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Figure 15: Profile of fpppp benchmark for 1024 window size 
over entire benchmark for thresholds (2, 4). 

7 Conclusions 
 

We modify the original scheme 
proposed in [1] to incorporate two new features. 
The first of these features is throttling of the 
fetch stage of the CPU pipeline while the other 
modifies the original algorithm proposed in [1] 
to account for the independent instructions that 
were waiting in the issue queue and total 
dependencies associated with that FU as a trigger 
for the dynamic voltage scaling.  

We have implemented our proposed 
changes on the simGALS simulation platform 
[1]. Our results show significant power savings 
with insignificant associated penalty in 
performance.  
    
8 Future work 
 
 Since program behavior is so 
benchmark and program-phase dependant, it 
would be interesting to evolve analytic 
probability distribution models that characterize 
the instruction flow at each phase.  This would 
result in sound mathematical principles in 
choosing the thresholds and window size values. 
We  do not believe that the scheme of dynamic 
thresholds is feasible because such an 
implementation would be necessarily have to be 
too complex to implement in hardware besides 
introducing new variables to the DVS algorithm. 
We also believe that simple mechanisms such as 
[1] are more feasible to implement in actual 



implementations as compared to complicated 
schemes such as [2]. 

In addition, the parameters that were chosen 
as being optimal are very application specific.  
Only two benchmarks were tested:  compress95, 
an integer benchmark, and fpppp, a floating point 
benchmark.  It would be interesting to test the 
modified simulator on a wider set of benchmarks 
to see if there results are similar to the ones we 
present in this paper 
9 Schedule 
 Below are the steps that we took for 
completing the research that needed to be done 
for this project.  We followed this schedule fairly 
tightly and were able to complete the project in 
the time originally proposed. 
 
Milestone 1 (10/3): 
• Identify the dependencies among functional 

units that will, in turn, be exploited by the 
Data Dependency Checker. 

• Familiarize ourselves with simGALS 
environment. 

• Create module for determining issue and 
commit rates. 

 
Milestone 2 (10/17): 
• Implement throttling of the front end of the 

pipeline 
 
Milestone 3 (10/31): 
• Implement dependency checking per 

functional unit for speed and voltage 
adjustments. 

 
Milestone 4 (11/4): 
• Integration of the Milestones 2 and 3. 
 
Final Milestone (12/2): 
• Simulation/verification of proposed 

schemes. 
• Drawing inferences. 
 
10 Division of Labor 
 Since there were two seemingly 
orthogonal methods proposed, it seemed logical 

to split the work down that line as well.  Shelley 
implemented, tested, and simulated the front end 
throttling mechanism and Anand implemented, 
tested, and simulated the Data Dependency 
Checker module.  In the end, when the two 
modules were integrated, we needed to both 
simulate the final simulator.  Most of the time, 
we kept to our assigned jobs. 
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