
Dynamic speed/voltage scaling for GALS processors

Shelley Chen Anand Eswaran

Carnegie Mellon University
Department of Electrical and Computer Engineering

Pittsburgh, PA 15213
Email: {schen1, aeswaran}@andrew.cmu.edu

http://www.ece.cmu.edu/~schen1/ece743

Abstract

 Dynamic voltage scaling (DVS) has
emerged as a successful and scalable solution to
deal with the growing power consumption
associated with increased chip complexity. We
describe two schemes that allow the extension of
DVS across multiple clock domains specific to
GALS out-of-order superscalar processors. One
scheme addresses the issues involved in the
commonly shared front end of the pipeline. The
other enhances the effectiveness of voltage
scaling within the various functional units of a
superscalar processor by addressing dependency
issues. We plan to implement our design on
simGALS [1], figure shown at right.

1 Introduction

 Every generation, CMOS transistors are
getting smaller in area, allowing processor
designers to increase the complexity of a
processor chip. A detrimental fall-out of this
increasing complexity and integration in modern
microprocessors is the fact that power density is
rising at a significant rate. One significant
component of the power budget is clock power.
 As processors become more and more
complex, the complexity of the interconnects
increases significantly. Since most processors
today are single clock driven, the clock signal
must be propagated to the furthest parts of the
chip without increasing clock skews. However,
chips today have become so complicated and
clocks frequencies are so high that the effects of
clock skew, though small, would have a
significant effect on the functionality of the
processor. Fortunately, GALS, Globally
Asynchronous, Locally Synchronous, processors
have emerged as a good solution to the clock
skew problem. The processor chip is divided into
smaller clusters, each cluster having its own
clock.
 An added incentive of having the
processor split into separate clusters, each
running on their own clock, is that this gives

each cluster the freedom to have its clock
frequencies and voltage sources independently
manipulated. These conditions will be discussed
later in this paper.

Figure 1: High-level block diagram of the GALS
architecture. The sections encapsulated by the dotted lines
represent independent clock domains.

 We investigated two solutions for
reducing power consumption in the pipeline.
One solution targets the commonly shared front
end of the pipeline (the fetch and decode stages).
The second is an extension of [1], to
accommodate issues like data dependencies
among the functional units in the execute stage.

2 Previous or Related Work

 In all data flow paths other than the
critical path, the locally-synchronous blocks can
be slowed down, thus producing significant
power savings. This is because the energy
consumption in CMOS is proportional to the
square of the Vdd. Our work aims at the
development of a GALS architecture that can
dynamically adapt the supply frequency and

voltage delivered in a particular window of
execution in order to achieve maximal utilization
of power savings without significantly affecting
performance of the machine.
 The implementation issues involved in
power saving mechanisms using dynamic clock
management for high-performance GALS out-
of-order superscalar processors have been
discussed in [1] and [2] . There exists an inverse
relation between supply voltage and logic delay
due to switching capacitances involved. Thus
any change in voltage needs to be accompanied
by a proportional change in the frequency. Power
dissipated in the chip is quadratically
proportional to the supply voltage and hence
reduction of Vdd would result in significant
power savings.
 The implementations of current
architectures of GALS out-of-order superscalar
Processors [1],[2],[3],[4] performs no voltage
(and hence frequency) scaling for the fetch,
decode and other front-end stages on the
assumption that slowing down these stages might
be detrimental to net throughput of non-blocking
stages further down the pipeline. Most current
implementations are based on some mechanism
by which the queuing buffers and asynchronous
FIFOs that lie in between two differently-
clocked stages of a GALS processor informs the
producer or receiver to slow down the clock
frequency.
 Baniasadi and Moshovos [5] discuss
throttling of the fetch and decode stages
accordingly with the commit rate. In addition,
another technique that they introduce is throttling
of the front end when the number of instructions
waiting for dependencies exceeds a pre-defined
threshold. These techniques are meant to
complement existing speculation-based
confidence methods.

3 Paper Overview

 This paper is organized as follows. In
Section 4, we talk about some implementation
details concerning the different issues that we
proposed to attack in this paper: front end
throttling and data dependencies. Section 5
describes the simulator that was used for the
testing and verification of the results. Section 6
describes the baseline model that we used for
comparison to the modified GALS processor. In
addition, it summarizes the results obtained from
implementing the new techniques. Section 7
draws some conclusions about the effectiveness
of the techniques introduced. Section 8 focuses

on possible future work that can be done and
how to extend our research further.
4 Implementation Details

 This section describes the steps that
were taken to implement the dynamic scaling of
the fetch stage and the dependency check for the
execute stages of the pipeline. The details about
the algorithms implemented are described as
well as the hardware requirements for each
solution.

4.1 Front End Throttling of the Pipeline

 A common problem that accompanies
asynchronous designs is that the system becomes
unbalanced. The more common case is that the
fetch rate exceeds the commit rate. Usually, this
problem can be averted by inserting queues
between pipeline stages to handle short spurts of
unevenness in the instruction flow. However,
this is not ideal for low power or good
performance. When the queues are empty, the
system is still executing at the same clock rate
and consuming the same power, but not doing
anything productive. When the queues are full,
performance drops significantly. Queues only
work for short periods of fluctuations.
 It would be ideal to incorporate some
intelligence into the fetch and decode stages so
that they will know when to slow down due to
earlier bottlenecks in the system. For example, if
the queues to the functional units are at capacity,
then the fetch and decode stages should stop
issuing instructions until the queues start to
empty. On the other hand, if the system is
empty, then there is inefficient usage of the
available resources, which is just wasting power.
Thus, the fetch and decode stages should readily
adapt to this and begin issuing instructions at a
faster rate if resources in the pipeline are
underutilized and slower if there is congestion in
the pipeline.

4.1.1 Fetch/Decode Adaptive Algorithm

 The algorithm we developed keeps
track of the number of instructions committed
and fetched within a set window size. The
window size determines the number of
instructions executed between each sampling
period. Every sampling period, the number of
committed instructions and the number of
fetched instructions are compared. If the
number of instructions fetched exceeds the
number of instructions committed by a

predetermined threshold, then the fetch and
decode units are clocked down. On the other
hand, if number of instructions fetched and the
number of instructions committed is higher than
a certain threshold, then that means that the
instruction flow is once again pretty smooth and
the fetch clock can be sped up again. The tricky
thing is to determine the window size, the
threshold values, and the amount to adjust the
clock by. These issues will be addressed in the
next section.

Figure 2: Pseudocode of algorithm for adjusting the clock
frequency of the fetch unit.

 Ideally, we would just like to switch the
clock between a high frequency and a low state.
The amount of clock adjustment is very
important because it is possible to continually
overshoot and undershoot the desired clock rate.
Thus, the system will be infinitely switching its
clock frequency every sampling period, never
reaching an optimal execution speed. However,
if it is too small, then the system will not be able
to adapt to the needs of the application quickly
enough. Semeraro and Albonesi [3] suggest that
the amount of change should be 3-12% to
produce optimal results. However, our system
cannot handle dynamic thresholds. We only
support two clock frequencies for the fetch unit.
Not only is this simpler to implement in
hardware, but also more power efficient because
complicated computation tends to drain more
power.
 The window size of the fetch stage
determines the frequency of sampling that
occurs. This affects the reactivity of the fetch
stage to changes in the system. If the window
size is too large, then there will be a significant
amount of delay before the system adapts to

changes. On the other hand, if the window size
is too small, then the system will be excessively
sensitive to changes and adapting superfluously.
[3] uses a window size of 10,000 instructions,
whereas [5] uses a window of only 1024
instructions. In Section 6, we will explain how
we came to our optimal window size, 40,000
instructions.
 The values of the high and low
thresholds of the fetch stage determine the
sensitivity of the system to performance changes.
If the values of the thresholds are too narrow,
once again, the system will be adjusting too
frequently. If the values are too wide, then the
system will not adapt to performance changes at
all. [3] suggests that a threshold of 0.75 – 1.75%
produces optimal performance and low power
gains. We found that strategically chosen
narrow values actually work best. We will go
further in detail about the specifics of this in the
Experimental Results section later on.

4.1.2 Hardware Requirements

 To implement the above scheme, we
basically need two instruction counters, one for
the fetch unit and one for the commit unit, to
keep track of the number of fetches or commits
done between sampling periods. In addition, a
counter is needed for determining when the end
of a window size has ended. In addition, a
shifter and an adder can be used to compare the
values of the number of instructions fetched and
the number of instructions committed within a
sampling period. In [5], the optimal power-
performance gain was achieved when the front
end was throttled when three times the number
of instructions was being fetched as were being
committed. Our optimal threshold was much
stricter. This will be discussed in more detail
later on. Overall, the hardware needed to
implement this algorithm is not that complex,
making this implementation very feasible.

4.2 Data Dependencies among Functional
Units

 The queue algorithm for scaling the
clock frequencies of the functional units
mentioned in [1] and [2] determines operating
frequency of the functional units based solely on
queue length. This stems from the assumption
that there is a direct correlation between the
number of entries in the issue queue for each
clock domain over an interval of instructions and
the desired frequency of that particular domain.

if (num_inst >= window_size) {

 // commit rate too high
 if (commit_rate – fetch_rate >
 threshold_high)
 // increase fetch rate
 clock_rate_fetch = HIGH_MODE;

 // fetch rate too high
 if (commit_rate – fetch_rate <
 threshold_low)
 // slow it down
 clock_rate_fetch = LOW_MODE;

 // else do nothing.
}

The queue length is indicative of the rate at
which instructions are flowing through the
instruction core. If the queue length increases, it
implies that instructions aren't flowing into the
functional units fast enough.
 However, this approach might be
unacceptable in conditions where there are
dependencies across various functional units. For
example, the memory unit might be stalling on
an operand that to be generated in the integer
unit. In this example, all memory operations
subsequent to the memory instruction that is
stalled will queue up in the memory unit issue
queue. If the clock frequency uses the queue
length of the memory unit as an estimator for
frequency scaling, it would speed up the clock of
memory unit. However this is unnecessary,
considering that the dependency resides in the
integer unit. Thus increasing the frequency
would result in no significant effective increase
in performance of the memory unit.
 Thus we believe that when there are
inter-dependencies between the functional units
it might be more sensible to base the frequency
scaling upon the number of ready instructions in
the queue, those which have no dependencies at
all associated with them. Thus, it would be more
appropriate to base the frequency on the number
of uncommitted instructions starting from the
head of the queues that have no dependencies
associated with them.
 In addition, we need to keep count of
the number of dependencies there are for each
functional unit. This would help for situation
such as if the memory issue queue is full of
instructions that are waiting for an instruction
executing in the integer queue. Ideally, the
integer queue operating frequency would be sped
up, reducing the wait time for the instructions in
the memory queue.
 We plan to integrate this with our
earlier mechanism that aims at minimize the
difference between the fetch and commit rates.
We believe that corrective actions based on
fetch-commit rate should take place over a larger
window. Thus there should be no need to adjust
the clock rates of the front stages of the pipeline
unless the adjustment cannot be sorted locally
within a particular clock domain, especially
considering the fact that commit-rate based
throttling is more coarse-grained and affects the
propagation speed through all the pipe stages.

4.2.1 Dependency Tracking Algorithm

 We describe below the modified
implementation of the dependency-tracking
algorithm. The pseudocode for the dependency
checking algorithm is shown in Figure 1 below.
The implementation of the Dynamic Voltage
scheme has not changed significantly from the
original algorithm used by [1] and [2]. The
difference is that we use the number of ready
instructions rather than the occupancy in the
queue.

Figure 3: Modified dependency-checking algorithm for
dynamically adjusting the operating speed and voltage of a
functional unit.

 We associate two counters with each
functional unit. One of these tracks the number
of independent instructions associated with that
unit. The other keeps track of the number of
dependencies that are waiting for the completion
of an instruction with that particular functional
unit.
 When an instruction is first dispatched
to the queue of a functional unit, its operands are
checked. If the operands are ready, then the
independent counter for that functional unit is
incremented. This increment signifies that there
is another ready instruction in the queue to be
issued. However, if the instruction’s operands
are not ready yet, then a linear search through the
execution units of each functional unit is
executed to find the instruction that this current
waiting instruction is dependent on. When such
an instruction is found, the dependent counter is
incremented. This conveys to the other
functional unit that there is a dependant
instruction waiting for an executing instruction.
 When an instruction completes
execution, it must notify all dependent
instructions that its result is ready. Thus, it must

if (state == HIGH_STATE) {

 if (ready inst in queue < threshold)
 increment count;

} else {

 if ((ready inst in queue < threshold)
 || (dep_cnt > dep_threshold))
 increment count;

}

if (count > CLOCK_INTERVAL) {

 state = !state; //switch states
 count = 0; //reset counter

}

once again linearly search through all the queues
of the functional units and wake all instructions
that are dependent upon its result. At this point,
for each instruction woken up, the dependent
counter for its associated functional unit is
decremented and the independent counter for the
functional unit of the waiting instruction is
incremented. Thus, when all dependencies are
resolved, the dependent counters for all
functional units should be zero.
 Finally, when an instruction commits,
the independent counter of the associated
functional unit is decremented.
/*
 Unfortunately, dealing with
synchronizing the counters for the functional
units spanning different clock domain proved to
be a more daunting task than it seemed.
Synchronizing the counters correctly was
difficult when writebacks were done at different
times (each functional unit writes back to its own
queue first, then buffers the writebacks to the
queues of the other functional units). In the end,
we simulated the counters by searching through
the queues whenever we needed an independent
count and a dependency count for each
functional unit. Although this made the
simulator run much slower, the correctness of the
counters is still ensured.
*/

4.2.2 Hardware Requirements

 The hardware needed to implement this
algorithm is not substantial. Two counters are
needed for each functional unit to keep track of
the number of independent instructions and the
number of dependent instructions. In addition,
there needs to be a counter for keeping track of
the instruction count in the window size for each
functional unit. In addition, two comparators are
needed for each functional unit, one each for
signaling when the sampling period of the
algorithm has been reached and another one each
for determining if the number of ready
instructions is larger than the thresholds. In
addition, one more comparator for each
functional unit is needed for determining if the
number of dependent instructions is larger than
the dependent instruction threshold.

5 Simulator Details

 We conducted our experiments on a
modified version of the simGALS simulator
presented in [1] and pictured in Figure 1. This

simulator has been modified to support the
dynamic clock/voltage scaling of the fetch stage
in the pipeline in addition to the data dependency
checks described earlier in Section 4.2. Below
lists the specific configuration of the simulator
used.

Figure 4: Configuration of the simGALS simulator.

6 Experimental Results

6.1 Baseline Model

 [1] and [2] describe a GALS
architecture with distinct clock domains for each
functional unit group. We use their dynamic
voltage scaling algorithm as the baseline for
comparison of our results. This configuration
does not include either front end scaling or
dependency checking for speed and voltage

decode width: 4
number int registers: 72
number fp registers: 72

int queue size: 20
int issue width: 4
int commit width: 4

fp queue size: 16
fp issue width: 4
fp commit width: 4

mem queue size: 16
mem issue width: 4
mem commit width: 4

level 1 data cache
sets: 128
block size: 32
associativity: 4
replacement policy: LRU

level 1 instruction cache
sets: 1024
block size: 64
associativity: 1
replacement policy: LRU

level 2 unified cache
sets: 512
block size: 32
associativity: 1
replacement policy: LRU

adjustments of the functional units, which makes
it an appropriate baseline model for determining
if the front-end throttling and the dependency
checks reduce the power consumption of the
system. It supports up to five different clock
domains, but [1] and [2] only use four (the fetch
and decode stages use the same clock).
 Experiments were done only on two
benchmarks from Spec95: compress95, which is
a very regular integer benchmark, and fpppp,
which is an irregular floating point benchmark.
The IPC, power and energy values for the
baseline model are tabulated in Table 1 below.

Benchmark IPC Power Energy
Compress95 1.9526 20.1892 10.4847
fpppp 0.7596 23.9086 31.4743

Table 1: Results of the baseline simulator.

6.2 Fetch Stage

 The two variables concerned with the
fetch stage throttling algorithm that needed to be
fine-tuned were the fetch stage upper and lower
thresholds, and the fetch stage window size.
 The fetch stage upper and lower
thresholds determine when the fetch stage should
dynamically change its operating clock
frequency and operating voltage. If the
thresholds are too lax, then the clock frequency
will never be scaled thus limiting the extent of
voltage scaling. However, if the thresholds are
too tight, then the algorithm will be switching
the frequency of the fetch clock after every
sampling period, resulting in greater power
consumption than the baseline due to switching
energy.
 The upper and lower thresholds were
determined by observing the behavior of the
fetch stage at different thresholds and making an
educated guess of reasonable values to narrow
down the number of simulations conducted. The
chosen values were:

• Set 1: High threshold: 10
 Low threshold: 100

• Set 2: High threshold: 10
 Low threshold: 250

• Set 3: High threshold: 10
 Low threshold: 500

The threshold values correspond to the
difference between the number of instructions
fetched and the number of instructions
committed for a sampling period. If the
difference is less than the High threshold, then
the fetch stage will switch into HIGH mode. If

the difference between the number of
instructions committed and the number of
instructions fetched is greater than the Low
threshold value, then the fetch stage will clock
down into a LOW mode. Thus, looking at the
first set of values, if the difference between the
fetch and the commit numbers is less than 10,
then the fetch stage will switch to HIGH power
(high frequency) mode if it is not already
running in the HIGH power state. If the
difference is greater than 100, then the fetch
stage will switch to a LOW power (low
frequency) mode.
 The graphs below plot the results of
varying the threshold while holding the window
size constant. The experiments for Figures 5
through 7 were done with the window size fixed
at 40,000 instructions.

IPC vs. thresholds

0

0.2

0.4

0.6

0.8

1

1.2

high:10; low: 100 high: 10; low: 250 high: 10; low: 500

thresholds

N
or

m
al

iz
ed

 IP
C

compress95

fpppp

Figure 5: IPC for various thresholds

Power vs. thresholds

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

high:10; low: 100 high: 10; low: 250 high: 10; low: 500

thresholds

N
or

m
al

iz
ed

 P
ow

er

compress95

fpppp

Figure 6: Power for various thresholds

Energy vs. thresholds

0

1

2

3

4

5

6

high:10; low: 100 high: 10; low: 250 high: 10; low: 500

thresholds

N
or

m
al

iz
ed

 E
ne

rg
y

compress95

fpppp

Figure 7: Energy for various thresholds

 Figure 5 shows that the IPC from
running the modified simulator on compress95,
an integer benchmark, and fpppp, a floating point
benchmark. The results clearly indicate that
running the simulator on compress95 does not
really provide any performance benefits.
Although the IPC increase for the second data set
is higher than the other two, the difference is too
negligible to account for by any rational
explanation.

Figures 6 and 7 show that the power
and the energy consumption of the system do not
change with window size. This is due to the fact
that compress95 is a very regular benchmark. In
fact, there is no significant switching of the fetch
stage of the processor, ensuring that the fetch
stage clock is in the performance mode over the
entire run of the benchmark. Thus, it is
reasonable that the results show neither
performance benefits nor power savings.
 For the floating point benchmark,
fpppp, however, there is significant variation in
the IPC with the thresholds. With a low
threshold of 100, the system really does not have
much scope for any variation in the fetch and
commit rates. Once the fetch rate and the
commit rate are slightly skewed, then the system
will switch into the LOW power state. On the
other hand, having a low threshold of 500 is not
ideal either because the system will continue
fluctuating between HIGH and LOW power
states.

For the floating point benchmark,
fpppp, however, there is more variation in the
IPC due to the thresholds. With a low threshold
of 100, the system does not have much scope for
any variation in the fetch and commit rates.
Once the fetch rate and the commit rate are
slightly unbalanced, the system will
immediately switch into the LOW power state.
This will cause the system to quickly decrease its
fetch rate, equalizing the fetch and commit rates

and sending the system back into a HIGH power
state. Thus, the system is constantly fluctuating
between the HIGH and LOW power states. On
the other hand, when the low threshold is
increased to 500, the system will wait for the
commit rate and fetch rates to become very
unbalanced before switching to a LOW power
state. So, the system will take a period of time
for the commit rate to catch up to the fetch rate,
putting the system back into a balanced state. Of
the three chosen sets of high and low thresholds,
the middle set, (high threshold: 10, low
threshold: 250) seems to be the best compromise
between the two.

 In addition to determining the high and
low switching thresholds for the fetch logic, the
optimal window size of the fetch logic also had
to be determined. To do this, we simulated
running the two spec95 benchmarks on the
modified simulator with window sizes of 20,000
instructions through 50,000 instructions,
incrementing by 10,000 instructions and keeping
all other factors static. The threshold used for
the results is high = 10 and low = 250 based on
the earlier experiments conducted to calculate
optimal thresholds. The results can be seen in
Figures 8 through 10. Once again, compress95
doesn’t show any improvement because there is
practically no fetch stage throttling. For fpppp, it
is seen that a window size of 40000 yields best
results with respect to power and energy savings.
Here, the power consumption is 67% of that of
the baseline, with only a 12% drop in IPC.
Energy consumption is only 86% of that of the
baseline simulator.

IPC vs. Window Size of Fetch Unit

0

0.2

0.4

0.6

0.8

1

1.2

20000 30000 40000 50000

Window Size

N
or

m
al

iz
ed

 I
P

C

compress95

fpppp

Figure 8: Normalized IPC with respect to the baseline.

Power vs. Window Size of Fetch Unit

0

1

2

3

4

5

6

7

8

9

10

11

12

20000 30000 40000 50000

Window Size

N
or

m
al

iz
ed

 P
o

w
er

compress95

fpppp

Figure 9: Normalized Power with respect to the baseline.

Energy vs. Window Size of Fetch Unit

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

20000 30000 40000 50000

Window Size

N
or

m
al

iz
ed

 E
n

er
g

y

compress95

fpppp

Figure 10: Normalized Energy with respect to the baseline.

6.3 Data Dependency

 The results for the influence of the
proposed dynamic voltage scaling algorithm on
the various parameters were studied through
simulations conducted across two benchmarks:
compress95 and fpppp.
 Since the solution space to the problem
of finding a set of parameters that scale well
across extensively varying program behavior is
extremely large, rational decisions were called
upon to quickly prune the solution space to
converge on a group of parameters that would
yield high power savings without significant
performance degradation.
 The following results were simulated
with two sets of thresholds. One set (upper
threshold, lower threshold) pair with low
thresholds corresponds to a performance mode
because only when soon the buffer occupancy
drops below a very low value does the transition
to the LOW STATE (power state) take place and
as soon as buffer occupancy rises above a
slightly higher value for a continuous period that
is equal to the window size, a transition to the

HIGH STATE (performance state) takes place.
The other set of thresholds with higher values
and a bigger difference between low and high
thresholds corresponds to a power mode because
the functional unit flips to a low power state
soon and only if the independent instructions in
the issue queue rises above the large high
threshold value for a period that is equal to the
window size is there a transition to a HIGH
power state. The values chosen for the
experiments for the performance mode were
(2,4) and for the power mode were (4,12).

The variation of the IPC (Instructions
per Cycle) of the test benchmarks with window
size is depicted below. As can be seen , as the
window size increases there is a slight decrease
in the IPC because of the increase in the average
instructions that the program stays in the power
mode. Overall there is no conspicuous
degradation in the IPC.

IPC for low frequency = 1.2 for various window sizes

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1024 2048 4096

window size

N
or

m
al

iz
ed

 IP
C

HT:compress

HT:fpppp

LT:compress

LT:fpppp

(a)

IPC for low frequency = 1.5 for various window sizes

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1024 2048 4096

window size

N
or

m
al

iz
ed

 IP
C

HT:compress

HT:fpppp

LT:compress

LT:fpppp

(b)

Figure 11: Variation of IPC with window size (a) Frequency:
1.2 (b) Frequency: 1.5.

 The variation of the average power per
cycle normalized to the baseline implementation
of [1] is shown below. The graphs show that
there is practically no power savings for window
sizes 2048 and 4096 for the compress
benchmark. This is because the compress95 is a

fairly regular predictable benchmark without
significantly varying performance behavior. In
fact the only window size for compress for
which there is switching is for window size
1024.However, due to the excessive switching
there is high switching power loss and hence
normalized power is greater than the baseline.
For the fpppp benchmark , there are significant
power savings(78% for performance mode and
up to 73% for power mode). It was noted that
beyond a window size of 4096, there were no
significant improvement in the power savings
with window sizes to justify the loss in the IPC.

Power for low frequency = 1.2 for various window sizes

0

1

2

3

4

5

6

1024 2048 4096

window size

N
or

m
al

iz
ed

 P
ow

er

HT:compress

HT:fpppp

LT:compress

LT:fpppp

(a)

Power for low frequency = 1.5 for various window sizes

0

0.5

1

1.5

2

2.5

3

1024 2048 4096

window size

N
or

m
al

iz
ed

 P
ow

er

HT:compress

HT:fpppp

LT:compress

LT:fpppp

(b)

Figure 12: Variation of power_cc3 with window size (a)
Frequency: 1.2 (b) Frequency: 1.5

 The trends in the energy savings with
window size is consistent with the power savings
graph shown in Fig 5. It is seen that for the fpppp
there is significant energy savings while for the
compress there is no savings because the
processor perpetually stays in the high-
performance state.

Energy for low frequency = 1.2 for various window sizes

0

1

2

3

4

5

6

1024 2048 4096

window size

N
or

m
al

iz
ed

 E
ne

rg
y

HT:compress

HT:fpppp

LT:compress

LT:fpppp

(a)

Energy for low frequency = 1.5 for various window sizes

0

0.5

1

1.5

2

2.5

3

1024 2048 4096

window size

N
or

m
al

iz
ed

 E
ne

rg
y

HT:compress

HT:fpppp

LT:compress

LT:fpppp

(b)

Figure 13: Variation of energy_cc3 with window size (a)
Frequency: 1.2 (b) Frequency: 1.5

From the graphs, it is clearly visible that

the dominant parameter that affects the size of
the dynamic voltage scaling algorithm is the
window size. As the window size increases the
effect of the thresholds become less prominent.
Besides, the period of the low performance mode
clock can be relatively large (up to 1.5 times that
of the high-performance mode clock) without
any significant drop in the IPC.

The typical profile of each of the
separately clocked functional units in a GALS
architecture for the fpppp benchmark is shown in
Figure 14. This program trace uses a small
window size of 256 over 1 million instructions to
depict the activity of the functional unit to a high
degree of accuracy. We depict the state-graphs of
each functional unit: memory unit, integer unit
and floating unit. The state 1 corresponds to the
high performance mode while state 0
corresponds to the power mode (low
performance mode).

It can be seen that the memory
functional unit stays in the high-performance
mode more than 50% of the time. This seems
intuitively correct because memory operations
will be associated both integer and floating

operations when of the respective functional
units are active. The floating point unit on the
other hand depicts a very low average utilization.
It lies in the inactive state most of the time. The
utilization of the integer unit is around 50% in
the first million cycles due to its high usage early
on.

Profile of Mem Functional Unit
(window size 256 instructions)

0

0.2

0.4

0.6

0.8

1

1.2

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Simulation Cycle Number

O
pe

ra
ti

ng
 F

re
qu

en
cy

(a)

Profile of FP Functional Unit
(window size 256 instructions)

0

0.2

0.4

0.6

0.8

1

1.2

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Simulation Cycle Number

O
pe

ra
tin

g
Fr

eq
ue

n
cy

(b)

Profile of Int Functional Unit
(window size 256 instructions)

0

0.2

0.4

0.6

0.8

1

1.2

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Simulation Cycle Number

O
pe

ra
ti

ng
 F

re
qu

en
cy

(c)

Figure 14: Profile of fpppp benchmark over 1 million
instructions of functional unit state vs time (a) Memory unit
(b) Floating point unit (c) Integer Unit

 Figure 14 depicts the profile of the
fpppp benchmark over its entire run-cycle. As
can be seen, the integer unit switches states (to a
LOW) at cycle 547963 which is consistent with

the expected profile behaviour from Figure
14(c). This is because, as shown in Figure 14(c),
the integer unit remains fairly active till around
cycle 550,000, after which activity drops. The
larger window size in Figure 14 prevents the
excessive switching that is evident in Figure 15.

Profile of Functional Units (window size 1024 Instructions)

0

0.2

0.4

0.6

0.8

1

1.2

0 10000000 20000000 30000000 40000000 50000000 60000000 70000000

Simulation Cycle Number

O
pe

ra
tin

g
Fr

eq
ue

n
cy

Int Functional Unit Mem Functional Unit FP Functional Unit

Figure 15: Profile of fpppp benchmark for 1024 window size
over entire benchmark for thresholds (2, 4).

7 Conclusions

We modify the original scheme
proposed in [1] to incorporate two new features.
The first of these features is throttling of the
fetch stage of the CPU pipeline while the other
modifies the original algorithm proposed in [1]
to account for the independent instructions that
were waiting in the issue queue and total
dependencies associated with that FU as a trigger
for the dynamic voltage scaling.

We have implemented our proposed
changes on the simGALS simulation platform
[1]. Our results show significant power savings
with insignificant associated penalty in
performance.

8 Future work

 Since program behavior is so
benchmark and program-phase dependant, it
would be interesting to evolve analytic
probability distribution models that characterize
the instruction flow at each phase. This would
result in sound mathematical principles in
choosing the thresholds and window size values.
We do not believe that the scheme of dynamic
thresholds is feasible because such an
implementation would be necessarily have to be
too complex to implement in hardware besides
introducing new variables to the DVS algorithm.
We also believe that simple mechanisms such as
[1] are more feasible to implement in actual

implementations as compared to complicated
schemes such as [2].

In addition, the parameters that were chosen
as being optimal are very application specific.
Only two benchmarks were tested: compress95,
an integer benchmark, and fpppp, a floating point
benchmark. It would be interesting to test the
modified simulator on a wider set of benchmarks
to see if there results are similar to the ones we
present in this paper
9 Schedule
 Below are the steps that we took for
completing the research that needed to be done
for this project. We followed this schedule fairly
tightly and were able to complete the project in
the time originally proposed.

Milestone 1 (10/3):
• Identify the dependencies among functional

units that will, in turn, be exploited by the
Data Dependency Checker.

• Familiarize ourselves with simGALS
environment.

• Create module for determining issue and
commit rates.

Milestone 2 (10/17):
• Implement throttling of the front end of the

pipeline

Milestone 3 (10/31):
• Implement dependency checking per

functional unit for speed and voltage
adjustments.

Milestone 4 (11/4):
• Integration of the Milestones 2 and 3.

Final Milestone (12/2):
• Simulation/verification of proposed

schemes.
• Drawing inferences.

10 Division of Labor
 Since there were two seemingly
orthogonal methods proposed, it seemed logical

to split the work down that line as well. Shelley
implemented, tested, and simulated the front end
throttling mechanism and Anand implemented,
tested, and simulated the Data Dependency
Checker module. In the end, when the two
modules were integrated, we needed to both
simulate the final simulator. Most of the time,
we kept to our assigned jobs.

11 References

[1] A. Iyer and D. Marculescu. Power-

Performance Evaluation of Globally
Asynchronous, Locally Synchronous
Processors. Intl. Symposium on Computer
Architecture (ISCA). May 2002.

[2] A. Iyer and D. Marculescu. Power
Efficiency of Multiple Clock, Multiple
Voltage Cores. IEEE/ACM Intl. Conference
on Computer-Aided Design (ICCAD). Nov.
2002.

[3] G. Semeraro, D.H. Albonesi, S.G. Dropsho,
G. Magklis, S. Dwarkadas, and M.L. Scott.
Dynamic Frequency and Voltage Control for
a Multiple Clock Domain Microarchitecture.
35th International Symposium on
Microarchitecture. November 2002.

[4] G. Semeraro, G. Magklis, R.
Balasubramonian, D.H. Albonesi, S.
Dwarkadas, and M.L. Scott. Energy-
Efficient Processor Design Using Multiple
Clock Domains with Dynamic Voltage and
Frequency Scaling. 8th International
Symposium on High-Performance Computer
Architecture. pp. 29-40, February 2002.

[5] A. Moshovos, D. N. Pnevmatikatos and A.
Baniasadi. Instruction Flow-based Front-
end Throttling for Power-Aware Higher-
Performance Processors. Proc.
International Conference on
Supercomputing (ICS), June 2001.

[6] D. Burger, T. Austin. The SimpleScalar
Tool Set, Version 2.0. Technical Report
CS-TR-97-1342. University of Wisconsin,
Madison, Wisconsin, June 1997.

