Final Presentation:
Dynamic Speed & Voltage Scaling for GALS Processors

Shelley Chen Anand Eswaran

{schen1, aeswaran}@andrew.cmu.edu

December 5, 2002

Outline

- Motivation
- Recap
- Final Results
- Conclusion
- Future Work
Motivation

- On-chip power dissipation soaring with increasing transistor density
- Need for micro-architecture level solutions
- Synchronous processors: speed/voltage adjustments not effective.

Solution: GALS Processors

- Compromise between high performance and low power processors
- Allow for voltage adjustments on a finer scale than system-level
Front End Scaling Solution

- Front end throttling based upon commit rate
- Ideally, fetch rate should match commit rate
- Challenges: stability of system, optimal window size, thresholds

```c
if (num_instructions > window_size) {
    if (commit_rate - fetch_rate >= threshold_high)
        clock_rate_fetch = HIGH_MODE;
    if (commit_rate - fetch_rate <= threshold_low)
        clock_rate_fetch = LOW_MODE;
    // otherwise, leave it as it is
}
```

Dependence based adjustments

- Functional unit clock scaling usually based solely on queue lengths
- Number of ready instructions in queue (no dependency associated with them) is a better estimator.
- This prevents unnecessary speed-ups of functional units.

```c
If (state == HIGH) {
    if (idep < low_threshold) count++;
    if (count > CLK_INT) state = LOW;
} else {
    if (idep > high_threshold || dep > dep_threshold)
        count++;
    if (count > CLK_INT) state = HIGH;
}
```
Results of Fetch Stage: IPC

Results of Fetch Stage: Power
Results of Fetch Stage: Energy

Energy vs. Fetch window size

Results of Dependence Based Adjustments: IPC
Results of Dependence Based Adjustments: Power

Results of Dependence Based Adjustments: Energy
Conclusion

- Proposed scheme is definitely feasible as shown in the results
- Modified Simulator performs better in scenarios where there are irregularities in program behavior
- High frequency variation is possible without considerably effecting IPC

Future Work

- Test simulator across wider range of benchmarks
- Explore having dynamic thresholds
Questions?