
1 

Out-of-Order Memory Accesses Using a 
Load Wait Buffer 

Shelley Chen 
Department of Electrical and Computer Engineering 

Carnegie Mellon University 
Pittsburgh, PA 15213-3890 

(412) 268-2862 

schen1@ece.cmu.edu 

Jennifer Morris 
Department of Electrical and Computer Engineering 

Carnegie Mellon University 
Pittsburgh, PA 15213-3890 

(412) 268-4264 

jenm@ece.cmu.edu
 

Abstract 

  Many dynamic scheduling techniques take advantage 
of out-of-order instruction execution to hide memory 
access latency. However, as the disparity between 
processor and memory speeds increases, delays in the 
load-store queue become more of a bottleneck.  One way 
to mitigate these delays is to allow loads and stores to 
execute and retire from the load-store queue (LSQ) out-of-
order. Unfortunately, when the LSQ fills with pending 
loads, other loads and stores are prevented from entering 
the buffer to be retired. In addition to out-of-order 
execution of loads and stores, we propose temporary 
removal of long-latency, pending loads to a separate load 
wait buffer (LWB), similar to the waiting instruction 
buffer (WIB) proposed by Lebeck, et. al. [1].   Simulation 
results show successive increases in benchmark IPC with 
out-of-order loads, out-of-order loads and stores, and  out-
of-order loads and stores with a LWB.  The design with 
the LWB shows up to 303% speedup in IPC. 

1 Introduction  
As the gap between memory and processor increases, 

many modern superscalar processors use out-of-order 
program execution to hide memory access latencies.  
While instructions with long-latency memory accesses 
wait for their data to arrive, other ready instructions are 
allowed to execute, thereby maintaining a high processor 
utilization.  In order to maintain precise interrupts, 
however, instructions that execute out-of-order must be 
committed to the architectural state in order.  This is 
especially true of instructions that change the memory 
state (i.e., store instructions) because it is difficult to 
retrieve overwritten memory values to restore 
architectural state. 

Traditionally, microprocessor architectures deal with 
this problem by maintaining strict in-order execution of 
loads and stores.  This method, though effective in 
maintaining precise interrupts, can lead to decreased 
system performance, as long-latency loads and stores at 
the head of the LSQ block all subsequent loads and stores 
from executing.  Additionally, a blocking instruction at 
the head of the LSQ could cause the queue to saturate, 

stalling the dispatch of additional load and store 
instructions. 

The efficiency of the LSQ can be improved by 
allowing loads and stores to complete out-of-order; 
however, multiple long-latency loads could also saturate 
the LSQ and lead to similar stalls.  One way to remove 
this bottleneck in the LSQ is to temporarily remove long-
latency loads to a LWB until they are ready for execution.  

The rest of this paper is organized as follows.  Section 
2 covers background and related work for our research.  
Section 3 describes our methodology.  Section 4 discusses 
the implementation details.  Section 5 presents our 
experimental results for out-of-order loads, out-of-order 
loads and stores, and out-of-order loads and stores with 
the LWB.  Finally, in section 6 we draw conclusions from 
these results. 

2 Background 
As mentioned above, Lebeck, et. al. [1], proposed 

using a WIB to temporarily store long-latency 
instructions.  This removed pending instructions from the 
issue queue, freeing up entries for other instructions and 
allowing more instructions free of data dependencies to be 
issued.  Their design with a 32-entry issue window and 
2048 entry WIB achieved speedups of 20% to 84% for 
various SPEC benchmarks.  We propose that using a 
similar wait buffer for the load-store queue will achieve 
similar results. 

Another method of hiding memory access latencies is 
load forwarding.  This technique, which is utilized in our 
base simulator, was evaluated for performance 
improvements by Parcerisa and González [2]. Load 
forwarding is useful when a load instruction has a true 
data dependency on a store instruction that has not yet 
been retired.  In conventional designs the load must wait 
for the store to finish writing to memory before the data 
can be retrieved from memory and the load completed.  
Load forwarding allows the modified data to be passed 
directly from the pending store instruction to the load 
instruction, thus bypassing the latency of the memory 
write and read.   The LWB, which only removes loads 
that have already accessed the cache, will not affect load-
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forwarding because it will neither remove stores that 
could potentially forward values to subsequent loads, nor 
will it remove loads before they have a chance to receive 
forwarded values. 

The relationship between various load-store buffer 
retirement rules, including load forwarding, and 
performance was explored by Hwang, et. al. [3].  In their 
experiment, all LSQs retired stores in-order, but for loads 
they modeled and compared four different retirement 
policies: in-order, bypassing, forwarding, and speculation.  
The latter three, each with varying degrees of out-of-order 
load retirement, produced increasingly improved 
performance over the in-order configuration.  Our LWB, 
combined with load forwarding, not only allows more 
loads to be retired out-of-order, but it also allows out-of-
order store retirement. 

Sim-outorder, the base simulator for our design, uses a 
combined register update unit (RUU)/LSQ structure.  
Sohi [4] describes the purpose of the RUU and how it 
operates.  The RUU behaves somewhat like an issue 
queue, in that it receives instructions in order, monitors 
their dependencies, allocates loads and stores to the LSQ, 
sends instructions to the functional units for execution, 
and commits the instructions when possible.  Unlike an 
issue queue, however, the RUU maintains a record of the 
instruction order, to allow precise interrupts.  Our design 
adds an issue queue to the existing RUU. 

3 Methodology 
In the base configuration of Sim-outorder no stores are 

allowed to execute out of program order.  Additionally, 
although loads are issued out-of-order, the load entries in 
the LSQ are not removed until the corresponding RUU 
entry is committed and removed.  This creates a 
bottleneck in the LSQ because when the LSQ becomes 
full,  dispatching must stall until instructions are 
committed and the LSQ empties out.  In Sections 3.1 and 
3.2 we describe our method of executing loads and stores 
out-of-order.  In section 3.3 we explain how the LWB 
operates. 

3.1 Out-of-Order Loads 
Loads are allowed to execute out-of-order when they 

are not preceded by a store with an unresolved address, 
however, the LSQ entry is held until the RUU entry 
commits.  This creates a structural hazard by preventing 
future instructions from issuing due to the LSQ being full.  

Profiling was done on LSQs of various sizes to see 
where the first unresolved store is usually located.  If the  
first unresolved store is usually located near the head of 
the LSQ, then the potential for performance improvement 
due to out-of-order loads and stores would be insignificant 
because the majority of instructions in the LSQ would not 
be able to issue.   

Figure 1 shows that for the mgrid benchmark, the 
majority of the unresolved stores are located near the end 
of the LSQ, at least within the second half.  This suggests 
that doubling the effective size of the LSQ with a LWB 
should result in some performance improvement, because 
a large number of memory access instructions in the LSQ 
could potentially be issued out-of-order.  Results for the 
other Spec2000 benchmarks were similar. 
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Figure 1:  profile of the position of the 1st 
unresolved store in the LSQ for mgrid benchmark. 

3.2 Out-of-Order Stores 
Our system allows out-of-order stores by using the 

following rules to determine eligibility for execution: 

1. No stores (or loads) may be executed that are 
preceded by a store with an unresolved address. 

2. No stores may be executed that are preceded by a 
load with an unresolved address. 

3. Stores to the same address must go in program 
order. 

The first rule is necessary because instructions that 
follow a store with an unresolved address may be trying to 
access the same memory location.  The second rule 
prevents a load with an unresolved address from receiving 
data values from a later store executed out of program 
order.  Consider the following code sequence: 

1 ST X, 10 
2 LD ? 
3 ST X, 30 

Instruction 1 is ready, so the store is issued.  
Instruction 2 is waiting for its address calculation to 
complete before it can be issued.  If instruction 3 is issued 
before instruction 2 and the unknown address is 
subsequently determined to be the same address as both 1 
and 3, instruction 2 will not receive the correct data.  The 
third rule prevents a later store to the same address from 
modifying the cache entry for that address before earlier 
stores have executed. 
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3.3 Load Wait Buffer 
Allowing loads and stores to be retired from the LSQ 

out of program order frees up entries for more 
instructions, however loads that have missed in the L2 
cache remain in the LSQ until their data has returned.  
Because the miss penalty in such cases can be very high,  
these loads remain in the LSQ for extended periods of 
time.  If multiple cache misses occur together, the LSQ 
may become saturated with long-latency loads. 

Rather than remaining in the LSQ and blocking other 
loads and stores, these loads may be removed and 
temporarily stored in another buffer, the LWB.  This 
allows other loads and stores to enter and exit the LSQ 
while long latency loads wait for their data to return from 
memory. 

4 Implementation Details 

4.1 The Base Machine 
In order to determine the performance of our modified 

processor, we needed a base machine for comparison.  
This machine is modeled by sim-outorder from the 
SimpleScalar toolset [6].   

The simulator is an 8-way superscalar out-of-order 
processor.  It contains a 2048 RUU, which handles all of 
the register renaming and the reordering of the 
instructions. Our goal was to improve performance by 
optimizing the LSQ, therefore, we wanted to ensure that 
the LSQ in the base configuration was indeed the 
bottleneck of the system. This was accomplished by 
increasing the size of the RUU until it no longer factored 
into performance. 

Also, the LWB would not show performance benefits 
unless the LSQ filled up some of the time.  In order to 
allow the LSQ to saturate, we increased the memory 
access latency to 250 cycles.  In addition, we decreased 
the size of the L2 cache to 256K to ensure that the 
processor would experience some level 2 cache misses.  In 
a benchmark with 50% memory access instructions, 
approximately 4 memory access instructions are issued 
every cycle.  Thus, with a 64 entry LSQ, after one L2 
cache miss, 250*4 = 1000 memory access instructions 
could potentially be issued in that time frame (given an 
infinitely sized LSQ) , which would likely fill up a 
reasonably sized LSQ. 

In addition, the base configuration had a perfect 
branch predictor.  This was done because we wanted to 
see the affects of the optimizations on the LSQ without 
influence from the control hazards and mispredictions of 
the branch predictor.  We wanted to ensure that we were 
only looking at results from the LSQ optimizations. 

The base machine has a 64 entry LSQ for holding all of 
the load and store instructions before they are committed.  
Note that in this machine, for all memory access 

instructions, the associated RUU and LSQ entries are held 
until the instruction commits.   

4.2 Issue queue 
The base machine described above does not include an 

issue queue, therefore, we modified the base-version of 
SimpleScalar to include one.  The implementation was 
fairly straightforward.  We maintain two pointers that 
bounded a subset of the RUU.  Within these boundaries 
only the non-issued instructions are considered part of the 
issue queue.  Instructions that have already been issued, 
but not committed, are ignored.  The issue queue head 
pointer always points to the oldest instruction that has not 
been issued.  Each time an entry is issued, the issue queue 
head pointer is incremented, effectively removing the 
instruction from the issue queue.  The issue queue tail is 
incremented every time a new instruction is dispatched, 
modeling the addition of entries into the issue queue.  
Before any instruction is dispatched, the issue queue must 
be checked.  If the issue queue is full, then the system 
needs to stall until some instructions are issued. 

4.3 Out-of-order Loads 
In the baseline SimpleScalar simulator, loads are 

allocated an entry in the LSQ when the instruction is 
dispatched.  Each cycle, the LSQ is traversed from head 
to tail in search of loads and stores whose operands are 
ready.  The search is stopped when a store with an 
unresolved effective address is encountered, because all 
later loads and stores are blocked by that store.   

As soon as the effective address is ready, unblocked 
loads proceed to the issue stage, where the memory access 
takes place.  From there, the load is set to complete in the 
writeback stage, and finally removed from the LSQ and 
RUU in commit. 

 Our implementation also blocks loads and stores from 
issuing in the LSQ when there is a previous store with an 
unresolved address, therefore, we did not modify the 
original implementation of that logic.  We did, however, 
change the design to remove the LSQ entry during the 
writeback stage, when the instruction is completed.   This 
allows the completed load to exit the LSQ earlier.  

4.4 Out-of-order Stores 
Originally, stores are completed as soon as they are 

issued, but their cache accesses are done in order, when 
they are completed.  The baseline simulator ensures that 
stores are executed in program order by stalling their 
cache accesses until the instructions are committed.  
Unfortunately, this also guarantees that the stores hold 
their LSQ entries until they are committed, which is long 
after they have completed.   

We modify this so that stores are issued only if no 
other unresolved memory access instructions exist before 
them in the LSQ.  In addition, no other instructions with 
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the same effective address exist before them in the LSQ 
either.  This means that stores that are issued can still 
complete right away, but they are also free to access the 
cache right after being issued.  Thus, we moved the cache 
access from the commit stage to the issue stage of the 
pipeline, which allows us to remove the associated LSQ 

entry from the LSQ as quickly as possible.  In turn, this 
early removal of the LSQ entry allows another instruction 
to be issued. 

The instructions in the RUU are still committed in 
program order to ensure precise exceptions. 
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Figure 2: IPC speedup vs. LSQ size for 15 SPEC2K benchmarks

4.5 Load Wait Buffer 
The LWB in our design is a 64-entry, fully-

associative table comprised of entries identical to those 
found  in the LSQ.  When an L2 cache miss occurs on a 
load, the corresponding entry in the LSQ is moved to the 
LWB to wait for the data to arrive.  During the writeback 
stage, when the long latency load has received its data 
and is ready to commit, the LWB entry is recovered.  

4.6 Benchmarks 
Our design was tested using integer and floating point 
benchmarks from the SPEC2K suite.  First, we ran 
simulations on all of the benchmarks, with different sizes 
of LSQ (64, 128, 256, 512, and 1024 entries). Figure 2 
shows the results of these preliminary simulations.  The 
five benchmarks that showed the largest performance 
increase from increasing the LSQ size were gcc, vpr, 
applu, mgrid, and swim. 

5 Experimental Results 
Figures 3, 5, 7, 9 and 11 show the performance 

improvements of each optimization to the LSQ.  The 
simulations were done on the ref inputs for the second 
billion instructions for each benchmark.  For comparison 
purposes, the base machine described in Section 4.1 is 
included in the graphs as well.  With the baseline 
machine, optimal performance is achieved with an LSQ 
size of 256 entries for gcc and swim, and 512 entries for 
vpr, mgrid, and applu.  This means that increasing the 
effective size of the LSQ past 256 (through the addition of 
a LWB) will not significantly improve the performance of 
the system. 

The first optimization that we implemented was the 
out-of-order loads (OOL).  For this optimization, we 
merely moved the cache access up to the writeback stage, 
and we removed the LSQ entry there as well.  With OOL, 
the effective size of the LSQ seems to have doubled in 
most cases, with the exception of gcc.  For vpr and applu, 
the optimal LSQ size has not reduced to 256 entries.  For 
swim and mgrid, the optimal LSQ size is now 128 entries.  
Even though gcc has a large percentage of load 
instructions, it does not seem to improve with the out-of-
order loads.  This could be because most of these loads are 
long latency loads, which take up entries in the LSQ, 
blocking ready memory accesses from being issued.   

The second optimization was the implementation of 
out-of-order stores on top of the out-of-order loads from 
the previous optimization (OOL&S).  With the exception 
of gcc, the other four benchmarks have a slight increase 
in performance increasing the LSQ size from 64 entries to 
128 entries.  After that, increasing the LSQ size only 
brings negligible performance improvements to the 
processor. 

 The last optimization to the LSQ was the addition of 
a 64 entry load wait buffer to the out-of-order loads and 
stores (OOL&S, 64 LWB).  From the graphs, we can see 
that the IPC from running the processor on each 
benchmark has just about reached it maximum 
performance.   

Notice that the optimal speedup for this subset of 
benchmarks was significant with the addition of the 
LWB.  The maximum speedup was for the mgrid 
benchmark at 303%.  This may have been due to the fact 
that running mgrid on the baseline simulator resulted in 
an LSQ that was full about 89% of the time.  The 
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minimum speedup was 50% for the swim benchmark.  
This is due to the fact that running swim on the baseline 
simulator, the LSQ is full only 49% of the time.  Thus, 
even with the LWB and OOL&S there is not much room 
for a performance improvement. 

Figures 4, 6, 8, 10, and 12 show the percentage of 
time the LSQ was full during the total simulation time for 
the five different benchmarks analyzed.  From the results 
of the simulations, we observed that the LSQ became full 
for an increasingly smaller percentage of the total 
simulation time with the addition of each optimization.  
This confirms the fact that the optimizations are 
successfully emptying out the LSQ as they were intending 
to do. 

There is an extreme fall at 128 entries for vpr for the 
simulator with the implementation of the LWB and the 
OOL&S.  We are not sure why this happens.  It does not 
reflect in the results of the IPC trends and could just be an 
anomaly. 
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Figure 3: IPC Speedup for gcc: baseline, out-of-order loads, 
out-of-order loads & stores, and out-of-order loads & stores 
with a load-wait-buffer 
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Figure 4: Percentage of time LSQ is full for gcc: baseline, 
out-of-order loads, out-of-order loads & stores, and out-of-
order loads & stores with a load-wait-buffer 
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Figure 5: IPC Speedup for vpr: baseline, out-of-order loads, 
out-of-order loads & stores, and out-of-order loads & stores 
with a load-wait-buffer 
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Figure 6: Percentage of time LSQ is full for vpr: baseline, 
out-of-order loads, out-of-order loads & stores, and out-of-
order loads & stores with a load-wait-buffer 
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Figure 7. IPC Speedup for applu: baseline, out-of-order 
loads, out-of-order loads & stores, and out-of-order loads & 
stores with a load-wait-buffer 
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Figure 8: Percentage of time LSQ is full for applu: baseline, 
out-of-order loads, out-of-order loads & stores, and out-of-
order loads & stores with a load-wait-buffer
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Figure 9: IPC Speedup for mgrid: baseline, out-of-order 
loads, out-of-order loads & stores, and out-of-order loads & 
stores with a load-wait-buffer 
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Figure 10: Percentage of time LSQ is full for mgrid: 
baseline, out-of-order loads, out-of-order loads & stores, 
and out-of-order loads & stores with a load-wait-buffer 
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Figure 11: IPC Speedup for swim: baseline, out-of-order 
loads, out-of-order loads & stores, and out-of-order loads & 
stores with a load-wait-buffer 
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Figure 12: Percentage of time LSQ is full for mgrid: 
baseline, out-of-order loads, out-of-order loads & stores, 
and out-of-order loads & stores with a load-wait-buffer 

6 Conclusion 
One of the largest impedances in performance for 

high-end processors is the time to service a memory 
access.  Even though most high end processors these days 
can execute instructions out or order, if the buffer holding 
the memory access instructions fills up (the LSQ), then 
the processor still needs to wait for the memory system to 
service the cache miss before it can continue dispatching 
instructions.  In this paper, we proposed several different 
optimizations to help reduce occupancy of LSQ.  The first 
method we analyzed was to reduce the amount of time 
that a load instruction stayed in the LSQ.  A LSQ entry 
for a load is essentially not needed once it has passed the 
writeback stage, therefore, we can free the LSQ entry after 
this stage.  The second optimization was to implement a 
similar idea concerning stores.  This was a bit more 
complicated due to data integrity issues of writing to the 

cache, but the data integrity of the program can be 
ensured by following a small set of rules.  Thus, stores 
can actually free their associated LSQ entry after they are 
issued.  Finally, we also implemented a Load Wait Buffer 
(LWB).  While loads are waiting for the memory system 
to service their cache misses, they are sitting idle in the 
LSQ, impeding the processor from dispatching another 
memory access instruction.  Our LWB allows long latency 
loads to be removed from the LSQ while their cache 
misses are serviced.  A LWB of 64 entries, combined with 
the out-of-order load and store execution, can provide 
performance improvements up to 303%.   

Our simulations show that reducing the occupancy of 
the LSQ does indeed improve the performance of the 
processor.  All three of the optimizations focused on 
emptying out the LSQ.  The largest performance increase 
came when the 64 entry LWB caused a significant 
decrease in LSQ occupancy, which shows that the size 
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and structure of LSQ is indeed a large bottleneck of the 
system.   
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