
1

Out-of-Order Memory Accesses Using a
Load Wait Buffer

Shelley Chen
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890

(412) 268-2862

schen1@ece.cmu.edu

Jennifer Morris
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890

(412) 268-4264

jenm@ece.cmu.edu

Abstract

 Many dynamic scheduling techniques take advantage
of out-of-order instruction execution to hide memory
access latency. However, as the disparity between
processor and memory speeds increases, delays in the
load-store queue become more of a bottleneck. One way
to mitigate these delays is to allow loads and stores to
execute and retire from the load-store queue (LSQ) out-of-
order. Unfortunately, when the LSQ fills with pending
loads, other loads and stores are prevented from entering
the buffer to be retired. In addition to out-of-order
execution of loads and stores, we propose temporary
removal of long-latency, pending loads to a separate load
wait buffer (LWB), similar to the waiting instruction
buffer (WIB) proposed by Lebeck, et. al. [1]. Simulation
results show successive increases in benchmark IPC with
out-of-order loads, out-of-order loads and stores, and out-
of-order loads and stores with a LWB. The design with
the LWB shows up to 303% speedup in IPC.

1 Introduction
As the gap between memory and processor increases,

many modern superscalar processors use out-of-order
program execution to hide memory access latencies.
While instructions with long-latency memory accesses
wait for their data to arrive, other ready instructions are
allowed to execute, thereby maintaining a high processor
utilization. In order to maintain precise interrupts,
however, instructions that execute out-of-order must be
committed to the architectural state in order. This is
especially true of instructions that change the memory
state (i.e., store instructions) because it is difficult to
retrieve overwritten memory values to restore
architectural state.

Traditionally, microprocessor architectures deal with
this problem by maintaining strict in-order execution of
loads and stores. This method, though effective in
maintaining precise interrupts, can lead to decreased
system performance, as long-latency loads and stores at
the head of the LSQ block all subsequent loads and stores
from executing. Additionally, a blocking instruction at
the head of the LSQ could cause the queue to saturate,

stalling the dispatch of additional load and store
instructions.

The efficiency of the LSQ can be improved by
allowing loads and stores to complete out-of-order;
however, multiple long-latency loads could also saturate
the LSQ and lead to similar stalls. One way to remove
this bottleneck in the LSQ is to temporarily remove long-
latency loads to a LWB until they are ready for execution.

The rest of this paper is organized as follows. Section
2 covers background and related work for our research.
Section 3 describes our methodology. Section 4 discusses
the implementation details. Section 5 presents our
experimental results for out-of-order loads, out-of-order
loads and stores, and out-of-order loads and stores with
the LWB. Finally, in section 6 we draw conclusions from
these results.

2 Background
As mentioned above, Lebeck, et. al. [1], proposed

using a WIB to temporarily store long-latency
instructions. This removed pending instructions from the
issue queue, freeing up entries for other instructions and
allowing more instructions free of data dependencies to be
issued. Their design with a 32-entry issue window and
2048 entry WIB achieved speedups of 20% to 84% for
various SPEC benchmarks. We propose that using a
similar wait buffer for the load-store queue will achieve
similar results.

Another method of hiding memory access latencies is
load forwarding. This technique, which is utilized in our
base simulator, was evaluated for performance
improvements by Parcerisa and González [2]. Load
forwarding is useful when a load instruction has a true
data dependency on a store instruction that has not yet
been retired. In conventional designs the load must wait
for the store to finish writing to memory before the data
can be retrieved from memory and the load completed.
Load forwarding allows the modified data to be passed
directly from the pending store instruction to the load
instruction, thus bypassing the latency of the memory
write and read. The LWB, which only removes loads
that have already accessed the cache, will not affect load-

2

forwarding because it will neither remove stores that
could potentially forward values to subsequent loads, nor
will it remove loads before they have a chance to receive
forwarded values.

The relationship between various load-store buffer
retirement rules, including load forwarding, and
performance was explored by Hwang, et. al. [3]. In their
experiment, all LSQs retired stores in-order, but for loads
they modeled and compared four different retirement
policies: in-order, bypassing, forwarding, and speculation.
The latter three, each with varying degrees of out-of-order
load retirement, produced increasingly improved
performance over the in-order configuration. Our LWB,
combined with load forwarding, not only allows more
loads to be retired out-of-order, but it also allows out-of-
order store retirement.

Sim-outorder, the base simulator for our design, uses a
combined register update unit (RUU)/LSQ structure.
Sohi [4] describes the purpose of the RUU and how it
operates. The RUU behaves somewhat like an issue
queue, in that it receives instructions in order, monitors
their dependencies, allocates loads and stores to the LSQ,
sends instructions to the functional units for execution,
and commits the instructions when possible. Unlike an
issue queue, however, the RUU maintains a record of the
instruction order, to allow precise interrupts. Our design
adds an issue queue to the existing RUU.

3 Methodology
In the base configuration of Sim-outorder no stores are

allowed to execute out of program order. Additionally,
although loads are issued out-of-order, the load entries in
the LSQ are not removed until the corresponding RUU
entry is committed and removed. This creates a
bottleneck in the LSQ because when the LSQ becomes
full, dispatching must stall until instructions are
committed and the LSQ empties out. In Sections 3.1 and
3.2 we describe our method of executing loads and stores
out-of-order. In section 3.3 we explain how the LWB
operates.

3.1 Out-of-Order Loads
Loads are allowed to execute out-of-order when they

are not preceded by a store with an unresolved address,
however, the LSQ entry is held until the RUU entry
commits. This creates a structural hazard by preventing
future instructions from issuing due to the LSQ being full.

Profiling was done on LSQs of various sizes to see
where the first unresolved store is usually located. If the
first unresolved store is usually located near the head of
the LSQ, then the potential for performance improvement
due to out-of-order loads and stores would be insignificant
because the majority of instructions in the LSQ would not
be able to issue.

Figure 1 shows that for the mgrid benchmark, the
majority of the unresolved stores are located near the end
of the LSQ, at least within the second half. This suggests
that doubling the effective size of the LSQ with a LWB
should result in some performance improvement, because
a large number of memory access instructions in the LSQ
could potentially be issued out-of-order. Results for the
other Spec2000 benchmarks were similar.

mgrid: position of 1st unresolved store in LSQ

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

1 13 25 37 49 61 73 85 97
10

9
121 13

3
14

5
157 16

9
181 19

3
20

5
217 22

9
241 25

3
position in LSQ

o

f
o

cc
u

rr
en

ce
s

8 entry LSQ 16 entry LSQ 32 entry LSQ
64 entry LSQ 128 entry LSQ 256 entry LSQ

Figure 1: profile of the position of the 1st
unresolved store in the LSQ for mgrid benchmark.

3.2 Out-of-Order Stores
Our system allows out-of-order stores by using the

following rules to determine eligibility for execution:

1. No stores (or loads) may be executed that are
preceded by a store with an unresolved address.

2. No stores may be executed that are preceded by a
load with an unresolved address.

3. Stores to the same address must go in program
order.

The first rule is necessary because instructions that
follow a store with an unresolved address may be trying to
access the same memory location. The second rule
prevents a load with an unresolved address from receiving
data values from a later store executed out of program
order. Consider the following code sequence:

1 ST X, 10
2 LD ?
3 ST X, 30

Instruction 1 is ready, so the store is issued.
Instruction 2 is waiting for its address calculation to
complete before it can be issued. If instruction 3 is issued
before instruction 2 and the unknown address is
subsequently determined to be the same address as both 1
and 3, instruction 2 will not receive the correct data. The
third rule prevents a later store to the same address from
modifying the cache entry for that address before earlier
stores have executed.

3

3.3 Load Wait Buffer
Allowing loads and stores to be retired from the LSQ

out of program order frees up entries for more
instructions, however loads that have missed in the L2
cache remain in the LSQ until their data has returned.
Because the miss penalty in such cases can be very high,
these loads remain in the LSQ for extended periods of
time. If multiple cache misses occur together, the LSQ
may become saturated with long-latency loads.

Rather than remaining in the LSQ and blocking other
loads and stores, these loads may be removed and
temporarily stored in another buffer, the LWB. This
allows other loads and stores to enter and exit the LSQ
while long latency loads wait for their data to return from
memory.

4 Implementation Details

4.1 The Base Machine
In order to determine the performance of our modified

processor, we needed a base machine for comparison.
This machine is modeled by sim-outorder from the
SimpleScalar toolset [6].

The simulator is an 8-way superscalar out-of-order
processor. It contains a 2048 RUU, which handles all of
the register renaming and the reordering of the
instructions. Our goal was to improve performance by
optimizing the LSQ, therefore, we wanted to ensure that
the LSQ in the base configuration was indeed the
bottleneck of the system. This was accomplished by
increasing the size of the RUU until it no longer factored
into performance.

Also, the LWB would not show performance benefits
unless the LSQ filled up some of the time. In order to
allow the LSQ to saturate, we increased the memory
access latency to 250 cycles. In addition, we decreased
the size of the L2 cache to 256K to ensure that the
processor would experience some level 2 cache misses. In
a benchmark with 50% memory access instructions,
approximately 4 memory access instructions are issued
every cycle. Thus, with a 64 entry LSQ, after one L2
cache miss, 250*4 = 1000 memory access instructions
could potentially be issued in that time frame (given an
infinitely sized LSQ) , which would likely fill up a
reasonably sized LSQ.

In addition, the base configuration had a perfect
branch predictor. This was done because we wanted to
see the affects of the optimizations on the LSQ without
influence from the control hazards and mispredictions of
the branch predictor. We wanted to ensure that we were
only looking at results from the LSQ optimizations.

The base machine has a 64 entry LSQ for holding all of
the load and store instructions before they are committed.
Note that in this machine, for all memory access

instructions, the associated RUU and LSQ entries are held
until the instruction commits.

4.2 Issue queue
The base machine described above does not include an

issue queue, therefore, we modified the base-version of
SimpleScalar to include one. The implementation was
fairly straightforward. We maintain two pointers that
bounded a subset of the RUU. Within these boundaries
only the non-issued instructions are considered part of the
issue queue. Instructions that have already been issued,
but not committed, are ignored. The issue queue head
pointer always points to the oldest instruction that has not
been issued. Each time an entry is issued, the issue queue
head pointer is incremented, effectively removing the
instruction from the issue queue. The issue queue tail is
incremented every time a new instruction is dispatched,
modeling the addition of entries into the issue queue.
Before any instruction is dispatched, the issue queue must
be checked. If the issue queue is full, then the system
needs to stall until some instructions are issued.

4.3 Out-of-order Loads
In the baseline SimpleScalar simulator, loads are

allocated an entry in the LSQ when the instruction is
dispatched. Each cycle, the LSQ is traversed from head
to tail in search of loads and stores whose operands are
ready. The search is stopped when a store with an
unresolved effective address is encountered, because all
later loads and stores are blocked by that store.

As soon as the effective address is ready, unblocked
loads proceed to the issue stage, where the memory access
takes place. From there, the load is set to complete in the
writeback stage, and finally removed from the LSQ and
RUU in commit.

 Our implementation also blocks loads and stores from
issuing in the LSQ when there is a previous store with an
unresolved address, therefore, we did not modify the
original implementation of that logic. We did, however,
change the design to remove the LSQ entry during the
writeback stage, when the instruction is completed. This
allows the completed load to exit the LSQ earlier.

4.4 Out-of-order Stores
Originally, stores are completed as soon as they are

issued, but their cache accesses are done in order, when
they are completed. The baseline simulator ensures that
stores are executed in program order by stalling their
cache accesses until the instructions are committed.
Unfortunately, this also guarantees that the stores hold
their LSQ entries until they are committed, which is long
after they have completed.

We modify this so that stores are issued only if no
other unresolved memory access instructions exist before
them in the LSQ. In addition, no other instructions with

4

the same effective address exist before them in the LSQ
either. This means that stores that are issued can still
complete right away, but they are also free to access the
cache right after being issued. Thus, we moved the cache
access from the commit stage to the issue stage of the
pipeline, which allows us to remove the associated LSQ

entry from the LSQ as quickly as possible. In turn, this
early removal of the LSQ entry allows another instruction
to be issued.

The instructions in the RUU are still committed in
program order to ensure precise exceptions.

IPC Speedup vs LSQ size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bzip2 gap gcc gzip mcf perlbmk vortex vpr applu apsi equake mesa mgrid swim wupwise

IP
C

 S
pe

ed
up

64 128 256 512 1024

Figure 2: IPC speedup vs. LSQ size for 15 SPEC2K benchmarks

4.5 Load Wait Buffer
The LWB in our design is a 64-entry, fully-

associative table comprised of entries identical to those
found in the LSQ. When an L2 cache miss occurs on a
load, the corresponding entry in the LSQ is moved to the
LWB to wait for the data to arrive. During the writeback
stage, when the long latency load has received its data
and is ready to commit, the LWB entry is recovered.

4.6 Benchmarks
Our design was tested using integer and floating point
benchmarks from the SPEC2K suite. First, we ran
simulations on all of the benchmarks, with different sizes
of LSQ (64, 128, 256, 512, and 1024 entries). Figure 2
shows the results of these preliminary simulations. The
five benchmarks that showed the largest performance
increase from increasing the LSQ size were gcc, vpr,
applu, mgrid, and swim.

5 Experimental Results
Figures 3, 5, 7, 9 and 11 show the performance

improvements of each optimization to the LSQ. The
simulations were done on the ref inputs for the second
billion instructions for each benchmark. For comparison
purposes, the base machine described in Section 4.1 is
included in the graphs as well. With the baseline
machine, optimal performance is achieved with an LSQ
size of 256 entries for gcc and swim, and 512 entries for
vpr, mgrid, and applu. This means that increasing the
effective size of the LSQ past 256 (through the addition of
a LWB) will not significantly improve the performance of
the system.

The first optimization that we implemented was the
out-of-order loads (OOL). For this optimization, we
merely moved the cache access up to the writeback stage,
and we removed the LSQ entry there as well. With OOL,
the effective size of the LSQ seems to have doubled in
most cases, with the exception of gcc. For vpr and applu,
the optimal LSQ size has not reduced to 256 entries. For
swim and mgrid, the optimal LSQ size is now 128 entries.
Even though gcc has a large percentage of load
instructions, it does not seem to improve with the out-of-
order loads. This could be because most of these loads are
long latency loads, which take up entries in the LSQ,
blocking ready memory accesses from being issued.

The second optimization was the implementation of
out-of-order stores on top of the out-of-order loads from
the previous optimization (OOL&S). With the exception
of gcc, the other four benchmarks have a slight increase
in performance increasing the LSQ size from 64 entries to
128 entries. After that, increasing the LSQ size only
brings negligible performance improvements to the
processor.

 The last optimization to the LSQ was the addition of
a 64 entry load wait buffer to the out-of-order loads and
stores (OOL&S, 64 LWB). From the graphs, we can see
that the IPC from running the processor on each
benchmark has just about reached it maximum
performance.

Notice that the optimal speedup for this subset of
benchmarks was significant with the addition of the
LWB. The maximum speedup was for the mgrid
benchmark at 303%. This may have been due to the fact
that running mgrid on the baseline simulator resulted in
an LSQ that was full about 89% of the time. The

5

minimum speedup was 50% for the swim benchmark.
This is due to the fact that running swim on the baseline
simulator, the LSQ is full only 49% of the time. Thus,
even with the LWB and OOL&S there is not much room
for a performance improvement.

Figures 4, 6, 8, 10, and 12 show the percentage of
time the LSQ was full during the total simulation time for
the five different benchmarks analyzed. From the results
of the simulations, we observed that the LSQ became full
for an increasingly smaller percentage of the total
simulation time with the addition of each optimization.
This confirms the fact that the optimizations are
successfully emptying out the LSQ as they were intending
to do.

There is an extreme fall at 128 entries for vpr for the
simulator with the implementation of the LWB and the
OOL&S. We are not sure why this happens. It does not
reflect in the results of the IPC trends and could just be an
anomaly.

6

gcc

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

64 128 256 512 1024

LSQ entries

IP
C

 S
pe

ed
up

gcc - baseline gcc - OOL

gcc - OOL&S gcc - OOL&S, 64 LWB

Figure 3: IPC Speedup for gcc: baseline, out-of-order loads,
out-of-order loads & stores, and out-of-order loads & stores
with a load-wait-buffer

gcc

0

0.2

0.4

0.6

0.8

1

64 128 256 512 1024

LSQ entries

IP
C

 S
pe

ed
up

gcc - baseline gcc - OOL

gcc - OOL&S gcc - OOL&S, 64 LWB

Figure 4: Percentage of time LSQ is full for gcc: baseline,
out-of-order loads, out-of-order loads & stores, and out-of-
order loads & stores with a load-wait-buffer

vpr

1

1.2

1.4

1.6

1.8

2

2.2

2.4

64 128 256 512 1024

LSQ entries

IP
C

 S
pe

ed
up

vpr - baseline vpr - OOL

vpr - OOL&S vpr - OOL&S, 64 LWB

Figure 5: IPC Speedup for vpr: baseline, out-of-order loads,
out-of-order loads & stores, and out-of-order loads & stores
with a load-wait-buffer

vpr

0

0.2

0.4

0.6

0.8

1

64 128 256 512 1024

LSQ entries

LS
Q

 F
ul

l

vpr - baseline vpr - OOL

vpr - OOL&S vpr - OOL&S, 64 LWB

Figure 6: Percentage of time LSQ is full for vpr: baseline,
out-of-order loads, out-of-order loads & stores, and out-of-
order loads & stores with a load-wait-buffer

applu

1.0

1.2

1.4

1.6

1.8

2.0

64 128 256 512 1024

LSQ entries

IP
C

 S
pe

ed
up

applu - baseline applu - OOL

applu - OOL&S applu - OOL&S, 64 LWB

Figure 7. IPC Speedup for applu: baseline, out-of-order
loads, out-of-order loads & stores, and out-of-order loads &
stores with a load-wait-buffer

applu

0.0

0.2

0.4

0.6

0.8

1.0

64 128 256 512 1024

LSQ entries

LS
Q

 F
ul

l

applu - baseline applu - OOL

applu - OOL&S applu - OOL&S, 64 LWB

Figure 8: Percentage of time LSQ is full for applu: baseline,
out-of-order loads, out-of-order loads & stores, and out-of-
order loads & stores with a load-wait-buffer

7

mgrid

1.0

1.4

1.8

2.2

2.6

3.0

64 128 256 512 1024

LSQ entries

IP
C

 S
pe

ed
up

mgrid - baseline mgrid - OOL

mgrid - OOL&S mgrid - OOL&S, 64 LWB

Figure 9: IPC Speedup for mgrid: baseline, out-of-order
loads, out-of-order loads & stores, and out-of-order loads &
stores with a load-wait-buffer

mgrid

0.0

0.2

0.4

0.6

0.8

1.0

64 128 256 512 1024

LSQ entries

LS
Q

 F
ul

l

mgrid - baseline mgrid - OOL

mgrid - OOL&S mgrid - OOL&S, 64 LWB

Figure 10: Percentage of time LSQ is full for mgrid:
baseline, out-of-order loads, out-of-order loads & stores,
and out-of-order loads & stores with a load-wait-buffer

swim

1.0

1.1

1.2

1.3

1.4

1.5

1.6

64 128 256 512 1024

LSQ entries

IP
C

 S
pe

ed
up

swim - baseline swim - OOL

swim - OOL&S swim - OOL&S, 64 LWB

Figure 11: IPC Speedup for swim: baseline, out-of-order
loads, out-of-order loads & stores, and out-of-order loads &
stores with a load-wait-buffer

swim

0.0

0.2

0.4

0.6

0.8

1.0

64 128 256 512 1024

LSQ entries

LS
Q

 F
ul

l

swim - baseline swim - OOL

swim - OOL&S swim - OOL&S, 64 LWB

Figure 12: Percentage of time LSQ is full for mgrid:
baseline, out-of-order loads, out-of-order loads & stores,
and out-of-order loads & stores with a load-wait-buffer

6 Conclusion
One of the largest impedances in performance for

high-end processors is the time to service a memory
access. Even though most high end processors these days
can execute instructions out or order, if the buffer holding
the memory access instructions fills up (the LSQ), then
the processor still needs to wait for the memory system to
service the cache miss before it can continue dispatching
instructions. In this paper, we proposed several different
optimizations to help reduce occupancy of LSQ. The first
method we analyzed was to reduce the amount of time
that a load instruction stayed in the LSQ. A LSQ entry
for a load is essentially not needed once it has passed the
writeback stage, therefore, we can free the LSQ entry after
this stage. The second optimization was to implement a
similar idea concerning stores. This was a bit more
complicated due to data integrity issues of writing to the

cache, but the data integrity of the program can be
ensured by following a small set of rules. Thus, stores
can actually free their associated LSQ entry after they are
issued. Finally, we also implemented a Load Wait Buffer
(LWB). While loads are waiting for the memory system
to service their cache misses, they are sitting idle in the
LSQ, impeding the processor from dispatching another
memory access instruction. Our LWB allows long latency
loads to be removed from the LSQ while their cache
misses are serviced. A LWB of 64 entries, combined with
the out-of-order load and store execution, can provide
performance improvements up to 303%.

Our simulations show that reducing the occupancy of
the LSQ does indeed improve the performance of the
processor. All three of the optimizations focused on
emptying out the LSQ. The largest performance increase
came when the 64 entry LWB caused a significant
decrease in LSQ occupancy, which shows that the size

8

and structure of LSQ is indeed a large bottleneck of the
system.

References
[1] R. Lebeck, J. J. Koppanalil, T. Li, J. Patwardhan, and

E. Rotenberg. “A Large, Fast Instruction Window for
Tolerating Cache Misses”. 29th International
Symposium on Computer Architecture, May 2002.

[2] J.M. Parcerisa and A. Gonzalez, “The Latency
Hiding Effectiveness of Decoupled Access/Execute
Processors”. 24th. Euromicro Conference, Aug.
1998.

[3] H.-Y. Hwang, R.-M. Shiu, Jean Jyh-Jiun Shann. “An
X86 Load/Store Unit with Aggressive Scheduling of
Load/Store Operations”. International Conference on
Parallel and Distributed Systems, 1998.

[4] G. S. Sohi, "Instruction Issue Logic for High-
Performance, Interruptible, Multiple Functional Unit,
Pipelined Computers”. IEEE Transactions on
Computers, Mar. 1990.

[5] Platt, J.R. Strong inference. Science, Oct. 1964.

