
Recursive Statistical Blockade: An Enhanced Technique for Rare Event Simulation with
Application to SRAM Circuit Design

 Amith Singhee1, Jiajing Wang2, Benton H. Calhoun2, Rob A. Rutenbar1

Abstract
Circuit reliability under statistical process variation is an

area of growing concern. For highly replicated circuits such as
SRAMs and flip flops, a rare statistical event for one circuit
may induce a not-so-rare system failure. The authors of [1]
proposed Statistical Blockade as a Monte Carlo technique that
allows us to efficiently filter—to block—unwanted samples
insufficiently rare in the tail distributions we seek. However,
there are significant practical problems with the technique. In
this work, we show common scenarios in SRAM design
where these problems render Statistical Blockade ineffective.
We then propose significant extensions to make Statistical
Blockade practically usable in these common scenarios. We
show speedups of 102+ over standard Statistical Blockade and
104+ over standard Monte Carlo, for an SRAM cell in an in-
dustrial 90nm technology.

1. Introduction
Circuit reliability under statistical process variation is an

area of growing concern. Designs that add excess safety mar-
gin, or rely on simplistic assumptions about “worst case” cor-
ners no longer suffice. Worse, for critical circuits such as
SRAMs and flip flops, replicated across 10K - 10M instances
on a large design, we have the new problem that statistically
rare events are magnified by the sheer number of these ele-
ments. In such scenarios, an exceedingly rare event for one
circuit may induce a not-so-rare failure for the entire system.

Monte Carlo analysis (MC) [2] remains the gold standard
for the required statistical modeling. Standard Monte Carlo
techniques are, by construction, most efficient at sampling the
statistically likely cases. When used for simulating statistical-
ly unlikely or rare events, these techniques are extremely
slow. For example, to simulate a 5 event, 100 million circuit
simulations would be required, on average.

One avenue of attack is to abandon Monte Carlo. Several
analytical and semi-analytical approaches have been suggest-
ed to model the behavior of SRAM cells [3][4][5] and digital
circuits [6] in the presence of process variations. All suffer
from approximations necessary to make the problem tractable.

σ

[4] and [6] assume a linear relationship between the statistical
variables and the performance metrics (e.g. static noise mar-
gin), and assume that the statistical process parameters and re-
sulting performance metrics are normally distributed. This can
result in gross errors, especially while modeling rare events, as
we shall show later. When the distribution varies significantly
from Gaussian, [4] chooses an F-distribution in an ad hoc
manner. [3] presents a complex analytical model limited to a
specific transistor model (the transregional model) and further
limited to only static noise margin analysis for the 6T SRAM
cell. [5] again models only the static noise margin (SNM) for
SRAM cells under assumptions of independence and identical
distribution of the upper and lower SNM, which may not al-
ways be valid.

A different avenue of attack is to modify the Monte Carlo
strategy. [7] shows how Importance Sampling can be used to
predict failure probabilities. Recently, [8] applied an efficient
formulation of these ideas for modeling rare failure events for
single 6T SRAM cells, based on the concept of Mixture Im-
portance Sampling from [9]. The approach uses real SPICE
simulations with no approximating equations. However, the
method only estimates the exceedence probability of a single
value of the performance metric. A re-run is needed to obtain
probability estimates for another value. No complete model of
the tail of the distribution is computed. The method also com-
bines all performance metrics to compute a failure probability,
given fixed thresholds. Hence, there is no way to obtain sepa-
rate probability estimates for each metric, other than a separate
run per metric. Furthermore, given that [7] advises against im-
portance sampling in high dimensions, it is unclear if this ap-
proach will scale efficiently to large circuits with many
statistical parameters.

The authors of [1] presented Statistical Blockade (SB), a
general and efficient MC method that addresses both problems
previously described: very fast generation of samples—rare
events—with sound models of the tail statistics for any perfor-
mance metric. The method imposes almost no a priori limita-
tions on the form of the statistics for the process parameters,
device models, or performance metrics. The key observation
behind Statistical Blockade is that generating each sample is not
expensive: we are merely creating the parameters for a circuit.

1Dept. of ECE, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

{asinghee,rutenbar}@ece.cmu.edu

2ECE Dept. University of Virginia,
Charlottesville, VA 22903, USA
{jjwang,bcalhoun}@virginia.edu

Evaluating the sample is expensive, because we simulate it. The
paper developed a method to quickly filter these samples, and
block those that are unlikely to fall in the low-probability tails
we seek. It used techniques from data mining [10] to build clas-
sifier structures, from a small set of Monte Carlo training sam-
ples, to create the necessary blocking filter. Given these
samples, it showed how to use the rigorous mathematics of Ex-
treme Value Theory (EVT [11]) to build sound models of these
tail distributions. The paper successfully applied SB to a variety
of circuits with dimensionality ranging up to 403, with speedups
of up to 2 orders of magnitude over Standard Monte Carlo.

SB can, however, completely fail for certain commonly
seen SRAM metrics (e.g., data retention voltage) because of the
presence of conditionals in the formulation of the metric. Also,
if rare samples with extremely low probability (e.g. 5 and be-
yond) are required, SB can still become prohibitively expen-
sive. In this work, we extend the SB technique in two significant
ways: 1) we propose a solution to solve the problem of SB fail-
ing for certain common SRAM metrics, and 2) we develop a re-
cursive strategy to achieve further speedups of orders of
magnitude, while simulating extremely rare events (5 and be-
yond).

This paper is organized as follows. Section 2 reviews the
Statistical Blockade filtering technique from [1]. Section 3
presents the first problem with the formulation, circuit metrics
with conditionals, and proposes a solution. Section 4 presents
the second problem with SB, sampling extremely rare events,
and proposes a solution. Section 5 presents experimental re-
sults and Section 6 offers concluding remarks.

2. Background: Statistical Blockade Filtering
Fig. 1 shows an example distribution of a circuit

metric; e.g., SRAM write time. As an example, consider a
1Mb cache, where the SRAM cell has a failure probability of
1ppm, given a failure threshold, . In such a case we would
need to simulate 1 million MC samples to generate one such
failure event and made any prediction about the failure proba-
bility. In fact, we would need many more to generate sufficient
failure events to ensure statistical confidence of the prediction.
This approach would become much worse for lower failure

probabilities. This scenario is common in today’s SRAM de-
signs.

SB was proposed in [1] to significantly speed up the sim-
ulation of rare events and prediction of low failure probabili-
ties. SB defines a tail threshold (for example, the 99% point)

, as shown in Fig. 1. Without loss of generality, the part of the
distribution greater than is called the tail. The key idea is to
identify that region in the parameter (process variable) space
that yields circuit performance values (e.g., SRAM write time)
greater than . Once this is known, those MC samples that do
not lie in this tail region are not simulated, or blocked. Only
those MC samples that lie in the tail region are simulated.
Hence, the number of simulations can be significantly re-
duced. For example, if is the 99-th percentile, only 1% of the
MC samples will be simulated, resulting in an immediate
speedup of 100x over standard MC.

To build this model of the boundary of the tail region a
small MC sample set (1,000 points) is used to train a classifier.
A classifier is an indicator function that allows us to determine
set membership for complex, high-dimensional, nonlinear da-
ta. Given a data point, the classifier reports true or false on the
membership of this point in some arbitrary set. For Statistical
Blockade, this is the set of parameter values not in the tail re-
gion we seek. However, it is difficult, if not impossible, to
build an exact model of the tail region boundary. Hence, we
relax the requirement to allow for classification error. This is

σ

σ

t xf

)(xFt

)(xF

FIGURE 1. Example distribution of a circuit performance metric (e.g.,
SRAM write time). The solid region is the tail region. SB focuses the
sampling to this region for fast sampling of rare events.

F x()

xf

t
t

t

tail

body

Parameter space

Block

Sim

FIGURE 2. The classifier in statistical parameter space is shown as a
solid boundary. The dashed line is the exact tail region boundary. The
relaxed classification boundary allows us to block most non-tail points.

t

FIGURE 3. Classification based sampling

done by building the classification boundary at a classification
threshold that is less than the tail threshold . Fig. 2 shows
this relaxed classification boundary in the parameter space.
The dashed line is the exact boundary of the tail region for the
tail threshold , and the solid line is the relaxed classification
boundary for the classification threshold .

SB filtering is then accomplished in three steps (Fig. 3):
1) Perform initial sampling to generate data to build a

classifier. This initial sampling can be standard
Monte Carlo or importance sampling.

2) Build a classifier using a classification threshold
. To minimize false negatives (tail points classified

as non-tail points), choose .
3) Generate more samples using MC, following the

CDF , but simulate only those that are classified as
tail points.

From the simulated samples, some will be in the tail region
and some will be in the non-tail region. [1] shows how to use
Extreme Value Theory to fit a parametric distribution (the
Generalized Pareto Distribution) to these tail points to gener-
ate an analytical model for the failure probability, given any
failure threshold .

In the rest of this paper, we will focus on the classifier
building and the sample filtering parts of this framework. We
will show how they can fail for certain common scenarios and
present effective solutions.

3. Classifier failure: Conditionals

3.1 The problem
Consider the 6-T SRAM cell shown in Fig. 4. With scaling

reaching nanometer feature sizes, subthreshold and gate leak-
age become very significant. Particularly for the large memo-
ry blocks seen today, the standby power consumption due to
leakage can be intolerably high. Supply voltage () scaling
[12] is a powerful technique to reduce this leakage, whereby
the supply voltage is reduced when the memory bank is not
being accessed. However, lowering also makes the cell
unstable, ultimately resulting in data loss at some threshold
value of , known as Data Retention Voltage or DRV.
Hence, DRV is the lowest supply voltage that still preserves

the data stored in the cell. DRV is computed as follows.
(1)

where is the DRV when the cell is storing a 0, and
 is the DRV when it is storing a 1. If the cell is balanced

(symmetric), then . However, if there is any
mismatch due to process variations, they become unequal.
This creates a situation where the standard SB classification
technique would fail. We will explain this in more detail now.

Suppose we run a 1,000 sample MC, varying all the
mismatch parameters in the SRAM cell according to their
statistical distributions. This would give us distributions of
values for , and . In certain parts of the
mismatch parameter space , and in other parts

. This is clearly illustrated in Fig. 5. Using
SiLVR, from [13], we extracted the direction in the parameter
space that has maximum impact on (maximum
variation), called latent variable in the paper. The figure plots
the simulated and values along this direction
(). We can clearly see that they are inversely related:
one decreases as the other increases. Now let us take the
as in (1), and choose the classification threshold for
as the 97-th percentile. Then we pick out the worst 3% points
from the classifier training data and plot them against the same

tc t

t
tc

C
tc

tc t<

F

wl

Mp0 Mp1

Mn0 Mn1

Ms0 Ms10 1

wlVdd

FIGURE 4. A standard 6-T SRAM cell.

xf t>

Vdd

Vdd

Vdd

DRV max DRV0 DRV1,()=

DRV0
DRV1

DRV0 DRV1=

FIGURE 5. Behavior of DRV0 and DRV1 along the direction of maximum
variation in DRV0. The worst 3% DRV values are shown as squares,
clearly showing the disjoint tail regions (along this direction in the
parameter space).

DRV0 DRV1 DRV
DRV0 DRV1>

DRV0 DRV1<

DRV0

DRV0 DRV1
d1 DRV0,

max
tc DRV

tail

body

d1,DRV0

FIGURE 6. Parameter space with two disjoint tail regions for the same
circuit metric (e.g. DRV).

direction , in Fig. 5. We can clearly see that these
points (squares) lie in two disjoint parts of the parameter
space. Since the tail region defined by a tail threshold
would be a subset of the classifier tail region (defined by),
it is obvious that the tail region consists of two disjoint regions
of the parameter space. This is illustrated with a 2-D example
in Fig. 6. The figure also shows the direction vector for

. The solid tail regions on the top-right and bottom-
left corners of the parameter space correspond to the large
DRV values shown as squares in Fig. 5.

In such a situation the SB classifier is unable to create a
single boundary to separate the tail and non-tail regions. The
problem stems from the operation in (1), since it com-
bines subsets of the tail regions of and to gener-
ate the tail region of . The same problem occurs for any
other such metric (e.g., Static Noise Margin) with a condition-
al operation. We now propose a solution to this problem.

3.2 Solution
Instead of building a single classifier for the tail of in

(1), we will build two separate classifiers, one for the the 97-
th percentile () of , and another for the 97-th
percentile () of . The generated MC samples
will then be filtered through both these classifiers: points clas-
sified as non-tail by both the classifiers will be blocked, and
the rest will be simulated. In the general case, if the circuit
metric is given as

(2)

the resulting algorithm is as follows.
1) Perform initial sampling to generate data to build a

classifier and estimate tail and classification thresh-
olds.

2) For each argument of the conditional (2), build a
classifier at a classification threshold that
is less than the tail threshold .

3) Generate more samples using MC, but block the
samples classified as non-tail by all the classifiers.
Simulate the rest and compute for the simulated
points.

Hence, in the case of Fig. 6, we build a separate classifier
for each of the two boundaries. From the simulated points,
those with are chosen as tail points for further analysis
[1]. Also note that this same algorithm can be used for the case
of multiple metrics. Each metric would have its own thresh-
olds and its own classifier, just like each argument in (2).

4. Simulating Extremely Rare Events

4.1 The problem
Consider a 10 Mb memory, with no redundancy or error

correction. Even if the failure probability of each cell is as low
as 0.1 ppm, every such chip will still fail on average. Hence,
the worst case (largest) DRV from a 10 million MC should, on

average, be below the standby voltage. To estimate this at least
10 million MC samples have to be run. If we want to reduce
the chip failure probability to less than 1%, we need to look at
the worst case DRV from a 1 billion MC run. This is equiva-
lent, approximately, to the 6 value of DRV -- the 6 point
from a standard normal distribution has the same failure prob-
ability. Using Statistical Blockade, we can reduce the number
of samples, using a classification threshold = 97-th percen-
tile. This would reduce the number of simulations from 1 bil-
lion to 30 million, which is still very large. Even with a perfect
classifier, where we can choose = 99-th percentile, the
number of simulations would still be 10 million. Moving to
higher percentiles will help reduce this further, but many more
initial samples will be needed for a believable estimate of
and for training the classifier. Now we describe a recursive
formulation that reduces the simulation count drastically.

4.2 Solution
Let us first assume that there are no conditionals. For a tail

threshold equal to the -th percentile, let us represent it as ,
and the corresponding classification threshold as . Using
the algorithm from Section 3.2, build a classifier and gen-
erate sufficient points with , so that a higher percentile
(, ,) can be estimated. For this new, higher thresh-
old a new classifier is trained and a new set of tail points
() are generated. This new classifier will block many
more points than , significantly reducing the number of
simulations. This procedure is repeated to push the threshold
out more till the tail region of interest is reached. The complete
algorithm is shown in Fig. 7.

Now, we will describe the functions used in the algorithm.
In line 1, we repeat lines 2-10 for each argument of the condi-
tional. If there is no conditional, lines 2-10 are not repeated.
The conditional is used without loss of generality. is
the total number of MC samples that would be needed to reach
the tail regions required; e.g., = 1 billion for reaching 6 .
The function MCarlo() generates samples, and the func-
tion Simulate() actually simulates the samples passed to it.

d1 DRV0,

t tc>
tc

d1 DRV0,

max
DRV0 DRV1

DRV

DRV

tc DRV0() DRV0
tc DRV1() DRV1

y

y max y0 y1 …, ,()=

yi
Ci tc yi()

t yi()

y

y t>

σ σ

tc

tc t=
tc

tc

α tα

tc
α

Cα

y tα>
tβ tc

β β α>
Cβ

y tβ>
Cα

1.for each argument in
2. = 1000
3. = Simulate(MCarlo())
4. while ()
5. = GetWorst(,)
6. = Percentile(, 99)
7. = Percentile(, 97)
8. = BuildClassifier(,)
9. n = n * 100
10. = Simulate(Filter(, MCarlo(n))
11. end
12. =

yi y max yi()=
n n0=
yi tail, n

n N<
yi tail, n0 yi tail,
t yi tail,
tc yi tail,
C yi tail, tc

yi tail, C

ytail max y0 tail, y1 tail, …, ,()

FIGURE 7. A recursive formulation for Statistical Blockade for
simulating extremely rare events, that can also handle conditionals.

max N

N σ
n n

The returned vector consists of both the input parameter sets
for simulation and the corresponding circuit metrics computed
for each sample. The function GetWorst(,) returns the

 worst samples from the set . BuildClassifier(,)
builds a classifier using training points . Hence in line 8,
is a classifier. The function Filter(,) blocks the samples in

 classified as non-tail by and returns the samples classi-
fied as tail points. The function Percentile(,) computes the

-th percentile of the output values in the set .

The basic idea is to use a tail threshold (and its correspond-
ing classification threshold) that is very far out in the tail, so
that the simulations are restricted to the very rare events we are
interested in. This is being done in a recursive manner by esti-
mating lower thresholds first and using them to estimate the
higher threshold without having to simulate a large number of
points. For example, if we want to use the 99.9999 percentile
as the tail threshold , we first estimate the 99.99 per-
centile threshold . To estimate this in turn, we first esti-
mate the 99 percentile threshold . At each stage we use a
classifier corresponding to that threshold to reduce the number
of simulations for estimating the next higher threshold. The
next section will present experimental results.

5. Experimental Results
The techniques described in this paper were applied to a

standard 6T SRAM cell, for the case of DRV. The cell was im-
plemented in an industrial 90nm process and all the mismatch
statistical parameters were varied as per the industrial process
design kit (PDK). We used a Support Vector Machine classi-
fier [14], similar to [1].

5.1 An analytical model for DRV
The authors in [15] develop an analytical model for pre-

dicting the Cumulative Density Function (CDF) of the DRV,
that uses not more than 5,000 MC simulations. The CDF is
given as

(3)
where is the DRV value. is the sensitivity of DRV to the
supply voltage, computed using a DC sweep. and are
the mean and standard deviation of the Static Noise Margin
distribution for the circuit, for a user-defined supply voltage

. These are computed using a short Monte Carlo run. Com-
plete details regarding this analytical model are provided in
[15]. The -th quantile (e.g., the 6 point) can be estimated as

(4)

Hence, is the supply voltage such that
(5)

We compare the worst case DRV values from our tech-

nique, for a given number of MC samples, with the value pre-
dicted by (5) for the corresponding quantile. For example, we
can compute the 4.5 DRV value from (5) and compare it
with the worst case DRV from a 1 million sample MC run: 1
ppm is the failure probability of the 4.5 point.

5.2 Results
Fig. 7 shows a graphical comparison of five different

methods:
1) Analytical: The 3 to 8 DRV values (quantiles)

predicted by equation (5).
2) Recursive SB: The algorithm in Fig. 7 was run for

 = 1 billion: lines 5-10 were run three times, corre-
sponding to 100,000, 10 million and 1 billion MC
samples, respectively. The worst case DRV from
these 3 recursion stages are estimates of the 4.26 ,
5.2 and 6 points, respectively.

3) EVT model: The tail points from the last recursion
stage (1 billion MC) are used to fit a Generalized
Pareto Distribution (GPD), as per [1]. This GPD is
then used to predict the 3 to 8 DRV values.

4) Normal: A normal distribution is fit to data from a
1,000 sample MC run, and used to predict the same
DRV values.

5) Lognormal: A lognormal distribution is fit to the
same 1,000 MC samples, and used for prediction.

From the plots, we can immediately see that Recursive SB
estimates are very close to the estimates from the analytical
model. Table 1 shows the number of circuit simulations per-
formed at each of the three recursion stages, along with the ini-
tial 1,000 sample MC run. The total number of simulations
used is a very comfortable 41,721, resulting in a speedup of 4
orders of magnitude over standard MC and 700 times over SB.

Also, we can extend the prediction power to 8 without
any additional simulations, by using the GPD model. Standard
MC would need over 1.5 quadrillion points to generate an 8

n0 x
n0 x x tc

x C
C x

x C
x p

p x

t99.9999

t99.99

t99

FDRV x() 1 erfc
µ0 k x V0–()+

2σ0

 1

4
--- erfc

µ0 k x V0–()+

2σ0

 2

+–=

x k
µ0 σ0

V0

q σ

DRV q() 1
k
--- 2σ0erfc 1– 2 2 q–() µ0–() V0+=

DRV q() Vdd
P DRV Vdd≤() q=

σ

σ

σ σ

N

σ
σ σ

σ σ

FIGURE 7. The worst case DRV values from RSB closely match the
model in (5). Fitting an EVT model as per [1] to the data from RSB also
shows close match with (5). Normal and log-normal fits are inaccurate.

σ

σ

point. For this case the speedup over standard MC is extreme-
ly large. The normal and lognormal fits show significant error
compared to the analytical model. The normal fit is unable to
capture the skewness of the actual DRV distribution, while the
lognormal distribution has a heavier tail than the true DRV
distribution and, hence, over-estimates the skewness.

A final point to highlight is that recursive SB is a com-
pletely general technique to estimate rare events and their tail
distributions. In the case of the SRAM cell DRV experiment,
we were lucky enough to have an extremely recent analytical
result against which to compare performance. Obviously, if
one has such analytical models available, one should use
them. Unfortunately, in most cases, one does not, and one
must fall back on some sort of Monte Carlo analysis. In such
scenarios, recursive Statistical Blockade has three attractive
advantages:

1) it is circuit-neutral, by which we mean that any cir-
cuit that can be simulated can be attacked with the
technique;

2) it is metric-neutral, by which we mean that any cir-
cuit performance metric that can be simulated can be
analyzed with the technique;

3) as seen in our SRAM DRV experiments, it is
extremely efficient, faster usually by several orders
of magnitude than simple-minded brute-force Monte
Carlo algorithms.

6. Conclusions
Statistical Blockade was proposed in [1] for 1) efficiently

generating samples in the tails of distributions of circuit per-
formance metrics, and 2) deriving sound statistical models of
these tails. However, the method has some practical shortcom-
ings: it fails for the case of circuit metrics with conditionals,
and it requires prohibitively large number of simulations while
sampling extremely rare events. This paper presents a recur-
sive formulation of SB that overcomes both these issues effi-
ciently. This new technique was applied to an SRAM cell in
an industrial 90nm technology to obtain speedups of up to 4
orders of magnitude over standard Monte Carlo and 2 orders
of magnitude over standard SB.

Acknowledgements: The authors acknowledge the sup-
port of the Focus Center for Circuit & System Solutions
(C2S2, http://www.c2s2.org), one of five research centers
funded under the Focus Center Research Program, a Semicon-
ductor Research Corporation program.

References
[1] A. Singhee, R.A. Rutenbar, “Statistical Blockade: A Novel Method for

Very Fast Monte Carlo Simulation of Rare Circuit Events, and its
Application”, Proc. DATE, 2007.

[2] G.S. Fishman, “A First Course in Monte Carlo”, Duxbury Press, Oct.
2005.

[3] A.J. Bhavnagarwala, X. Tang, J.D. Meindl, “The Impact of Intrinsic
Device Fluctuations on CMOS SRAM Cell Stability”, J.Solid State
Circuits, 26(4), pp 658-665, Apr. 2001.

[4] S. Mukhopadhyay, H. Mahmoodi, K. Roy, “Statistical Design and
Optimization of SRAM Cell for Yield Enhancement”, Proc. ICCAD,
2004.

[5] B.H. Calhoun, A. Chandrakasan, “Analyzing Static Noise Margin for
Sub-threshold SRAM in 65nm CMOS”, Proc. ESSCIRC, 2005.

[6] H. Mahmoodi, S. Mukhopadhyay, K. Roy, “Estimation of Delay Varia-
tions due to Random-Dopant Fluctuations in Nanoscale CMOS Cir-
cuits”, J. Solid State Circuits, 40(3), pp 1787-1796, Sep. 2005.

[7] D.E. Hocevar, M.R. Lightner, T.N. Trick, “A Study of Variance Reduc-
tion Techniques for Estimating Circuit Yields’, IEEE Trans. CAD, 2(3),
July, 1983.

[8] R. Kanj, R. Joshi, S. Nassif, “Mixture Importance Sampling and its
Application to the Analysis of SRAM Designs in the Presence of Rare
Failure Events”, Proc. DAC, 2006.

[9] T.C. Hesterberg, “Advances in Importance Sampling”, PhD Disserta-
tion, Dept. of Statistics, Stanford University, 1988, 2003.

[10] T. Hastie, R. Tibshirani, J. Friedman, “The Elements of Statistical
Learning”, Springer Verlag, 2003.

[11] A.J. McNeil, “Estimating the Tails of Loss Severity Distributions using
Extreme Value Theory”, ASTIN Bulletin, 27(1), pp 117-137, 1997.

[12] R. K. Krishnamurthy et al., “High-performance and low-power chal-
lenges for sub-70 nm microprocessor circuits,” Proc. CICC, 2002.

[13] A. Singhee, R. A. Rutenbar, “Beyond Low-Order Statistical Response
Surfaces: Latent Variable Regression for Efficient, Highly Nonlinear
Fitting”, Proc. DAC, 2007.

[14] T. Joachims, Making large-Scale SVM Learning Practical. Advances in
Kernel Methods - Support Vector Learning, B. Schölkopf and C.
Burges and A. Smola (ed.), MIT-Press, 1999.

[15] J. Wang, A. Singhee, R.A. Rutenbar, B.H. Calhoun, “Statistical Model-
ing for the Minimum Standby Supply Voltage of a Full SRAM Array”,
Proc. ESSCIRC, 2007.

Stage Num. simulations
Init 1,000
1 11,032
2 14,184
3 15,505

Total 41,721

Speedup over MC 23,969x

Speedup over SB 719x

TABLE 1. Number of circuit simulations run per recursion stage to
generate a 6 DRV sampleσ

