
 Abstract

Incremental redesign is an increasingly essential step in
any complex design. Late changes or corrections in
functional specifications (so-called “engineering change
orders” or ECOs) force us to search for a minimal
perturbation that achieves the desired repair. In
reconfigurable design scenarios, these incremental
repairs may be in response to physical faults: the goal is
to “design around” the fault. For FPGAs, incremental
rerouting is an essential component of this repair
problem. We develop a new incremental rerouting
algorithm for FPGAs using techniques from Boolean
Satisfiability (SAT). In this application, these techniques
have the twin virtues that they (1) represent all possible
routing (and rerouting) constraints simultaneously and
exactly, and (2) search for rerouting solutions by
perturbing all nets concurrently. Preliminary results are
promising. For several FPGA benchmarks, we were able
to reroute fault reconfigurations that perturb up to 5.74%
of all nets for a small number of fault sets (one to four
faults) with only 1.55 track overhead per channel on
average, with CPU time 0.76 to 4.91 seconds/fault.

1. Introduction
As designs become more complex and design times

continue to shrink, complex designs are increasingly sub-
ject to small-scale changes, typically late in their design
cycles in order to correct errors found, or to meet late
changes in specification. For these Engineering Change
Orders (ECOs), we require a local, minimal-perturbation
solution that incrementally changes as little of the design
as possible. Since designers have already spent consider-
able effort to realize the design, we should avoid methods
that need to rearrange large sections of the design in
response to these small change requests. In particular, we
want to avoid creation of additional errors or unanticipated
consequences in modules already correct and validated
thus far. Incremental redesign techniques have only
recently been studied for a few EDA problems [5, 6, 7, 10],
notably in logic synthesis and physical design.

There are many scenarios where incremental redesign is

useful. In this paper, we focus on the FPGA fault reconfig-
uration scenario introduced in [6, 7]. In a large FPGA, a few
faulty logic cells may occur as a result of a manufacturing
defect, or from operational faults in the field. Given the
reconfigurable routing fabric, these can conceivably be
mapped out by “routing around” the faulty cells--assuming
we have sufficient spare logical and wiring resources. The
technique exploited in [6, 7] achieves reconfigurations by
constructing a chain of replacements from faulty logic cells
to adjacent correct logic cells, until a reserved spare/unused
cell is reached.

Reservation of these necessary spare resources can be
done statically or dynamically. In a static approach, extra
interconnections are reserved as part of the initial routing
process so that a specific fault pattern (e.g., one fault per
row) can be tolerated. The drawback of static techniques is
the large number of statically allocated spares that must be
reserved [7]. In a dynamic approach [6], necessary intercon-
nect resources are searched for “on the fly” whenever an
assumed fault pattern occurs. In both approaches, however, a
spare (unused) logic cell was reserved per row in addition to
extra interconnect resources. An unfortunate consequence is
the need (in our opinion) to reserve a relatively large number
of logic cells and wiring tracks globally, to accommodate a
quite small set of anticipated faults. We argue that part of the
problem here is the limited scale of the redesign perturbations
that current techniques can successfully manage. If a small
number of nets need to be rewired to insert a logic spare and
reconfigure, the problem is manageable. But if a large num-
ber of nets must be slightly perturbed to reconfigure in a
dense, resource-constrained design, then we believe it is
worth considering rerouting techniques with a more global
view.

In this paper, we introduce a new incremental rerouting
method for island-style FPGAs based on ideas from Bool-
ean Satisfiability (SAT) [4, 12]. The key idea is to transform
the geometric FPGA rerouting task into a single Boolean
function which represents all the possible routing constraints
simultaneously over the existing solution. The generated
Boolean function has the property that any satisfying assign-
ment (variable assignments that render the function identi-

A Boolean Satisfiability-Based Incremental Rerouting
Approach with Application to FPGAs

Gi-Joon Nam, Karem Sakallah and Rob Rutenbar†

Department of Electrical Engineering and Computer Science, University of Michigan

†Department of Electrical and Computer Engineering, Carnegie Mellon University

0-7695-0993-2/2001/$10.00 © 2001 IEEE
560

cally “1”) specifies a valid routing solution. This approach has
several novel characteristics which distinguish itself from tra-
ditional routing approaches [1, 2, 3, 6, 7, 9]. First, it embeds
all the nets that should be rerouted concurrently. Second, for
each net to be rerouted, it considers multiple global routing
topologies at the same time. Finally, it is able to determine
exactly the feasibility of solutions; once the generated Bool-
ean function is proven to be unsatisfiable, then we can con-
clude that there is no feasible routing solution at all. The large
SAT problems that result from this rerouting formulation are
solved rapidly using an efficient search-based SAT engine
called GRASP [12].

The rest of paper is organized as follows. Section 2 devel-
ops our new SAT-based incremental rerouting formulation
algorithm called MSDR_ECO. Section 3 illustrates how to
formulate the necessary routing constraints in this SAT style
with a small example. Section 4 presents extensive experi-
mental results showing the performance of MSDR_ECO in
fault reconfiguration applications. Finally, Section 5 offers
some concluding remarks.

2. SAT-Based Incremental Rerouting:
Basic Boolean Formulation
We base our modeling on the island-style FPGA archi-

tecture adopted in CGE [2], SEGA [9], VPR [1] and SDR
[11]. This is one of the most commonly used layout models in
the literature and can be easily adapted to reflect a variety of
commercial FPGAs. An island-style FPGA is comprised of a
two-dimensional array of Configurable Logic Blocks (CLBs),
Connection Blocks (C-blocks) and Switching Blocks (S-
blocks). IO cells reside on the boundary of the array. The rout-
ing capacity of a given FPGA architecture is conveniently
expressed by 3 parameters, [3]. The channel width

 is the number of tracks in a vertical or horizontal channel.
The C-block flexibility is defined to be the number of
tracks that each logic pin can connect to. The S-block flexibil-
ity denotes the number of other tracks that each wire seg-
ment entering an S-block can connect to. In the sequel, we
assume that each routing track is fully segmented. That is,
each wire segment spans only one block.

We configured this general layout model to mimic the
Xilinx XC4000E/X series architecture for some of our
experiments [13]. In this specific FPGA architecture, each
logic pin in one CLB can connect to any tracks in the channel
(i.e.,) and each wire segment entering an S-block can
connect to one track on each of the other three sides (i.e,

) and they take the same track numbers.

A net is a set of CLB and/or IO pins that must be electri-
cally connected, which consists of a source (driver) pin and
one or more sink pins. In case a net has n sink pins, this net
can be further decomposed into n different (source pin, sink
pin) pairs which we call two-pin connections. A global
route of a two-pin connection is a specification of routing

regions that forms an uninterrupted alternating sequence of
C- and S-blocks. In our approach, a global router is allowed
to generate a set of different global routes for each two-pin
connection; each of these will be referred to as a global
route alternative. The detailed route of a two-pin connec-
tion is a set of wire segments and routing switches within
the restricted routing area determined by the global router.
Thus, a detailed router has to assign wire segments and
routing switches following the topology specified by the
global router such that no overlapping of routing resources
among detailed routes of different nets occurs.

In [11], we presented a novel FPGA detailed routing for-
mulation method using Boolean Satisfiability (SAT). The
basic idea was that we construct a set of Boolean functions
representing routing constraints over the entire FPGA, and
invoke an Boolean SAT solver on the generated function to
find any satisfying assignments. Finally the found SAT
solution determines precisely a full FPGA detailed routing
solution. Our new, incremental router, MSDR_ECO (Mul-
tiple-paths Satisfiability-based Detailed Router for Engi-
neering Change Orders) is based on an extended
formulation that targets only incremental change. Thus, we
assume that an FPGA detailed routing solution is already
given, and we need to perturb some minimal fraction of the
current solution to finalize the perturbed connections.

For each two-pin connection that should be perturbed,
the existing routing solution is ripped up first, and then a
global router produces a set of individually feasible global
route alternatives. Of course, when considering all per-
turbed nets concurrently, not all of these promising global
alternatives can survive due to detailed route conflicts we
will subsequently discover. MSDR_ECO then considers
the current detailed routing solution as well as the multiple
global route alternatives per each target two-pin connection
to generate a Boolean routability function which cap-
tures all the possible routing constraints over the existing
routing solution simultaneously. Finally, a Boolean SAT
solver is invoked on the routability function to determine if
there exists any legal detailed routing solution.

Our Boolean routability function , where is a
suitable Boolean vector of binary variables that encode the
track number for each two-pin connection, can be
expressed as the conjunction where:

• Liveness constraint function guarantees that at
least one global route alternative per two-pin connec-
tion should be chosen as a final legal routing solution.

• Exclusivity constraint function ensures that elec-
trically distinct nets with overlapping vertical or hori-
zontal spans in the same channel are always assigned
to different tracks.

The remainder of this section describes each procedure
of the overall algorithm in detail.

W Fc Fs, ,
W

Fc

Fs

Fc W=

Fs 3=

R X()

R X() X

R X() L X() E X()∧=

L X()

E X()

561

1. Global routing: Given i) target FPGA architecture
information, ii) a detailed routing solution, and iii) a
set of target two-pin connections to be rerouted, a glo-
bal router assigns a set of n global route alternatives for
each two-pin connection, where n is defined by a user.
The method of generating global routes per two-pin
connection is an independent procedure from the
detailed routing formulation. In our implementation,
we used a standard maze router algorithm [8].

2. Routing constraint formulation: Liveness and
exclusivity constraint are generated to yield the rout-
ing constraint Boolean function in conjunctive
normal form. We walk through a detailed example in
the next section.

3. Routing constraint evaluation: A Boolean SAT
solver is invoked to find a satisfying assignment for

 or to show that is unsatisfiable (i.e., iden-
tical to “0”). Any satisfying SAT solution can be re-
interpreted as a legal FPGA detailed routing solution.

3. SAT-Based Rerouting: Detailed Constraint
Formulation Example
The transformation of routing constraints into a Boolean

SAT problem is illustrated in Figure 1 with a simple example.
Figure 1 (a) shows the existing detailed routing solution. We
assume that each horizontal/vertical channel has 3 different
tracks numbered 0, 1, 2. Bold lines in routing channels repre-
sent wire segments already taken by other nets. We have two
target two-pin connections A and B, as shown in Figure 1 (b).
For the two-pin connection A, two different global route alter-
natives (AG1 and AG2) will be considered simultaneously.
For contrast, only one global route alternative BG1 will be
considered for the two-pin connection B. As a first step of the
transforming procedure, one Boolean vector is assigned to
each global route alternative, labeled AG1, AG2 and BG1
respectively. These Boolean vectors each comprise a set of
Boolean variables encoding a possible track number assigned
to the corresponding two-pin connections. In addition, one
Boolean variable is assigned to each global route alternative,
labeled bAG1, bAG2 and bBG1, and these Boolean variables
determine whether the corresponding global route alternative
is included in a final routing solution. The liveness and exclu-
sivity constraint functions are generated from these Boolean
variables, and the geometry of the global route alternatives.
One liveness constraint CNF clause is formed for each target
two-pin connection, which is a disjunctive form of all the
Boolean variables corresponding to global route alternatives.
In this way, at least one of global route alternatives is forced
to be chosen as a final routing solution. In the possible case
where multiple global route alternatives are selected as part of
a final routing solution, the user (or a simple post-processor)
can select the most desirable individual solution from among

them. Exclusivity constraints prevent any routing resource
from being overused by different nets; there are two types of
exclusivity constraints:

• Background-path avoidance: this is the case when a
global route alternative for a target two-pin connection
overlaps with an existing detailed routing path. For
example, a global route alternative AG1 in the connec-
tion block C3 and C4 should not be assigned track
number 2. Thus . These constraints take the
simple form of a vector-constant inequality.

• Potential-path avoidance: this is the case when two

R X()

R X() R X()

C6

0
CLB1

0 1 2 0 1 2

0
1
2

1
CLB9

0
1
2

C1 C2

C7

C12C11

C3 C4 C5

C8 C9 C10

S1 S2

S3 S4

Target two-pin connection:

(a) Current detailed routing solution

Global route alternatives:
AG1 = (CLB1 pin0, C3, S1, C4, S2, C7, S4, C12, CLB9 pin1)
AG2 = (CLB1 pin0, C3, S1, C6, S3, C9, S4, C12, CLB9 pin1)

(b) Target connection and global route alternatives

Liveness constraints:

Exclusivity constraints:

(c) Liveness & Exclusivity constraints

Routing Solution:

Net B = (BG1 = 0 or 2)

(d) Routing solution

L X() bAG1 bAG2∨() bBG1()∧=

E X() bAG1 AG1→ 2≠[] bAG1 AG1→ 0≠[]∧ ∧=

R X() L X() E X()∧=
Final routability Boolean function:

Net A = (AG1 = 1)

CLB4 CLB6
0 0

A = (CLB1, pin0) => (CLB9, pin1)
B = (CLB4, pin0) => (CLB6, pin0)

CLB2 CLB3

CLB5

CLB7 CLB8

BG1 = (CLB4 pin0, C8, S3, C9, S4, C10, CLB6 pin0)

bAG2 AG2→ 0≠[] bAG2 AG2→ 1≠[]∧ ∧

bBG1 bAG2∧() BG1→ AG2≠[]

Figure 1. Example of generating routing constraints
Boolean function.

bAG2 AG2→ 2≠[] bBG1 BG1→ 1≠[]∧ ∧

AG1 2≠()

562

different global route alternatives from different nets
have overlapping connection blocks. For example, the
global route alternative AG2 of a net A and alternative
BG1 of net B have overlapping C-block C9. Thus

. These constraints take the simple form
of an inequality between two Boolean vectors.

Both types of exclusivity constraints are, however, enforced
only when the corresponding global route alternatives are
selected as part of a final routing solution. Thus, every exclu-
sivity constraint takes the implication form with the corre-
sponding Boolean variable such as .

Between global route alternatives from the same net, how-
ever, no exclusivity constraints are constructed (for example
AG1 and AG2 in C-block C3). In this way, they might share
the same track in the channel, which is a perfectly legal rout-
ing solution. The final routing constraint function is
just a conjunction (logical “AND”) of all the liveness and
exclusivity constraint functions represented in CNF forms.
Figure 1 (d) shows the possible routing solution re-interpreted
from the SAT solution. It says net A should take the global
route alternative AG1 and the assigned track number in the
region is 1; and, net B can take either track number 0 or 2.

4. Experimental Results
We tested the effectiveness of the MSDR_ECO rerout-

ing tool under the FPGA fault reconfiguration scenario
described in [6,7]. In the first set of experiments, up to 4 phys-
ical faults were assumed to be detected on CLBs which are
already mapped into. Reconfiguration proceeds by first relo-
cating the logic elements in the faulty CLBs into nearby,
unused, defect-free CLB positions, and then incrementally
rerouting only the necessary connections without affecting the
logical functionality of original design. In [6,7], it is assumed
that there exists one spare (unused) CLB per row, reserved for
a fault reconfiguration. Thus only one fault was allowed per
row of CLBs. For MSDR_ECO, however, no such special
fault model is assumed; faults can happen in any CLB. Also
no extra logic cells were reserved for reconfiguration. Thus,
as long as there exist some unused CLBs, MSDR_ECO will
try to reconfigure.

It is difficult to compare the performance between [6,7] and
MSDR_ECO exactly, because [6,7] use SEGA [9] for the
original detailed routing task, while MSDR_ECO uses VPR
[1]. For the target circuits in our experiment, VPR produces
more compact detailed routing solutions than SEGA, requir-
ing 43.72% less tracks per channel. Thus, it can be fairly
claimed that MSDR_ECO performs reconfigurations in a
denser and more difficult environment, with less geometric
“slack” for use during rerouting, than [6,7].

The key metrics considered important here are track
overhead and reconfiguration time. As mentioned in Section
2, MSDR_ECO is able to consider multiple global routing
alternatives per connection. For this experiment, maximum 5

different global route alternatives were considered for each
connection. All experiments were conducted on a SUN Ultra
Sparc-2 running SunOS with 1 Gb of physical memory, and
GRASP [12] is used as a SAT solver. The results of the first
experiment are shown in Table 1.

• The first two columns describes our benchmark cir-
cuits with the number of two-pin connections.

• Column 3 and 4 specify how each circuit mapped into
its target FPGA: the size of the overall CLB array, and
the CLB utilization. The higher the CLB utilization is,
the more difficult the reconfiguration is because a
smaller number of spare logic resources are available.

• Columns 5 to 7 summarize the rerouting performance
of the overall MSDR_ECO flow. Initial detailed rout-
ing solutions from VPR [1] are shown in column 5. Col-
umn 6 gives the actual track count required to achieve
successful fault reconfiguration. This number is aver-
aged over 40 separate random trials, with up to 4 CLB
faults/trial. Column 7 shows the reconfiguration CPU
time per fault in seconds.

• The number of two-pin connections perturbed through
this experiment varies from 5 to 35, and they account
for 0.96% to 5.74% of the original nets (on average
3.65%).

Even with a more liberal fault model, MSDR_ECO was
able to successfully reconfigure for up to 4 faults with
minor routing track overhead in negligible time.

Of course, delay is also a critical concern for any routing
perturbation. We are not yet considering this directly. We
do know that for all these cases, incremental rerouting did
not increase the maximum wire length of the given circuits.
Thus, at least the solution is not dramatically meandering

AG2 BG1≠()

bAG1 AG1 2≠()→[]

R X()

 Table 1. Performance for first fault reconfiguration
experiment with MSDR_ECO.

Circuit FPGA MSDR_ECO

Name
#2pin
conns

Size of
CLB

Arrays

%
CLB

utiliza
tion

Tracks
required

Reconfigu
ration

time/fault
Before
ECO

After
ECO

9symml 259 9 x 9 86.42 5 6.48 1.33

apex7 300 11 x 11 63.64 5 6.08 0.76

C499 312 10 x 10 74.00 6 7.50 2.00

C880 656 14 x 14 88.78 7 8.50 3.27

C1355 312 10 x 10 74.00 6 7.65 1.13

example2 444 19 x 19 33.24 6 7.08 2.56

k2a

a. For circuit k2, only up to 3 CLB faults were tried, because there are only
3 unused CLBs before ECO.

1257 19 x 19 99.16 10 12.33 4.91

term1 202 8 x 8 84.38 5 6.23 0.78

too_large 519 13 x 13 87.58 7 8.80 4.01

vda 722 15 x 15 92.44 8 9.85 3.42

Average 6.5 8.05 2.42

563

the perturbed wires. However, we have not yet assessed the
impact on any actual critical paths. This is clearly an area
for closer examination for this approach; in general, it
appears that the timing impact is dominated not only by the
density of the local routing, but also by the proximity of
nearby spares in the CLB lattice.

One drawback of this first experiment is that, in any
practical situation, we have a fixed set of available routing
resources, known for our target FPGAs in advance. In other
words, the main interest is to know whether designs can fit
into target FPGAs or not, rather than to optimize the num-
ber of routing resources used. In our second experiment, we
employed a Xilinx XC4000X series architecture [13] and
similar fault reconfiguration simulations were performed with
practical-sized benchmark circuits. In this experiment, a small
portion of the tracks (5 tracks, globally, which was the worst
case track overhead in the first experiment) were reserved in
advance for the possible fault reconfiguration in the future. In
other words, initial detailed routing was performed by VPR
with 5 less tracks than those available in XC4000X series.
Then, MSDR_ECO completed fault reconfigurations assum-
ing up to 4 different CLB faults can occur at random positions.

Table 2 describes results of the second experiment. The
first 4 columns describe the benchmark circuits, size of CLB
array, usage % of CLBs, and number of two-pin connections.
The next column is the average reconfiguration time per fault
in seconds, and the final column shows the average number of
two-pin connections that were incrementally rerouted. The
results were collected after 40 random fault injection trials per
circuit. It is not surprising that the reconfiguration times per
fault are quite larger than those in the first experiment because
the sizes of circuits considered are also far larger. Yet, it seem
clear that 5 extra global tracks were large enough to accom-
modate 4 CLB faults per case and every case was successfully
fault-reconfigured within a few minutes. As before, we know
that the length of the longest wire does not increase, but not
the specific delay impact. Especially for dense, realistic archi-

tectures, ensuring timing closure after rerouting may require a
different track overhead.

Overall, we regard these as very satisfactory results. The
Boolean SAT-based routing formulation approach seems be a
suitable method of attack for ECO applications which require
some small solution perturbation. With advanced SAT solver
technology, it was possible to consider multiple global route
topologies per connection concurrently, which appears to pay
off in reducing the demand for setting aside spare routing
resources.

5. Conclusion
In this paper, we described a new strategy for FPGA incre-

mental rerouting, using ideas from Boolean SAT. Experi-
ments with injecting small sets of random faults and
reconfiguring the routing as necessary suggest the viability of
this approach. Preliminary results are encouraging: we have
been to able to reconfigure up to 4 different CLB faults per
circuit with modest routing resource overheads in negligible
time. Unaddressed as yet is the large-scale impact on timing.
However, this seems possible by carefully restricting the
allowable alternative global routing paths, and adding extra
constraints that structurally prohibit excessively long path
detours.

6. References
[1] V. Betz and J. Rose, “VPR: A New Packing, Placement and

Routing Tool for FPGA Research” , the 7th Annual Workshop
on Field Programmable Logic and Applications, 1997.

[2] S. Brown, J. Rose, and Z. Vranesic, “A Detailed Router for
Field Programmable Gate Arrays,” IEEE Trans. on CAD, pp.
620-628, vol. 11, no. 5, May 1992.

[3] S. Brown, R. Francis, J. Rose, and Z. Vranesic, Field Pro-
grammable Gate Arrays, Kluwer Acad. Publishers, 1992.

[4] R. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation” , IEEE Trans. on Computers, pp.677-691, 1986.

[5] J. Cong, J. Fang and K.-Y. Khoo, “An Implicit Connection
Graph Maze Routing Algorithm for ECO Routing,” Proc.
IEEE/ACM ICCAD, Nov. 1999.

[6] S. Dutt, V. Shanmugavel and S. Trimberger, “Efficient Incre-
mental Rerouting for Fault Reconfiguration in FPGAs,” Proc.
ACM/IEEE ICCAD, Nov. 1999.

[7] F. Hanchek and S. Dutt, “Methodologies for Tolerating Cell
and Interconnect Faults in FPGAs,” IEEE Trans. on Comput-
ers, vol. 47, no. 1, Jan. 1998.

[8] C. Lee, “An Algorithm for Path Connections and Its Applica-
tions,” IRE Transactions on Electronic Computers, 1961.

[9] G. Lemieux, S. Brown, and Z. Vranesic, “On Two-Step Rout-
ing for FPGAs”, ISPD, pp. 60-66, April 1997.

[10] C. Lin, K.-C. Chen, S.-C. Chang and M. Marek-Sadowska,
“Logic Synthesis for Engineering Change,” the 32nd ACM/
IEEE Design Automation Conference, June 1995.

[11] G. Nam, K. Sakallah, and R. Rutenbar, “Satisfiability-Based
Layout Revisited: Detailed Routing of Complex FPGAs Via
Search-Based Boolean SAT,” Intl’ Symposium on FPGAs, Feb.
1999.

[12] J. Silva and K. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability” , IEEE Trans. on Computers, vol.
48, no. 5, May 1999.

[13] http://www.xilinx.com/partinfo/databook.htm.

 Table 2. Fault reconfiguration on
Xilinx XC4000X-Style FPGAs

Circui
t

CLB
Size

CLB
Usag

e

#2-pin
Conns

Reconfig
Avg Time/

Fault

ECO
Avg

#nets

alu4 28 x 28 97% 4235 17.6 16.07

apex2 31 x 31 92% 5405 7.71 16.43

apex4 26 x 26 80% 3604 9.91 19.97

bigkey 54 x 54 27% 5064 8.31 16.73

diffeq 28 x 28 96% 3986 5.45 20.60

dsip 54 x 54 22% 3872 10.14 23.90

misex3 27 x 27 89% 3984 6.40 20.30

seq 30 x 30 85% 4986 8.84 19.70

tseng 23 x 23 91% 2764 3.56 21.40

564

