
330 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991

KOAN/ANAGRAM 11: New Tools for
Device-Level Analog Placement

and Routing
John M . Cohn, Member, IEEE, David J . Garrod, Student Member, IEEE, Rob A. Rutenbar,

Senior Member, IEEE, and L. Richard Carley, Senior Member, IEEE

Abstract-This paper describes KOAN and ANAGRAM 11, new tools
for device-level analog placement and routing. A block place-and-route
style from macrocell digital IC’s has recently emerged as a viable
methodology for the automatic layout of custom analog cells. In this
nuIcroceU style, parameterized module generators produce geometry for
individual devices, a placer arranges these devices, and a router embeds
the wiring. However, analog layout tools that merely apply known digital
macrocell techniques fall far short of achieving the density and perfor-
mance of handcrafted analog cells. KOAN and ANAGRAM I1 differ
from existing approaches by employing general algorithmic techniques
to find critical device-level layout optimizations rather than relying on a
large library of fixed-topology module generators. New placement algo-
rithms implemented in KOAN handle complex layout symmetries, dy-
namic merging and abutment of individual devices, and flexible genera-
tion of wells and bulk contacts. New routing algorithms implemented in
ANAGRAM I1 handle arbitrary gridless design rules in addition to
over-the-device, crosstalk avoiding, mirror-symmetric, and self-symmet-
ric wiring. Examples of CMOS and BiCMOS analog cell layouts pro-
duced by these tools are presented.

I. INTRODUCTION
WO recent trends have exposed custom analog layout as T a bottleneck in the path from specifications to silicon for

analog cells. The first trend is the growing importance of
mixed-signal ASIC’s. Although an increasing fraction of ASIC
designs requires integration of analog and digital compo-
nents, the analog standard cell libraries used to implement
them often cannot supply all the analog cells necessary for a
given design. The second trend is the emergence of cell-level
analog circuit synthesis tools [1]-[4] which can quickly trans-
form circuit specifications into sized schematics for some
important classes of cells. In both of these design scenarios,
custom analog cell layout is required, which can be a time-
consuming, critical bottleneck.

The problem of custom analog layout has generated con-
siderable interest in the last few years. The critical problems
involve handling analog-specific constraints that render the
layout much more sensitive to low-level geometric choices
than digital cells of similar size. Work to date on analog
layout has included knowledge-based approaches [4]-[6], al-

Manuscript received August l , 1990; revised November 9, 1990. This
work was supported in part by the National Science Foundation under
Grants MIP-8657369 and MIP-8451496, by the Semiconductor Research
Corporation under Contract 90-DC-068, and by Harris Corporation.
J. M. Cohn was supported by the IBM Resident Study Program.

The authors are with the Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.

IEEE Log Number 9041735.

gorithmic techniques for placement [7]-[ll], routing [7]-[13],
compaction [7], [141, procedural device and module genera-
tion [3], [9], [151-[171, and performance constraint generation
[18], [19]. Our interest is algorithmic placement and routing
for custom analog cells. A block place-and-route approach,
which we refer to as the macrocell layout style [3], [7], [SI, has
emerged as a popular candidate for recent analog cell layout
tools: from a netlist, critical primitives (such as matched
devices or complex folded structures) are produced by pa-
rameterized module generators; these primitive blocks are
placed, and then routed. This style is derived from tech-
niques for layout of digital IC’s. Unsurprisingly, many exist-
ing analog cell layout tools borrow heavily from the digital
macrocell style, adapting digital layout ideas to analog prob-
lems.

Our central argument is that certain attributes of this
digital layout style limit its ability to achieve high-quality
analog cell layouts. Some common assumptions that help
manage the complexity of large digital layouts, e.g., a slicing-
style placement [20], the restriction that signal routing be
confined to channels between placed objects, and the exclu-
sive emphasis on minimizing wire length and area, are not
essential for attacking analog device-level layout. In our
experience, these assumptions actually interfere with the
type of low-level optimizations common in manual analog
cell layout. For example, much of the creativity displayed by
analog layout experts involves shaping, folding, placing, and
merging individual devices to achieve dense layouts. In such
high-quality layouts, many connections are achieved by abut-
ment rather than explicit wires, and some fraction of the
remaining wires is routed directly over devices. These opti-
mizations reduce not only layout area, but more importantly,
the device parasitics themselves. In current analog macrocell
systems, such optimizations appear inside procedurally gen-
erated subcircuits, but not between the modules involved in
placement and wiring. Indeed, these systems usually require
a large library of device generator programs, each imple-
menting some common arrangement of basic devices, to
achieve even moderately dense layouts. None of the analog
layout systems of which we are aware can support the more
free-form style of device layout characteristic of expert de-
signs.

This paper presents an alternative macrocell layout style
that permits more of the low-level layout optimizations de-
scribed above. Specifically, we have designed new device
placement and routing algorithms to support the following

O018-92~O/91/0300-0330$O1 .00 0 1991 IEEE

COHN et al.: NEW TOOLS FOR DEVICE-LEVEL ANALOG PLACEMENT AND ROUTING 33 1

(a) (b)

Fig. 1. Comparison of (a) ANAGRAM I comparator layout versus (b) KOAN/ANAGRAM I1 layout.

for analog cells: comparator design, one done by ANAGRAM I, which we
I

Layout symmetries: we handle both symmetric place-
ment and symmetric detailed routing for differential
circuits, including those with nonsymmetric components.
This supports, for example, the layout requirements for
a symmetric differential signal path and its associated
nonsymmetric biasing circuitry.
Decice merging / abutment : we permit individual devices
to be merged and abutted during placement. This not
only increases cell performance, because of reduced
parasitics, but also increases layout density, because the
placer can now arrange devices into complex merged
structures that are unlikely to be present in a library of
module generators.
Well merging and bulk contacts: we generate merged
wells, and well and substrate contacts. This is required
since the placed no longer assumes that these structures
are completely fixed at the time of device generation.
Over-the-deuice wiring : we do not restrict signal wires to
be routed in channels between placed devices; instead,
we allow wires to traverse devices at designer discretion.
The router can handle arbitrary design rules on wires,
use portions of placed devices as wiring, and does not
require electrical terminals to be restricted to the
perimeter of devices.
Crosstalk auoidance: we model elementary capacitive
coupling between signal nets, including simple shielding
effects, and use these in the router to coerce embedded
wires to avoid potentially damaging crossings or adja-
cencies.
Integrated rip-up/reroute: we allow the router to rip up
existing paths to improve wiring in densely placed, highly
merged/abutted cells. This significantly increases the
router’s reliability by nearly eliminating its sensitivity to
the order in which nets are routed.

We arrived at this set of layout requirements based on
fabrication experiences with high-performance CMOS cells
designed using our first-generation analog layout system,
ANAGRAM I [8], [21]. These features are implemented in a
new placement tool called KOAN, and a new router called
ANAGRAM 11. The layout results in Fig. 1 illustrate most
clearly the differences between these first- and second-gen-
eration tools. Shown are two cell layouts for the same CMOS

_ ,

regard as fairly typical of first-generation macrocell-style
tools, and the other done by KOAN and ANAGRAM 11.
The layout generated by our new place-and-route tools is
approximately one third the size of the earlier layout.

The remainder of the paper describes the architecture of
these new layout tools. Section I1 describes the new device
generation and placement algorithms used in KOAN. Sec-
tion 111 next describes the new routing and path optimization
algorithms used in ANAGRAM 11. Some program imple-
mentation details for these tools are given in Section IV.
Example results, including automatically generated CMOS
and BiCMOS cells, appear in Section V. Finally, Section VI
offers some concluding remarks.

11. ANALOG DEVICE PLACEMENT I N KOAN
A. Basic Architecture

KOAN is a device-level analog placement tool that sup-
ports symmetric placement, device merging, and abutment
routing. KOAN consists of a set of procedural device genera-
tors, a device placer, and a well/substrate generator. In this,
it architecturally resembles other analog macrocell layout
systems 131, [4], [7]-[9]. It differs from these tools, however,
in its ability to selectively overlap modules to reduce para-
sitic capacitance and cell area by appropriate sharing of
geometry. Our strategy contrasts with other schemes in which
such geometry sharing can only occur within the boundaries
of procedurally-generated modules. This allows KOAN to
exploit a potentially richer variety of geometry sharing alter-
natives than the few static topologies embodied in a typical
procedural module generator library.

This strategy also strongly affects the design of the place-
ment algorithms in KOAN: details about design rules, elec-
trical connectivity, parasitic minimization, wells, etc., must be
dealt with during placement, since they are not fixed during
procedural device generation. Our placement strategy, like
some device placers [7], [8], is based on simulated annealing.
However, the annealing formulation is considerably more
complex, given the new density and electrical performance
optimizations we require it to support. KOAN employs a
post-placement well generation strategy based on elementary
computational geometry methods. These are described be-
low.

332 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991

B. Procediiral Device Generation

KOAN has a library of procedural device generators,
distinguished mainly by its small size. The library currently
consists of two generators, one for folded FET’s and the
other for nonprecision capacitors. In an attempt to match
the performance of hand crafted layouts, the common sub-
circuit layout structures that make up the bulk of typical
generator libraries, e.g., cascode structures, matched differ-
ential pairs, and so forth, are created, during placement, by
combining primitive devices. Since device generators are
tedious to construct and maintain, we hope this approach
will reduce the size of generator libraries, and encourage
designers to implement new generators only for a smaller set
of special-purpose structures unlikely to be found algorithmi-
cally. e.g., interdigitated cascode structures [7].

For each given set of electrical requirements, our genera-
tors produce several layout variants. For example, MOS
devices are generated with a varying number of folds, varying
contact locations, etc. The placer then chooses the variant
that best fits the geometric and electrical requirements of
the evolving layout.

Allowing the placer to merge and abut individual devices
has several consequences on the design of device generators.
First, the resultant device layouts are no longer opaque to
the placer; they cannot be represented as simply a rectangle
with terminals on its perimeter. Our generators supply to the
placer detailed geometry for all electrical terminals that may
subsequently participate in merge/abutment decisions. These
include, for example, MOS drain, source, gate, and well
contact geometry. Another consequence is that device gener-
ators cannot generate fully specified wells. If these are fixed
at generation time, they adversely limit the flexibility of the
placer to merge and abut devices. Hence, we generate those
features that do not compromise the placer, for example,
abutting substrate contacts on well-tied or rail-connected
devices. The wells themselves are handled separately, in a
post-processing phase after device placement or routing as
described in subsection D.

C. Placement by Annealing

KOAN borrows from ANAGRAM I the idea of using a
flat, nonslicing annealing model [22], [23] for device place-
ment. Alternative approaches [3], [7] that adopt a slicing
constraint have employed existing algorithms to handle block
placement [24] and block shape (generated device variant)
selection [25]. However, the slicing assumption is undesirable
in our application for two reasons. First, it limits the set of
reachable layout topologies, an effect most easily seen when
the layout consists of many small objects, or objects with a
wide variation in size [8]. Second, and more importantly, it
prohibits us from reaching layouts where devices overlap in
desirable ways. In the flat annealing style, intermediate states
of the evolving layout can have arbitrary overlaps among
movable devices. We use this as the mechanism to discover
arbitrarily complex merged structures. One consequence of
the flat style is that our placer produces an absolute, and not
a relative (topological) placement. Hence, the placer is re-
sponsible for ensuring that there is sufficient wiring space for
the router.

Simulated annealing [26] is a general optimization strategy
based on iterative improvement with controlled hill climbing.

This hill climbing allows annealing strategies to avoid many
local minima in a complex cost surface, and reach better
global solutions. To characterize KOAN’s device placement
strategy, we need to describe the four components of any
annealing-based optimizer: 1) the representation for interme-
diate states of the layout visited during iterative improve-
ment; 2) the set of allowable moues that transform one
intermediate state of the layout to the next; 3) the cost
function used to evaluate the quality of each intermediate
layout; and 4) the cooling schedule used to control hill
climbing.

Because it does not assume a slicing structure, KOAN
uses a simple representation for evolving layouts. KOAN
manipulates a set of rectilinear objects moving among arbi-
trary locations in a two-dimensional plane. Placeable objects
can overlap in arbitrary ways as annealing proceeds. A bin
hashing scheme is used to improve the performance of the
overlap calculation as in [23].

One trade-off in any annealing-based layout algorithm is
whether the responsibility for “good” layouts is embedded
primarily in the choice of moves, called the moueset, or in
the choice of cost function. KOAN relies mostly on its cost
function to find good analog layouts. We do not employ
moves that specifically seek to merge devices, to abut them,
to share well contacts, etc. In our preliminary experiments,
move sets that emphasized such specialized moves were
consistently inferior to schemes that favored more random
moves and a sophisticated cost function. The one important
exception is that device symmetry and matching are sup-
ported directly in the move set. KOAN supports three classes
of moves: relocation moves, reshaping moves, and group
moves.

Relocation moues can translate, rotate, mirror, or swap
devices. Three classes of analog constraints are maintained
during all relocation moves.

1) Symmetry constraints reduce the effect of parasitic
mismatch in differential circuits. Devices with symmetry con-
straints are always relocated to new symmetric positions.
Single devices with symmetry constraints must slide along a
symmetry line that bisects the evolving placement. Pairs of
devices with symmetry constraints are always relocated in
mirrored positions about this symmetry line. Such constraints
have been handled elsewhere by adopting a slicing style [71.
However, because of its flat annealing formulation, arbitrary
symmetries on arbitrary devices are especially easy to handle
in KOAN.

2) Matching constraints force a common gate orientation
(and overall device shape; see the discussion on reshaping
moves below) on different devices. These help to reduce the
effect of processing-induced mismatches.

3) Topological constraints allow the circuit designer to fix
some aspects of the placement, while the placer handles the
remainder. For example, individual device locations can be
fixed in either one or both dimensions, or constrained to one
of the edges of the layout or to its symmetry line. Likewise,
cell terminals can be fixed in location, allowed to slide along
one of the layout edges, or constrained to be symmetric to
allow the resulting layouts to be abutment routed when
placed side to side.

Reshaping moues replace one procedurally generated vari-
ant of a device with a different variant. This is how malleable
devices are refolded, terminal contacts realigned, and so
forth. To our knowledge, these sorts of alterations have only

COHN et ai.: NEW TOOLS FOR DEVICE-LEVEL ANALOG PLACEMENT AND ROUTING 333

been used to date for cell area minimization [3], [7], [25]. In
contrast, we allow the iterative improvement process to se-
lect any variant, not just the area-minimizing variant, be-
cause such perturbations may improve many different as-
pects of the layout. For example, a reshaped device might
better merge with another device, thus reducing a critical
nodal capacitance. As with the relocation moves, symmetry
and matching are also enforced. If one device in a matched
or symmetric group is reshaped, its companion devices are
similarly reshaped.

Group moues extend the idea of moves for individual
devices to moves for complex merged structures incorporat-
ing an arbitrary number of devices. Because we seek to
encourage formation of dense merged/abutted device
groups, it is essential that merged objects, once formed, be
free to participate as a single unit in the same placement
transformations as individual devices. It is also important to
be able to dissolve such structures, by relocating one or more
constituent devices sufficiently far to prevent interaction.
The rationale here is the need to explore many different
possible group mergings to prevent suboptimal groups from
freezing too early in the annealing process. Group moves
and single-device moves are handled uniformly. The process
can be summarized as follows:

1) Randomly select a placed device D,. Check to see if D,
is part of a larger group structure. Any set of devices
G = {D,, D,; . ., D,; * ., Dk} that can be reached by
traversing merged or abutted geometry constitutes such
a group.

2) Randomly select one of the possible relocation moves
{translate, rotate, mirror, swap}, or the reshaping move.

3) If reshaping was selected, replace device D, with one
of its generated variants. If D, was part of a group,
make a random binary decision either to a) align the
new device variant so that it preserves the same overlap
with its previously merged neighbors, or b) make no
local adjustment.

4) If instead a relocation move was selected, randomly
choose a subset of devices in the group, M G G . All
devices in M participate in this move. Note that M
might contain only device D,, it might contain several
devices, or it might be all of group G .

5) Apply the selected relocation to all devices in M . Note,
if a swap was selected, identify another device E,, and
repeat step 4 to find a target set of devices with which
to swap M . Maintain symmetry/matching if any mem-
bers of the group have these constraints.

Step 3 is the one exception to the general rule that moves do
not target specific optimizations. Since reshaping a device in
a merged structure is highly disruptive, we have found that
occasional attempts to properly align the new device in its
local environment are more likely to cause beneficial shape
changes to be accepted. This allows variants with similar
contact placement to be interchanged without disturbing
existing merges.

Much of the sophistication required to reach dense highly
merged placements is embodied in K 0 A ” s cost function,
which is given by the following weighted sum:

cost = woOverlap + w , Area + w2 AspectRatio +
w3NetLength + w,Proximity + wsMerge

where the w, are experimentally chosen weights. The anneal-

ing process searches among different layout configurations to
minimize this cost function. Some of these terms are familiar
from digital macrocell placers. However, other terms are
new, and all have been reformulated to handle analog-specific
concerns.

The Overlap term penalizes illegal overlaps (measured as
overlap areas) among devices. Recall that the placer has
access to detailed geometry in each movable device. Part of
each generated device is a protection frame that determines
how closely distinct devices can be placed. The protection
frame for each generated device accounts for the design-rule
distances that must be maintained around the perimeter of
each device. Space for wires to be embedded is also main-
tained, using a simple variant of the adaptive halos mecha-
nism from [231. Wiring space is allocated around each device
depending on its size and number of wiring terminals. As
devices are moved during annealing, an illegal overlap occurs
if protection frames overlap, i.e., two pieces of electrically
distinct geometry overlap, or are closer than design rules or
wire space estimates allow. This term of the cost function
must be driven to zero to ultimately produce a feasible
layout. The Area term penalizes the total bounding box area
of the placement. The AspectRatio term penalizes deviation
from the desired aspect ratio R , and has the form (RCurrent

The NetLength term is the familiar sum of estimated
lengths for each net. However, it is critical to use the right
length estimator. Note that the detailed geometry represent-
ing terminals of nets to be wired may be large relative to
individual devices, or the overall cell itself. Hence, estimators
such as the half-perimeter of the least bounding rectangle of
these terminals, or the length of a minimum rectilinear
spanning tree connecting the centers of these terminals, can
be extremely inaccurate. Instead, we construct the minimum
rectilinear spanning tree that touches any piece of geometry
in each electrically distinct terminal, and use its length as our
estimator. This estimator also has the essential property that
when the placement process merges the geometry of previ-
ously distinct terminals, the predicted net length to connect
those terminals is zero.

The Proximity term allows designers to improve matching
by encouraging arbitrary (possibly unconnected) devices to
cluster. Devices in such proximity groups are modeled as
having a dummy net connecting their respective centers. The
Proximity term is the weighted sum of these dummy net
lengths.

The Merge term is perhaps the most interesting part of the
cost function. It can be regarded as the complement of the
Overlap term: whereas Overlap penalizes overlaps that cause
electrical violations, Merge rewards overlaps that are electri-
cally beneficial. KOAN supports a flexible model of what
geometry can be merged: roughly speaking, if two pieces of
geometry on different devices are electrically common, and
on compatible layers, they can be overlapped as far as the
other prevailing design rules allow. Note that the notion of
compatible layers is technology specific, and must be speci-
fied in the technology file. Fig. 2 shows examples of possible
geometry sharing for a typical BiCMOS process.

- Rdesired)2*

The Merge term is formulated as
Merge = Care,(TotalMergeableArea - TotalMergedArea)

+ CPer,,(TotalMergeablePerimeter

- TotalMergedPerimeter 1.

I

334 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991

Fie. 2. Geome
I I _ L

for typical BiCMOS process. (a) MOS gate abutment. (b) MOS diffusion sharing. (c)
BJT guard-ring merging. (d) MOS metal abutment routing. (e) MOS substrate contact sharing. (f) Capacitor contact sharing.

2

v sharing sumortei

(b)

Fig. 3. Merge metric calculation. (a) Unmerged geometry, with more
area and larger perimeter. (b) Merged geometry, with smaller area and

perimeter.

Overlaps and abutments among compatible and electrically
connected pieces of geometry do not count toward the Ouer-
lap penalty, since they are not electrically illegal. The total
area of these mergable electrical terminals is the constant
TotalMergeableArea. Similarly, the total perimeter of these
terminals is the constant TotalMergeablePerimeter . To-
talMergedArea and TotalMergedPerimeter , in contrast, change
as devices are relocated to share differing amounts of geom-
etry. Note that in the presence of no merges or abutments,
TotulMergedArea and TotulMergedPerimeter are each zero,
hence the Merge term is simply a constant overhead on the
cost function. However, when merges occur, the terms mea-
suring merged area/perimeter increase, decreasing the
Merge penalty, and the overall cost of the layout. This is
illustrated in Fig. 3. The overall effect of minimizing the
Merge term is to maximize the sharing of geometry by

maximizing allowable overlaps and shared perimeter. Since
parasitic capacitance is directly proportional to such overlaps
and perimeters, this term has the direct effect of minimizing
such parasitics, when the per-unit-area (Cur,,) and per-unit-
perimeter (CPerrm) capacitance scaling factors are set appro-
priately.

The cooling schedule is the policy that controls hill climb-
ing during annealing. The placement must be “heated” to a
high temperature to allow many random placements to
evolve, then carefully “cooled” to allow the desired structure
of the placement to freeze out. In the hot regime of anneal-
ing, moves that substantially increase the cost function are
tolerated (again, to jump out of the local minima), but as the
placement is cooled, fewer disruptive moves are permitted.
There has been considerable progress of late in automating
the decisions involved during cooling. We employ the auto-
matic schedule from [27]. It is worthwhile to note that the
individual terms in the overall cost function each dominate a
different phase of the cooling process. In other words, the
cost function itself is fixed, but the terms comprising it tend
to freeze at different temperatures. Early in the annealing,
the Overlap term forces illegal random overlaps to disap-
pear. Later, the NetLength and Proximity terms encourage a
good relative arrangement of devices. As the placement
cools further, the Merge term starts to coerce desirable
sharing of geometry, and finally the Area term causes the
overall layout to shrink as much as possible.

Fig. 4 shows how all the new features of KOAN come into
play. Three KOAN layouts are shown for a differential
op amp with 11 devices and 12 nets. Fig. 4(a) shows a
placement generated without symmetry, and with merging
disabled. Although fairly dense, the nonsymmetric placement
of the input-stage devices would likely increase the offset
voltage. Fig. 4(b) shows a placement with symmetry, but
again no merging. Notice, however, that not all components
had symmetry constraints. This is not much smaller than the
previous layout, but essential symmetries are now enforced
for those devices that require it. This result is typical of other

I

I

COHN et al.: NEW TOOLS FOR DEVICE-LEVEL ANALOG PLACEMENT AND ROUTING

(C)

Fig. 4. Impacts of symmetry, device merging in a simple op amp. (a)
Symmetry and device merge/abutment disabled. (b) Symmetry enabled,
device merge/abutment disabled. (c) Both symmetry and device

merge/abutment enabled.

macrocell systems [SI. Fig. 4(c) shows a placement generated
when both symmetry and merging are enabled. This layout is
appreciably smaller (about 10%) and also much more typical
of a handcrafted placement. In particular, the dense area at
the top left is a symmetric, folded, five-way merged group of
devices, which is a very compact solution. We believe it is
unlikely that such a complex structure would be available as
a single parameterized cell in a typical macrocell library.
Nevertheless, KOAN was able to discover and optimize this
structure automatically.

D. Well Generation

Correct handling of wells and associated geometry pre-
sents problems during both device generation and device
placement. In most analog placement systems, wells and
associated geometry are created when devices are generated.
For example, in ANAGRAM I, each device was created with
an appropriate bulk contact, well, and guard ring. In addi-
tion to being overly conservative, this approach wasted space,
created extra bias routing, and precluded dynamic device
merging. Hence, we have adopted an alternative approach in
which most well geometry is generated after devices have
been placed or routed. An exception to this is well- and
bulk-connected devices. By examining the input netlist dur-
ing device generation, we detect when the source of an FET

335

Fig. 5. Symmetric comparator with generated wells and bulk diffu-
sions.

is connected to the same potential as its bulk. For these
devices, we generate appropriate bulk contacts and abut
them to the device’s source. In this way, no additional
routing is required for bulk biasing. We then allow bulk
contacts to participate in contact merging during placement.
This allows bulk contacts on different devices to merge into
one contact shared by the merged devices. While merging
bulk contacts does not present a significant parasitic advan-
tage, it does improve layout density and simplify device
wiring. Note also that while we do not force a segregation of
n- and p-channel devices during placement (as is done in
some other layout systems [3]), this type of segregation tends
to occur automatically because of the device connectivity.

Well generation proceeds as a series of simple computa-
tional geometry steps such as shrinks, expands, unions, and
intersections on the appropriate layers. For example, wells
are produced approximately as follows. First, we expand the
geometry of the well-bound devices (e.g., the n devices in a
p-well process), find the union of these expanded shapes,
and intersect this unioned region with an expansion of the
geometry of the devices outside this type of well. The com-
plement of this intersection defines all well regions; wells
merge wherever possible in this scheme, which is essentially
that used in [28]. Any well regions that remain floating af-
ter this shapes processing are contacted during routing by
ANAGRAM 11. To reduce the series resistance from the
bulk contacts to other parts of the well and substrate, similar
sequences of steps fill all unused space with the appropriate
low-resistance diffusion straps. It is worth noting that al-
though wells themselves can be generated before or after
routing, we have found it beneficial to generate these low-
resistance diffusion straps after routing, since they can inter-
fere with wire paths that must be routed in polysilicon. Fig. 5
shows a placement for a high-speed CMOS comparator,
along with its automatically generated wells and substrate
contacts.

336 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991

111. ANALOG WIRE ROUTING IN ANAGRAM I1
A. Basic Architecture

ANAGRAM I1 is a detailed general-area router for ana-
log cells. It borrows two critical ideas from the router in its
predecessor, ANAGRAM I: a general-area routing strategy
instead of a channel-routing model, and capacitive crosstalk
penalty functions to encourage intelligent path decisions
about net crossings and adjacencies. Although the sparser
placements produced by first-generation layout tools could
accommodate a channel-routing style (e.g., consider Fig. 11,
the dense, highly merged/abutted placements produced by
KOAN completely preclude such a stylized approach. Our
area-routing strategy incorporates models of capacitive cou-
pling, including simple shielding effects, in its basic evalua-
tion mechanism for paths, allowing path selections to be
coerced by possible interactions with other wired nets.

ANAGRAM I1 also has supports several new features
missing in ANAGRAM I, and the other analog area routers
of which we are aware. The first is the use of a tile-plane
representation [29] for the to-be-routed layout, instead of a
simple coarse grid. This representation supports essentially
arbitrary wiring rules, in particular, over-the-device wiring.
Second, new algorithms have been devised for line-expansion
wire routing in this framework. The major contribution here
is an algorithm for embedding geometrically matched,
crosstalk-avoiding symmetric paths for differential signals.
Third, a new integrated ripup/rerouting strategy has been
designed. During the search for individual segments of wiring
paths, the router can choose at any time to remove an
existing wire. For the dense, highly merged/abutted place-
ments produced by KOAN (or manually by layout experts),
this integrated rip-up and rerouting turns out to be essential:
without the ability to remove embedded nets on demand, it
is often the case that there is no way to embed the next net.
We describe below the tile-based representation used in
ANAGRAM 11, the new line-expansion algorithms for wire
embedding in this framework, and the integrated rip-up/
rerouting strategy.

B. Tile Representation

ANAGRAM I1 represents all placed devices, free wiring
space, and embedded wires in a single-tile-plane data struc-
ture [29]. The tile representation frees us from some of
ANAGRAM 1’s unnatural grid-based limitations on the loca-
tion of devices and their terminals, and on the width and
pitch of individual wires. Because there is no difference
between unused space, wires, and device geometry, the router
can “see” the internal details of devices. This has several
advantages: over-the-device wiring incurs no overhead; pieces
of devices can now themselves be used for wiring paths;
electrical terminals can appear as arbitrary collections of
geometry; and the same crosstalk penalties that accrue to
wire segments can be applied to pieces of placed devices. A
layout representation that supports careful over-the-device
wiring is essential for routing dense placements. For exam-
ple, terminals in some KOAN-generated placements can
appear inside complex merged structures, and simply cannot
be reached without extending a wire over some device geom-
etry.

We use a single tile plane in which each individual tile
represents a unique combination of mask layers. This facili-
tates many operations required by the ANAGRAM 11’s
routing algorithm, most notably the enumeration of all geo-
metric objects within a small region to check for design-rule
and crosstalk violations. During initialization, ANAGRAM
I1 constructs its tile-plane representation from an input
device placement. It then determines the precise location of
all routing terminals. Tile planes, which naturally support
connectivity propagation, prove useful here by allowing the
designer to tag only a small piece of a terminal and rely on
ANAGRAM I1 to maximally expand the terminal to all
connected geometry. During actual wire routing, the tile
plane is employed primarily as a database, i.e., ANAGRAM
I1 continually queries the tile plane for information about
geometric objects within small regions. During routing, new
wires are embedded and existing wires deleted from the tile
plane as needed.

C. Line-Expansion Routing

ANAGRAM I1 is a line-expansion router. For each net to
be embedded, a set of partial paths is maintained, sorted by
cost. The least-cost path is selected, and expanded by prob-
ing incrementally outward from the head of the path. Each
such probe results in a new partial path with a new cost,
which is inserted back into the data structure used to sort the
paths, in our case a heap [30]. The cycle of selecting, expand-
ing, evaluating, and saving partial paths continues until all
electrical terminals of the net have been connected, and no
partial path can be expanded to make the same set of
connections with less cost. The two critical components of
the ANAGRAM I1 router are its expansion strategy and its
path cost function.

Our expansion scheme relies heavily on the underlying
tile-plane representation. ANAGRAM I1 always deals with
exact wiring geometry, hence, each new path segment must
conform to the prevailing design rules concerning width,
pitch, interaction, via spacing, electrical interaction, etc.
Again, the advantage of the tile plane is that it permits us to
support essentially arbitrary wiring rules easily. However, the
tile plane is used mainly for design-rule and electrical con-
nectivity checking. Partial paths themselves are not embed-
ded in the tile plane as they evolve (in contrast to [31]); they
are simply stored in the heap. Only when a final path is
found is the tile plane itself modified to embed the found
path.

Another important algorithmic decision is the length of
each probe attempted during path expansion. Long probes
improve efficiency by allowing large distances to be traversed
in a single step. However, long probes require much more
complex computations to determine the optimal probe length,
especially when an arbitrary number of crosstalk-interacting
wiring layers is allowed. (An efficient scheme for whole-chip
tile-based routing in this style is discussed in [32].) Short
probes are less time efficient, but easily handle the small
jogs, bends, etc., usually needed to reach dense terminals
and avoid crosstalk problems. Our experiments with both
styles favored short, unit-distance probes because of their
simpler computational requirements, and the fact that suc-
cessful probes in dense device placements tend to be short
anyway. The following algorithm summarizes the expansion

337 COHN et al.: NEW TOOLS FOR DEVICE-LEVEL ANALOG PLACEMENT AND ROUTING

process for finding a path from a set of source terminals to
one target terminal:

find-path(source, target)
{

initialize heap to EMPTY;
add source geometry to heap;/*begin with sources as

partial paths*/
/*main routing loop*/
While (least-cost path in heap does not contact target) {

}
expand(path);

1
expand(partia1 -path)
1

/*expand in all connected layers*/
foreach (L in {connected, legal routing layers}){

foreach (D in {each of 3 nonbackward probe
directions})(

p-new =partial-path +new geometry to expand it

if (p - n e w is design rule correct)(
one unit in direction D on layer L;

compute cost of p-new;
add p-new to heap;

1
1

I
/*expand possible contacts*/
foreach (C in {connected, legal contact layers)){

p-new =par t ia lqath + new geometry to add

if (p - n e w is design rule correct)(
a contact to layer C;

compute cost of p-new;
add p-new to heap;

1
1

1
Multipoint nets are handled in the usual fashion by decom-
posing them into a minimum spanning tree of two-point nets.
The full geometry of the current, partially routed multipoint
net serves as the source for the expansion cycle to find the
next two-point connection.

PathCost (P) = SegmentCosts(s)

The cost of a partial path P has two components:

segments s E P

+ Distance (s to target) .

The C SegmentCost(s) term sums the costs of P's con-
stituent rectangular segments. The Distance term estimates
distance from the head of the path P to the final target
geometry, and is used to bias the expansion preferentially
toward the target in the manner of conventional best-first
search approaches 1331. After each expansion, the cost of the
evolving partial path is updated by adding the cost of the
newly expanded segment, and recomputing the Distance
estimate.

Each Segmentcost has the form

Segment-Cost = Wire + Direction + Crosstalk + Rip-up .
The Wire term is proportional to the area of the probed
segment and the designer-specific layer cost. The effect is to
favor short (low area) segments on preferred wiring layers,

I

Fig. 6. Crosstalk models for routing cost function.

e.g., metal instead of polysilicon. The Direction term can be
used to enforce preferred directions on individual wiring
layen. Some routers use this to reduce congestion; our
experience suggests this can be done more effectively with
integrated rip-up and reroute. The Crosstalk term is unique
to both ANAGRAM I1 and its predecessor, ANAGRAM I.
By penalizing partial paths that contain undesirable crosstalk,
we can force the router to search for less costly paths
without undesirable net interactions. Both KOAN and
ANAGRAM I1 allow the designer to specify arbitrary com-
patibility classes for electrical nodes. These classes specify
which subsets of nets, when wired, may cross or be closely
adjacent. For example, designers can define different classes
of sensitive nodes (such as charge storage nodes) and noisy
nodes (such as clocks) that should not interact. In addition,
designers can specify which nodes can serve as potential
shields for these unwanted interactions, for example, supply
lines and some dc bias lines. This generalizes the simple
noisy/sensitive/neutral classification scheme introduced by
ANAGRAM I to handle arbitrary classes of net interactions.
The crosstalk cost estimates the capacitance from a given
probe segment to other unshielded interacting nodes. Simple
capacitance models are used to penalize overlapping nets
and non-shielded parallel runs, as shown in Fig. 6. The result
of using this crosstalk cost during routing is that nets will
attempt to take detours that avoid expensive crosstalk viola-
tions. The final path selected is the one which properly
balances crosstalk cost and wiring cost. The Rip-up term is
used during rip-up and reroute path optimization, and is
described in the following section.

The router also has the unique capability to find symmet-
ric paths for differential signals with symmetrically placed
terminals, even in the presence of arbitrary asymmetric
blockages. Although we are aware of approaches that can
support perfectly symmetric device placement, e.g., [7], we
are unaware of any routers that can complete these place-
ments with perfectly symmetric differential wiring. We model
a differential net as two wires, each of which is exactly
mirrored about an assumed symmetry line bisecting the
layout. Embedding such nets is accomplished by routing one
net of the symmetric pair using the same line-expansion
algorithm described above, but constraining the search pro-
cess to consider only partial paths that would also be legal if
reflected across the symmetry line. A differential net is
expanded twice during the probe process: once for the exist-
ing net's proposed probe, and once for the mirror reflection
of the net and the probe on the opposite side of the symme-
tryline. Of course, the router must be sensitive not only to
design-rule violations on the symmetric net's reflection, but
to crosstalk violations as well. Thus, when routing a symmet-

338 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991

is enabled, the matched paths in Fig. 7(c) are produced; both
wires now make identical layer changes, one to avoid an
obstacle, the other to match it to its companion. If both
symmetry and crosstalk avoidance are enabled, the matched
paths in Fig. 7(d) result; now both wires make a long detour
to avoid the crosstalk violation that results if the rightmost
wire crosses the noisy obstacle wire. Fig. 7(e) shows all four
pins routed as a single self-symmetric net. Note how the two
halves of the net are routed symmetrically and are connected

(b)

at the center line.

D. Integrated Rerouting

Routers that route one net at time are often highly sensi-
tive to the order in which nets are routed. For example, the
currently evolving route cannot predict whether it is using

(e)

Fig. 7. Symmetric crosstalk-avoiding routes. (a) Four symmetric de-
vices, with one asymmetric device and wire. (b) Routed with no symme-
try, no crosstalk avoidance. (c) Routed with symmetry, but no crosstalk
avoidance. (d) Routed with symmetry and crosstalk avoidance. (e) Routed
as a single self-symmetric net, no crosstalk avoidance.

ric net, the crosstalk cost of a segment becomes the sum of
the crosstalk cost of that segment and the crosstalk cost of its
reflection across the symmetry line. Particularly good results
can be achieved when all critically interacting nets are sym-
metric because any crosstalk violations that cannot be elimi-
nated through detours in the routing will be identically
matched on both sides of the signal path. Other approaches,
such as [13], attempt to balance crossing of differential lines
by adding equal-area crossings where necessary. However,
we believe it is likely that superior matching occurs when the
crossings/adjacencies are geometrically identical.

To further exploit the advantages of symmetric crossings.
we have also added a new class of net called self-symmetric.
A self-symmetric net is a single net whose pattern of pins is
identical on both sides of the symmetry line. For example,
this is frequently true of the clock nets in sampled-data
circuits. With the knowledge that a net is self-symmetric, the
router can then apply the symmetric routing algorithm to
find a symmetric route for the individual halves and can
connect the two halves in a symmetric manner by treating
the symmetry line itself as a pin. Thus, the benefits of
symmetric routing can be maintained for a single net whose
function is identical on both sides of the symmetry line.

Fig. 7 shows how all the above features of ANAGRAM I1
come into play. A simple routing problem with a differential
signal path (two pairs of symmetric terminals) is shown,
along with an asymmetric noisy blocking wire. If no differen-
tial symmetry or crosstalk avoidance is enabled, the unbal-
anced paths in Fig. 7(b) result; note that one wire changes
layers, while its companion does not. If differential symmetry

-
space that will critically impact an unrouted net, nor can it
determine that a small change in a previously embedded net
might greatly help the current routing task. This is especially
critical for analog routers that strive to avoid unwanted
parasitic interactions among wired nets. Different net order-
ing schemes have been tried, e.g., routing short sensitive
signals before clock nets, etc., but in general these tech-
niques are highly unreliable, both in achieving 100% net
completions, or perfect crosstalk avoidance. ANAGRAM I1
instead avoids this problem by relying on an aggressive
iterative improvement strategy for routing. The router in
ANAGRAM I routed all nets once, then randomly removed
and rerouted nets until no further improvement was seen. In
contrast, ANAGRAM I1 integrates net rip-up directly into
the path-search mechanism used during line-expansion rout-
ing. The ability to remove any existing net as a new net is
being routed proves to be essential for embedding wires in
dense, KOAN-generated placements. In our experience, such
placements are only wirable after a considerable amount of
net rip-up and rerouting.

This is implemented as follows. Suppose an existing partial
path P is being expanded. Suppose also that a probe with
new wire segments s creates a design-rule violation with a
previously embedded net N . Without any rip-up capability,
we would simply reject segment s, since the new partial path
P + s is infeasible. With integrated rip-up, we allow the path
P + s, but add to it a cost, Rip-up(N), associated with
removing the obstacle net N . This is the Rip-up term in the
SegmentCost for segment s. All partial paths that evolve
from path P + s are penalized by this amount, since they all
include this segment s. Note that a partial path accrues a
cost Rip-up(N,) once for each net N, it needs to remove. In
particular, if some descendant of path P + s also needs to
use space occupied by net N , no additional rip-up penalty is
assessed because it is assumed that the net has already been
removed. The search otherwise proceeds exactly as previ-
ously described. During the search of individual wiring paths,
a wide variety of different net rip-ups may be evaluated.
However, only those associated with the final chosen path
are actually removed. When a final path is determined, the
nets that must be deleted to embed this path are removed
from the tile plane, and scheduled for later rerouting. After
their removal, the newly found path is embedded in the tile
plane.

At any time, nets can be in one of two states: unrouted or
routed. Unrouted nets are ordered in a queue. Nets are
routed (or rerouted) in the order they are appear in the

COHN et al.: NEW TOOLS FOR DEVICE-LEVEL ANALOG PLACEMENT AND ROUTING 339

(C) (d)

Fig. 8. CMOS comparator layouts. (a) Automatic layout with no placement or routing optimization. (b) Automatic layout
with placement optimization only. (c) Automatic layout with both placement and routing optimization. (d) Manual layout.

queue. Initially, the queue is filled with all nets to be routed,
usually ordered with critical nets at the front of the queue.
As nets are routed, the queue empties. As newly routed nets
remove embedded nets, the ripped-up nets are reinserted in
the queue. The reroute policy determines whether such nets
are replaced at the head or tail of the queue. If an eurfy
policy is used, ripped nets are placed at the head of the
queue, and thus immediatly rerouted. This has the effect of
allowing a small set of interacting nets to negotiate their
final placement, rerouting themselves in tight loop. If a lute
policy is used, ripped nets are placed at the end of the
queue, and thus all other unrouted nets are routed first. This
has the effect of allowing a removed net to reroute itself
against the background of space and crosstalk constraints
imposed by currently routed nets. Our experience favors the
late scheme when many crosstalk interactions and terminal
blockages are present in the placement, although with partic-
ularly critical nets it can be desirable to apply the early
policy to these critical nets to ensure that they remain
routed.

Because the routing/rerouting process might never termi-
nate, the cost Rip-up(N) associated with removing net N
cannot remain constant, but must increase as the routing
cycle proceeds. This is handled by associating with each net
N an aging factor A (N) . Each time net N is ripped up, its
rip-up cost is multiplied by its aging factor A (N) . As net N
ages-by being ripped up-its Rip-up cost increases, and it
becomes more costly to remove. This suffices to guarantee
eventual termination of the routing process, even when no

final solution is found. In the beginning of the routing cycle,
net rip-up costs are low, since nets embedded early in the
routing process are more likely to cause congestion problems
for future nets. In difficult routing problems a small set of
critically interacting nets usually emerges and the route
optimization process iterates among these nets for several
cycles. It is during these critical negotiation cycles that the
importance of individual net aging factors becomes apparent:
the net with the larger aging factor emerges from this cycle
with the favorable route, while the other net(s) must compro-
mise.

Route blockages usually occur very near a net’s source or
target. ANAGRAM 11’s integrated rip-up/reroute scheme
can quickly find a path out of a blocked source pin: after a
small amount of search, the router is forced to accept a path
which removes the net, despite its Rip-up cost. However, a
net which blocks the target pin causes difficulties. Here, a
horizon effect 1331 problem forces the router to explore a
nearly endless variety of slightly less desirable paths before
choosing one that removes the relatively expensive blocking
net(s); the router can easily waste a great deal of time or run
out of memory. Fortunately, the designation of source and
target is arbitrary. Thus, ANAGRAM I1 solves its horizon
effect problem by reversing these assignments. Because this
horizon effect often dominates search time, ANAGRAM I1
will actually make three attempts at routing a net. The first
will terminate after a very small amount of search under the
assumption that a horizon effect is impeding the search. The
second attempt will reverse the terminals and search until

I

340 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991

TABLE I
CMOS COMPARATOR PERFORMANCE COMPARISON

Speed is measured as decision time with overdrive corrected for offset.
KOAN ANAGRAM I1 Area Speed

Comparator Place Route (at 3 mV Systematic
Layout Optimized Optimized Overdrive) Offset
Automatic No No 34 272 pm2 25 ns +3.5 mV
(Fig. Na))
Automatic Yes No 24768 p m 2 21 ns +2.7mV
(Fig. 8(bN
Automatic Yes Yes 22 100pm’ 2011s -220 p~
(Fig. 8(cN
Manual - - 15 092ym’ 23 ns -680pV
(Fig. 8(d))

the maximum search depth is reached. If this fails, a final full
depth search using the original terminal order is performed.

IV. IMPLEMENTATION DETAILS
KOAN and ANAGRAM I1 together comprise approxi-

mately 20 000 lines of C code. The only input to the tools is
1) a common SPICE deck netlist [34] with annotations to
control place/route options, and 2) a process-specific tech-
nology file. The SPICE netlist annotations are in the form of
one-line comments which specify device and net symmetries,
matchings, and sensitivities. The technology file is a text file
containing line-by-line keyword/value specifications of
layer-wise spacings, connectivities, extensions, merge com-
patibilities, etc., and is used commonly by both KOAN and
ANAGRAM 11. All communication of layout information
between the tools is in MAGIC format [28], which allows
designers to examine or modify intermediate layout results.
Results presented in the following section were run on a
DECstation 3100 under ULTRIX. Typical placement times
for KOAN average 1 to 45 minutes of elapsed time, depend-
ing on the number of devices and amount of device merging
optimization. Typical routing times for ANAGRAM I1 aver-
age 1 to 45 minutes of elapsed time, depending on the
amount of crosstalk interaction to be managed, and the
density of placed device terminals.

V. LAYOUT RESULTS
To demonstrate the effectiveness of KOAN and ANA-

GRAM I1 in custom analog cell layout, we present four sets
of placed and routed layout examples produced by these
tools. The first example is a high-performance CMOS com-
parator design. This circuit is particularly difficult to lay out,
and was chosen to illustrate how the tools can optimize for
electrical performance. The second and third examples are
typical CMOS op-amp designs that illustrate how circuits
with many large malleable devices can be aggressively opti-
mized for density by our tools. The final example is a
BiCMOS op amp, which illustrates how the tools can be
easily retargeted to different technologies.

Example layouts for the comparator appear in Fig. 8.
Table I summarizes these layouts and the results after para-
sitic extraction and simulation with HSPICE“ [35]. The
circuit is a high-speed regenerative comparator designed in
MOSIS 2-pm p-well CMOS. The circuit has 26 devices and
21 nets, and is difficult to lay out because it has many small
devices (not much smaller than wires themselves), a rela-
tively large number of interconnections, and many potential

(a) (b)

Fig. 9. Small CMOS op-amp layout. (a) Automatic layout with place-
ment and routing optimization. (b) Manual layout.

crosstalk interactions between clocks and sensitive nodes.
Fig. 8(a) shows a very poor automatic layout that makes no
use of the optimization features in either KOAN or ANA-
GRAM 11. No symmetry, merging, or abutment was encour-
aged during placement, and no symmetry or crosstalk avoid-
ance was attempted during routing. As expected, the result is
a slower comparator with a large systematic offset. Fig. 8(b)
shows a better automatic layout. The device placement is
highly optimized, because the placer was allowed to enforce
symmetry and matching, and to merge/abut devices as nec-
essary. However, the routing is as before-no symmetry, no
crosstalk avoidance. The result is better: speed is improved
considerably because of device merges, but there is still a
large systematic offset due to asymmetric routing. Fig. 8(c)
shows a fully optimized result. This is the same placement as
Fig. 8(b), but with fully symmetric, crosstalk-avoiding routing.
This result is the best in terms of speed, and has negligible
systematic offset due to careful routing. Fig. 8(d) shows a
comparable manual layout. The manual layout was aggres-
sively optimized for density, and is 32% smaller than our
best automatic layout. Nevertheless, the best automatic lay-
out has somewhat higher performance due to well-chosen
device merges and careful routing. This example illustrates
the need to consider detailed electrical optimizations during
both device placement and routing.

Layouts for a small CMOS op-amp example appear in Fig.
9. The circuit is a differential op amp designed in MOSIS
2-pm p-well CMOS. The circuit has 11 devices and 12 nets.

COHN et al.: NEW TOOLS FOR DEVICE-LEVEL ANALOG PLACEMENT AND ROUTING 34 1

Fig. 10. Larger CMOS op-amp automatic layout.

Fig. 11. Automatic BiCMOS op-amp layout with placement and
routing optimization.

Fig. 9(a) shows an automatic layout exploiting all the capabil-
ities of the placer and router. Fig. 9(b) shows for comparison
a manual layout done by an industrial layout technician.
Both layouts have essentially identical performance after
extraction and simulation. However, the automatic layout
made a different set of choices for device merging, abutment,
and over-the-cell wiring, resulting in a cell that is actually
20% smaller than the manual design. The areas of the
automatically generated cell and the manually generated cell
were 25872 and 32430 p m 2 respectively.

An automatic layout for a much more complex op amp
appears in Fig. 10. The circuit is also a differential op amp
designed in MOSIS 2-pm p-well CMOS. However, this cir-
cuit has 31 devices and 24 nets. The automatic layout occu-
pies 105876 pm2, and is only 13% larger than a high-quality
manual layout.

As a final example, Fig. 11 shows an automatic layout of a
folded-cascode op amp, now in a 2-pm n-well M O S S BiC-
MOS process. The circuit has 16 devices and 15 nets. The

current mirrors in this op amp are bipolar. A set of charac-
terized bipolar device layouts was imported for use in this
example. The layout tools can import arbitrary manual de-
vice layouts, and combine them with procedurally generated
devices during placement and routing. We also altered the
merging rules in KOAN to recognize and allow merging of
the guard rings around each bipolar device. (Merging of
collectors could also be supported, but does not provide any
advantage in this layout.) Note the high degree of merging,
both guard rings and MOS devices, in the final result. The
layout occupies 41 888 pm2.

VI. CONCLUSIONS
We have described new algorithms for analog device

placement and routing, and their implementation in the tools
KOAN and ANAGRAM 11. Together, these tools support a
more detailed model of analog device layout than other
analog macrocell systems. Several layout capabilities are
unique to these tools, in particular, their reliance on a very
small library of procedural device generators, dynamic merg-
ing and abutment of devices during placement, over-the-
device routing, mirror-symmetric and self-symmetric routing,
and crosstalk avoiding area routing. Preliminary results are
very encouraging. Our recent layouts are considerably smaller
than our earlier attempts, and are beginning to approximate
the density and aesthetics of expert manual designs. More
importantly, our layout algorithms can reliably produce
high-performance layouts. Moreover, we believe the flexible
placement and routing models that underly these tools will
allow us to target new technologies as they emerge. The
extension from CMOS to BiCMOS cell layout, for example,
required only the modification of a few technology rules in
the placer and router. Our current efforts are focused on
improving the communication between the placer and the
router, since it is clear that division of the analog layout task
into sequential placement and routing steps is artificial and
often problematic in very dense layouts.

REFERENCES

[l] M. G. R. DeGrauwe et al. “IDAC: An interactive design tool
for analog CMOS circuits,” IEEE J. Solid-state Circuits, vol.
SC-22, no. 6, pp. 1106-1116, Dec. 1987.

[2] R. Harjani, R. A . Rutenbar, and L. R Carley, “OASYS: A
framework for analog circuit synthesis,” IEEE Trans. Com-
puter-Aided Design, vol. 8, no. 12, pp. 1247-1266, Dec. 1989.

[3] H. Koh, C. Sequin, and P. Gray, “OPASYN: A compiler for
CMOS operational amplifiers,” IEEE Trans. Computer-Aided
Design, vol. 9, no. 2, pp. 113-125, Feb. 1990.

[4] A. H. Fung, D . J. Chen, Y. N. Lai, and B. J. Sheu, “Knowl-
edge-based analog circuit synthesis with flexible architecture,”
in Proc. IEEE Int. Conf. Computer Design, Oct. 1988.

[SI M. Mogaki, N. Kato, Y. Chikami, N. Yamada, and
Y. Kobayashi, “LADIES: An automatic layout system for ana-
log LSI,” in IEEE Int. Conf. CAD, Nov. 1989.

[6] M. Ayal, S. Piguet, M. Declercq, and B. Hochet, “An interac-
tive layout generation tool for CMOS analog IC’s,’’ in Proc.
IEEE Int. Symp. Circuits Syst., June 1988.

[7] J. Rijmenants et al., “ILAC: An automated layout tool for
analog CMOS circuits,” IEEE J. Solid-State Circuits, pp.
417-425, no. 2, Apr. 1989.

[8] D. Garrod, R. A . Rutenbar, and L. R. Carley, “Automatic
layout of custom analog cells in ANAGRAM,” in Proc. IEEE
Int. Conf. CAD, Nov. 1988.

342 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991

[9] E. Berkcan, M. d’Abreu, and W. Laughton, “Analog compila-
tion based on successive decompositions,” in Proc. Design
Automation Conf., June 1988.

[lo] J. Trnka, R. Hedman, G. Koehler, and K. Lading, “A device
level auto place and wire methodology for analog and digital
masterslices,” in ISSCC Dig. Tech. Papers, Feb. 1988.

[l l] S. W. Mehranfar, “STAT: A schematic to artwork translator
for custom analog cells,” in Proc. IEEE Custom Integrated
Circuits Conf., May 1990.

[12] R. S. Gyurcsik and J. C. Jeen, “A generalized approach to
routing mixed analog and digital signals net in a channel,”
IEEE J . Solid-state Circuits, vol. 24, no. 2, pp. 436-442, Apr.
1989.

[13] S. Piguet, F. Rahali, M. Kayal, E. Zysman, and M. Declercq,
“A new routing method for full custom analog IC’s,” in Proc.
IEEE Custom Integrated Circuits Conf., May 1990.

[14] R. Okuda, T. Sato, H. Onodera, and K. Tamaru, “An efficient
algorithm for layout compaction problem with symmetry con-
straints,” in Proc. IEEE Int. Conf. CAD, Nov. 1989.

[15] H. Onodera, H. Kanbara, and K. Tamaru, “Operational ampli-
fier compilation with performance optimization,” in Proc. IEEE
Custom Integrated Circuits Conf ., May 1989.

[16] J. Kuhn, “Analog module generators for silicon compilation,”
VZSI Design, May 1987.

[17] R. J. Bowman, “Analog macrocell layout generation,” in Proc.
2nd Annual IEEE ASIC Seminar and Exhibit, Sept. 1989.

[181 U. Choudhury and A. Sangiovanni-Vincentelli, “Constraint
generation for routing analog circuits,” in Proc. Design Au-
tomation Conf., June 1990.

[19] J. Y. Lee, “Efficient pole zero sensitivity calculation using
asymptotic waveform evaluation (AWE),” M.S. thesis, Dept.
Electrical Comput. Eng., Carnegie-Mellon Univ., Pittsburgh,
PA, May, 1990.

1201 R. H. J. M. Otten, “Automatic floor-plan design,” in Proc.
19th ACM/IEEE Design Automation Conf., June 1982, pp.

1211 L. R. Carley, “ACACIA, The CMU analog design system,”
CMUCAD Tech. Rep. CMUCAD-89-64, Carnegie Mellon
Univ., Pittsburgh, PA, Nov., 1989.

[22] D. W. Jepsen and C. D. Gelatt Jr., “Macro placement by
Monte Carlo annealing,” in Proc. IEEE Int. Conf. Computer
Design, Nov. 1984, pp. 495-498.

[23] C. Sechen, “Chip-planning, placement and global routing of
macro/custom cell integrated circuits using simulated anneal-
ing,” in Proc. 25th ACM/IEEE Design Automation Conf.. June

261-267.

1%8, pp. 73-80.
[24] D. F. Wong and C. L. Liu, “A new algorithm for floorplan

design,” in Proc. 23rd ACM/IEEE Design Automation Conf..
June 1986, pp. 101-107. ’

[25] L. Stockmeyer, “Optimal orientations of cells in slicing floor-
plan designs,” Inform. Contr., vol. 59, pp. 91-101, 1983.

[26] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp.
671-680, May 1983.

[27] M. D. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, “An
efficient general cooling schedule for simulated annealing,” in
Proc. 1986 IEEE Int. Conf. CAD, Nov. 1986.

[28] J. K. Ousterhout et al., “Magic: A VLSI layout system,” in
Proc. 21st ACM/IEEE Design Automation Conf., June 1984.

1291 J. K. Ousterhout, “Corner stitching: A data-structuring tech-
nique for VLSI layout tools,” IEEE Trans. Computer-Aided
Design, vol. CAD-3, 1984.

[30] E. M. Reingold. J. Nevergelt, and N. Deo, Combinatorial
Algorithms: Theov and Practice. Englewood Cliffs, NJ: Pren-
tice Hall, 1977.

1311 A. Margarino et al., “A tile-expansion router,” IEEE Trans.
Computer-Aided Design, vol. CAD-6, no 4, Apr. 1987.

[32] M. H. Arnold and W. S. Scott, “An interactive maze router
with hints,” in Proc. 25th ACM/IEEE Design Automation
Conf., June 1988.

[33] A. Barr and E. Feigenbaum, Ed., The Handbook of Artificial
Intelligence, Vol. I .

[34] L. W. Nagel, “SPICE2: A computer program to simulate semi-
conductor circuits,” ERL Memo ERL-M520, Univ. of Calif.,
Berkeley, May 1975.

1351 HSPICE User’s Manual, Meta-Software Inc., Campbell, CA,
1987.

Los Altos, CA: W. Kaufman, 1981.

John M. Cohn was born in New York City in
1959. He received the B.S.E.E. degree from
the Massachusetts Institute of Technology,
Cambridge, in 1981.

From 1981 until the present he has worked
at IBM’s General Technologies Division, Es-
sex Junction, VT, in the area of analog CAE
tool development. In 1988 he was admitted
to the IBM Resident Study Program, which
has allowed him to attend Carnegie Mellon
University, Pittsburgh, PA. He is currently a

Ph.D. candidate in the Department of Electrical Engineering. His
current research is in the area of analog layout automation. He is
the author of the KOAN analog placer.

David J. Garrod was born in New York City
in 1963. He received the B.S.E.E. degree
from the University of California at Davis in
1985 and the M.S.E.E. degree from Carnegie
Mellon University, Pittsburgh, PA, in 1987,
where he is currently completing work for the
Ph.D. degree in electrical and computer engi-
neering. His research has concentrated on
the area of layout algorithms for analog cir-
cuits. Specifically, he is the author of ANA-
GRAM I and 11.

Rob A. Rutenbar (S’77-M’84-SM’90) re-
ceived the B.S. degree in electrical and com-
puter engineering from Wayne State Univer-
sity, Detroit, MI, in 1978, and the M.S. and
Ph.D. degrees in computer engineering
(CICE) from the University of Michigan, Ann
Arbor, in 1979 and 1984, respectively.

In 1984 he joined the faculty of Carnegie
Mellon University, Pittsburgh, PA, where he
is currently an Associate Professor of Electri-
cal and Computer Engineering, and of Com-

puter Science. His research interests include VLSI layout algo-
rithms, parallel CAD algorithms, and applications of automatic
synthesis techniques to V U 1 design, in particular, synthesis of
analog integrated circuits, and synthesis of CAD software.

Dr. Rutenbar received a Presidential Young Investigator Award
from the National Science Foundation in 1987. At the 1987 IEEE-
ACM Design Automation Conference, he received a Best Paper
Award for work on analog circuit synthesis. In 1989, he was Guest
Editor of a special issue of IEEE Design & Test. In 1990 he received
the Benjamin Teare Award for Excellence in Teaching from the
College of Engineering at CMU. He is a member of ACM, Eta
Kappa Nu, Sigma Xi, and AAAS.

L. Richard Carley (S’77-M’84-SM790) re-
ceived the S.B. degree from the Mas-
sachusetts Institute of Technology (MIT),
Cambridge, in 1976 and was awarded the
Guillemin Prize for the best EE undergradu-
ate thesis. He remained at MIT where he
received the M.S. degree in 1978 and the
Ph.D. degree in 1984.

He has worked for MIT’s Lincoln Labora-
tories and has acted as a consultant in the
area of analog circuit design and design au-

tomation for Analog Devices and Hughes Aircraft among others. In
1984 he joined Carnegie Mellon University, Pittsburgh, PA, where
he is currently an Associate Professor of Electrical and Computer
Engineering. His research is in the area of analysis, design, auto-
matic synthesis, and simulation of mixed analog/digital systems.

Dr. Carley received a National Science Foundation Presidential
Young Investigator Award in 1985, and a Best Paper Award at the
1987 Design Automation Conference.

