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Abstract 
High-performance speech recognition is extremely 
computationally expensive, limiting its use in the mobile 
domain. We therefore propose a low-power hardware speech 
recognition architecture for mobile applications, exploiting 
the orders-of-magnitude efficiency improvements dedicated 
hardware can offer. Our system is based on the Sphinx 3.0 
software recognizer developed at Carnegie Mellon University, 
capable of large-vocabulary, speaker-independent, 
continuous, real-time speech recognition. We show through 
cycle-accurate simulation that our hardware, targeting the 
backend search stage of recognition, is capable of recognizing 
speech from a 5,000 word vocabulary 1.3 times faster than 
real-time, within a 196mW power budget. 
Index Terms: hardware, search, speech recognition, low 
power, circuit 

1. Introduction 
The very best software speech recognition systems are 

now approaching their ultimate goal—large-vocabulary, 
continuous, speaker-independent, real-time speech 
recognition. While accurate, however, these systems are 
extremely computationally intensive, requiring the full 
processing resources of a modern desktop to run in real-time. 
Such heavy computational requirements either rule out many 
applications for speech recognition, or require making 
tradeoffs in accuracy. In particular, low-power or mobile 
applications are some of those where one might want high-
quality speech recognition most—and also those for which 
orders-of-magnitude performance improvements would be 
necessary. 

One solution to this problem is to migrate speech 
recognition algorithms from the software-only domain into 
hardware. Such an approach has proved extremely effective 
for other tasks, most notably computer graphics. Indeed, 
application-specific integrated circuits (ASICs) have been 
shown to allow exactly the orders-of-magnitude performance 
improvements required in this instance [1]. 

Recognizing this, there have been several prior efforts to 
implement speech recognition in hardware. These efforts, 
however, are either quite dated [2], limited in performance or 
scope [3,4], or do not consider power consumption [5]. In this 
paper we therefore propose a low-power hardware search 
architecture to achieve high-performance speech recognition 
in silicon. We base our hardware architecture on the 
successful Sphinx 3.0 software speech recognizer [6]. 

The organization of this paper is as follows. In the 
following section we provide a brief background to the 
Sphinx 3.0 software recognizer, before presenting our 
hardware architecture in Section 3. In Section 4 we discuss 
simulation results for this architecture, with particular 
emphasis on performance and power consumption. Finally, in 
Section 5 we make some concluding remarks. 

2. Background 
We choose the Sphinx 3.0 software speech recognizer as a 
reference for our low-power hardware architecture. Sphinx is 
a well-known research system developed at Carnegie Mellon 
University, utilizing continuous Hidden Markov Models 
(HMMs) to recognize speech, which it processes in 10ms 
frames. While more recent versions of Sphinx exist, these 
trade accuracy for performance, making Sphinx 3.0 better 
suited to our purposes. 

The Sphinx recognizer may be conveniently broken down 
into three processing stages—feature extraction, Gaussian 
scoring and backend search. In feature extraction, input 
speech is digitized and undergoes a series of DSP operations 
to produce a 39-element feature vector for each frame. 
Gaussian scoring processes this feature vector using a 
Gaussian Mixture Model (GMM), yielding a corresponding 
set of senone scores. Finally, in the backend search stage, the 
Viterbi search algorithm is performed, in consultation with a 
large trigram language model, to obtain a word hypothesis. 

Prior studies [3,5,7] profiling Sphinx have shown that of 
the three stages identified above, feature extraction processing 
is negligible, whereas backend search may account for up to 
75% of the processing effort in Sphinx 3.0 [5]. Furthermore, 
each of these studies identify memory access as a major 
bottleneck in the throughput of speech recognition systems. 
Accordingly, we concentrate on developing a low-power 
architecture for the backend search stage in the remainder of 
this paper, with a particular focus on efficient memory access. 

With regard to Sphinx backend search, we note that here 
too three distinct phases may be identified—Viterbi scoring, 
transitioning, and language model consultation. Viterbi 
scoring calculates HMM state probabilities, transitioning 
combines HMMs to form words, while language model 
consultation combines words according to the trigram model. 
We later rely on this division for our hardware architecture. 

Two datasets are also of particular importance in backend 
search. These are the HMMs currently being considered for 
recognition (which we call the active HMM list), and the word 
lattice, which stores potentially recognized words. Together, 
these two datasets completely specify the state of the Sphinx 
recognizer at any given time. Indeed, HMM-based speech 
recognition in Sphinx may be thought of as simply evolving 
the state of these datasets on a frame-by-frame basis. 

Since active HMM list and word lattice data are both read 
and written, we will refer to these as dynamic data—by 
contrast with the large amounts of read-only model data 
required for recognition, which we will refer to as static data. 
With these definitions in mind, we now move on to present 
our hardware architecture. 

3. Architecture 
In this section we propose a low-power hardware architecture 
for the computationally complex backend search component 



of HMM-based speech recognition. We begin first, however, 
with a brief discussion of our design goals. 

3.1. Goals 

The primary goal of our hardware architecture is to 
implement the Sphinx 3.0 backend search, with negligible 
impact on accuracy, at least real-time performance, and 
minimal power consumption. To put power consumption in 
perspective, we consider modern cell phones, a likely 
platform for speech recognition. Typical power budgets for 
these devices are around 3W, the majority of which is used 
for transmission. Sources within the cell phone industry have 
suggested any feature requiring more than 5-10% of this 
power budget (150-300mW) would be difficult to justify. 
Ideally, we would like to see power consumption in the range 
of 100mW. 

Furthermore, there are considerations other than accuracy, 
speed and power that apply to a mobile system. As both cost 
and physical size are under great pressure in this domain, any 
hardware speech recognition system should keep chip area to 
a minimum. For the same reasons, off-chip resources such as 
external SRAM, DRAM or Flash will be limited, as will 
bandwidth and access to those (potentially shared) resources. 

Finally, we require that our hardware speech recognition 
system be scalable. Firstly, a system must be able to scale in 
terms of the size recognition task it can handle; we consider 
vocabularies in the order of 5,000-60,000 words. Secondly, a 
system able to scale well given different power and 
performance constraints is also desirable. 

3.2. Architecture Motivation 

As discussed in Section 2, the state of the recognition process 
in any given frame is completely specified by two datasets—
the active HMM list and the word lattice. We note that the 
active HMM list: 

• Is sufficiently large to require off-chip storage. 
• Requires the greatest bandwidth of any data accessed 

during recognition, yet must be read and written with 
equal measure. 

• Contains the data that “drives” the recognition process.  
 
The word lattice, by comparison, is small and infrequently 

accessed. This suggests a hardware architecture based on the 
following approach: (1) stream active HMM data on-chip; (2) 
process each active HMM in turn to yield a new set of active 
HMMs, in much the same way a conventional processor 
would process instructions; (3) stream these off-chip again. 
There are two main advantages to this approach. 

First, since active HMM data is read sequentially, it is 
possible to hide much of the latency in accessing this data, 
while also taking advantage of burst access modes provided 
by memories such as DRAM. Second, since it is always 
possible to look ahead to unprocessed active HMMs, accesses 
to much of the static speech model data needed to process an 
active HMM can be effectively scheduled, reducing latency. 

It turns out such an approach is feasible, with one small 
piece of additional machinery. Previously, we identified three 
main phases in the Sphinx back-end recognition process—
Viterbi scoring, transitioning, and language model 
consultation. While the Viterbi scoring and transitioning 
phases may be cast in a form suitable for operating on 
streamed HMMs, the language model phase requires random 
access to active HMM data. To circumvent this, we introduce 
a new dynamic memory structure, the patch list, which 
accepts HMM data from the language model [8,9]. This data 

is then combined with (or patches) active HMMs during the 
scoring phase of the following frame. 

3.3. Proposed Architecture 

The inputs to our proposed architecture are senone scores 
generated by Gaussian scoring, and the output a word 
hypothesis. The architecture is based around three processing 
engines, corresponding to the three Sphinx backend 
recognition phases. These are the scoring engine, the 
transition Engine, and the language engine respectively. 
Figure 1 illustrates our proposed architecture. 

Figure 1: Proposed low-power architecture. 

Communication between the three processing engines is 
achieved via the three dynamic memories in the design—the 
active HMM list, the word lattice, and the patch list. The 
active HMM list links the scoring and transition engines, the 
word lattice links the transition engine and language model 
(while storing likely recognized words), and the patch list 
links the language model back to the scoring engine. The 
active HMM list is stored in DRAM, while the word lattice 
(managed by the lattice controller) and patch list (managed by 
the patch controller) are small enough to reside in on-chip 
SRAM. 

Recognition of a frame of speech in our hardware 
architecture proceeds as follows. The scoring engine first 
reads in active HMMs from the previous frame, calculates 
new state probabilities for each using the current senone 
scores, and writes these back to DRAM. Each newly scored 
HMM is then read by the transition engine, where it is either 
pruned, written back to DRAM alone, or written back to 
DRAM with any additional HMMs to which it may transition. 
While processing each active HMM, the transition engine 
notes any that complete a word, and generates a word lattice 
entry if necessary. These word lattice entries are then used by 
the language engine to determine which words should 
continue to be considered. Data for such words are entered 
into the patch list, and used to update the active HMM list 
during scoring of the next frame. 

Thus far, we have only discussed dynamic memory in our 
architecture. There remains the large quantity of static speech 
model data required by each processing engine to perform its 
task. As shown in Figure 1, this is stored in either on-chip 
SRAM, or external flash memory for the trigram language 
model (due to its size). For a standard 5,000 word benchmark 
[10], on-chip SRAM requirements are 11.7Mbit, divided 
amongst 46 individual SRAMs—certainly a large amount, but 
not without precedent in today’s technologies. The six largest 
on-chip SRAMs account for 8.8Mbit of this total. 

 



For the same 5,000 word benchmark, the trigram 
language model requires 21MByte of external flash memory. 
In order to efficiently locate trigrams within this memory, we 
employ a novel cuckoo hashing technique [11]. Two hash 
functions are used, with two bins per hash. We choose CRC 
codes [12] as hash functions since these may be calculated 
extremely efficiently in hardware. 

4. Results and Analysis 
We begin this section by briefly discussing our design 
methodology and some implementation details for our 
architecture. We then evaluate our design in terms of 
accuracy, performance, and power consumption. 

4.1. Design Methodology 

In implementing our architecture we have several, somewhat 
conflicting goals. Firstly, we are concerned with accuracy, 
and in particular an ability to accurately determine recognition 
speed and power consumption. Accordingly, we decided on a 
register-transfer level (RTL) implementation. Secondly, we 
desire the ability to modify our design with relative ease in 
order to explore different architectural tradeoffs. Thirdly, we 
must be able to simulate large datasets. Finally, we would like 
a design methodology that offers a clear path to creating 
(eventually) a real logic-level netlist. Weighing these, we 
chose to implement our architecture using SystemC, since: 

• SystemC provides many features useful in modeling our 
design with a high degree of accuracy, e.g., clocks, 
register-like data structures. 

• As SystemC is simply a C++ library, existing C++ 
simulator code could be made use of. 

• Simulation is relatively fast (compared to, say, Verilog). 
 
While choosing to work at the register-transfer level does 

have an impact on the flexibility of our simulator, this 
provides significant advantages in terms of accuracy, and in 
later moving to an actual hardware implementation (i.e. 
Verilog). Unfortunately, logic synthesis directly from 
SystemC is not a particularly mature process at this time. 

In the remainder of this section, we present results based 
on simulation of speech selected from the 5,000 word Wall 
Street Journal (WSJ) corpus [10], of which we simulate 
approximately one hour, or a little under 400,000 frames. We 
assume a modest clock speed of 100MHz for our simulations. 

Selected implementation details for this design 
configuration are shown in Table 1. 

Table 1. Selected implementation details. 

 Scoring 
Engine 

Transition 
Engine 

Language 
Engine 

State 
Machines 5 5 6 

Pipelines 1 x 4 stage 
1 x 5 stage 1 x 2 stage None 

Register 
Bits 4,230 1,384 2,407 

SRAMs 15 8 20 
SRAM 

Size 7.1 Mbit 960 Kbit 3 Mbit 

Code Size 3,438 lines 1,460 lines 7,534 lines 
 

4.2. Evaluation: Accuracy 

Our design currently yields results identical to the Sphinx 3.0 
software recognizer. We verify this by comparing the contents 
of the two datasets that describe the state of each recognizer—
the active HMM list and the word lattice. For the 5,000 word 
WSJ task we therefore maintain the same word error rate as a 
similarly configured Sphinx 3.0, or 6.707%. 

4.3. Evaluation: Performance 

At our chosen clock speed of 100MHz, we assume at most a 
single on-chip SRAM read and integer arithmetic operation 
may be performed per cycle. We assume 16-bit wide 
interfaces to both DRAM and flash, and model these 
memories after current commercial parts [13,14]. DRAM is 
simulated using DRAMsim [15]. 

Across the one hour of speech simulated, we achieve a 
recognition rate of 0.77x real-time (RT), 1.3 times faster than 
real-time. Alternatively, we run 1.4 times faster than Sphinx 
3.0, with a clock speed 28 times slower, and using vastly 
fewer resources. Access to the active HMM list stored in 
DRAM limits our performance quite severely; if active 
HMMs could be read in a single cycle, our recognition rate 
would increase approximately six-fold. 

During recognition, the active HMM list fluctuates in size 
depending on the current complexity of input speech. 
Typically the active list occupies around 0.4MB; 1MB of 
external DRAM would be sufficient to store 99.99% of all 
active lists encountered. 

4.4. Evaluation: Power 

We estimate the power consumption of our backend search 
architecture by breaking this into its constituent components 
and considering each separately. These components are power 
due to: arithmetic operations; SRAM accesses; DRAM 
accesses; flash accesses; memory controller operations; 
control logic; and clock, register and pin power. We discuss 
each in turn. 

The power consumption of individual arithmetic 
operations is determined by scaling values measured for 
similar operations in 90nm CMOS technology [16]; we then 
simply count operations. The arithmetic involved is not 
particularly complicated—the most complex operation is 6-bit 
constant multiplication—and comes to only 0.43mW total. 
This is in agreement with our earlier assertion that it is 
memory operations that are most important in any hardware 
speech recognition system. 

In stark contrast, the large amount of on-chip SRAM in 
our design is responsible for the majority of power consumed. 
We consider the dynamic and static power contributions of 
SRAM separately. Dynamic power (i.e. power due to reads 
and writes) is based on SRAM compiler output for a 130nm 
CMOS node [17] to which we have access, scaled 
appropriately for 90nm, and comes to only 0.56mW. Using 
Cacti 5.0 [18], however, we find that the static power 
consumed by 11.7Mbit of on-chip SRAM comes to 71mW. 
The six largest static power contributions by individual 
SRAMs are shown in Figure 2. 

External DRAM power is determined in the manner of 
DRAMsim [15] and totals 70mW for our chosen device [13]. 
Flash memory power is determined by considering the 
proportion of clock cycles in which the memory is active, 
while also taking into account burst and sleep modes, and 
totals 11.3mW. We take DRAM controller power to be 
11mW [19]. 

Figure 2: Static SRAM power consumption. 



We assume 10,000 gates of control logic, consuming 
10mW. Clock and register power consumption is determined 
using the method outlined in [16]. Performing this calculation 
for a 100MHz clock and 4,700 total register bits yields a 
result of 12.5mW. We calculate pin power at 9mW [19]. The 
contributions of each power component to the total power 
consumption of our design are shown in Figure 3. 

4.5. Analysis 

In agreement with initial expectations, our results show that 
access to memory is the predominant factor in determining 
both the performance and power consumption of our design. 
In particular, arithmetic operations (i.e. actual computation) 
contribute little to total power. For the 5,000 word WSJ task, 
our proposed design achieved a recognition rate of 0.77x 
RT—40% faster than Sphinx 3.0 on our reference system—
while using vastly fewer resources and reducing power 
consumption by roughly two orders of magnitude. 

At present, our design requires 11.7Mbit of on-chip 
SRAM and consumes an estimated 196mW. While this design 
is certainly not unrealistic given current manufacturing 
technologies, it would be far more attractive with significantly 
less on-chip SRAM, and power consumption closer to 
100mW (recalling again that a full recognizer will require 
power for feature extraction and Gaussian scoring). Of course, 
these problems are related, as static SRAM power makes the 
largest contribution to total power consumption, which 
suggests minimizing on-chip SRAM use to be an important 
future research goal. 

5. Conclusion 
In this work, we proposed implementing the backend search 
for high-performance speech recognition in silicon, in 
particular with mobile applications in mind. We presented a 
first-generation low-power hardware architecture for doing 
so, and simulation results showing such an architecture can 
meet the stringent demands of mobile systems where software 
could never hope to do so. While much research remains in 
this area, we believe a migration to silicon offers the 
possibility of many novel applications for speech recognition 
technology. 
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Figure 3: Power consumption breakdown. 196mW total. 
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