
A Low-Power Hardware Search Architecture for Speech Recognition

Patrick J. Bourke, Rob A. Rutenbar

Department of ECE, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
pbourke@ece.cmu.edu, rutenbar@ece.cmu.edu

Abstract
High-performance speech recognition is extremely
computationally expensive, limiting its use in the mobile
domain. We therefore propose a low-power hardware speech
recognition architecture for mobile applications, exploiting
the orders-of-magnitude efficiency improvements dedicated
hardware can offer. Our system is based on the Sphinx 3.0
software recognizer developed at Carnegie Mellon University,
capable of large-vocabulary, speaker-independent,
continuous, real-time speech recognition. We show through
cycle-accurate simulation that our hardware, targeting the
backend search stage of recognition, is capable of recognizing
speech from a 5,000 word vocabulary 1.3 times faster than
real-time, within a 196mW power budget.
Index Terms: hardware, search, speech recognition, low
power, circuit

1. Introduction
The very best software speech recognition systems are

now approaching their ultimate goal—large-vocabulary,
continuous, speaker-independent, real-time speech
recognition. While accurate, however, these systems are
extremely computationally intensive, requiring the full
processing resources of a modern desktop to run in real-time.
Such heavy computational requirements either rule out many
applications for speech recognition, or require making
tradeoffs in accuracy. In particular, low-power or mobile
applications are some of those where one might want high-
quality speech recognition most—and also those for which
orders-of-magnitude performance improvements would be
necessary.

One solution to this problem is to migrate speech
recognition algorithms from the software-only domain into
hardware. Such an approach has proved extremely effective
for other tasks, most notably computer graphics. Indeed,
application-specific integrated circuits (ASICs) have been
shown to allow exactly the orders-of-magnitude performance
improvements required in this instance [1].

Recognizing this, there have been several prior efforts to
implement speech recognition in hardware. These efforts,
however, are either quite dated [2], limited in performance or
scope [3,4], or do not consider power consumption [5]. In this
paper we therefore propose a low-power hardware search
architecture to achieve high-performance speech recognition
in silicon. We base our hardware architecture on the
successful Sphinx 3.0 software speech recognizer [6].

The organization of this paper is as follows. In the
following section we provide a brief background to the
Sphinx 3.0 software recognizer, before presenting our
hardware architecture in Section 3. In Section 4 we discuss
simulation results for this architecture, with particular
emphasis on performance and power consumption. Finally, in
Section 5 we make some concluding remarks.

2. Background
We choose the Sphinx 3.0 software speech recognizer as a
reference for our low-power hardware architecture. Sphinx is
a well-known research system developed at Carnegie Mellon
University, utilizing continuous Hidden Markov Models
(HMMs) to recognize speech, which it processes in 10ms
frames. While more recent versions of Sphinx exist, these
trade accuracy for performance, making Sphinx 3.0 better
suited to our purposes.

The Sphinx recognizer may be conveniently broken down
into three processing stages—feature extraction, Gaussian
scoring and backend search. In feature extraction, input
speech is digitized and undergoes a series of DSP operations
to produce a 39-element feature vector for each frame.
Gaussian scoring processes this feature vector using a
Gaussian Mixture Model (GMM), yielding a corresponding
set of senone scores. Finally, in the backend search stage, the
Viterbi search algorithm is performed, in consultation with a
large trigram language model, to obtain a word hypothesis.

Prior studies [3,5,7] profiling Sphinx have shown that of
the three stages identified above, feature extraction processing
is negligible, whereas backend search may account for up to
75% of the processing effort in Sphinx 3.0 [5]. Furthermore,
each of these studies identify memory access as a major
bottleneck in the throughput of speech recognition systems.
Accordingly, we concentrate on developing a low-power
architecture for the backend search stage in the remainder of
this paper, with a particular focus on efficient memory access.

With regard to Sphinx backend search, we note that here
too three distinct phases may be identified—Viterbi scoring,
transitioning, and language model consultation. Viterbi
scoring calculates HMM state probabilities, transitioning
combines HMMs to form words, while language model
consultation combines words according to the trigram model.
We later rely on this division for our hardware architecture.

Two datasets are also of particular importance in backend
search. These are the HMMs currently being considered for
recognition (which we call the active HMM list), and the word
lattice, which stores potentially recognized words. Together,
these two datasets completely specify the state of the Sphinx
recognizer at any given time. Indeed, HMM-based speech
recognition in Sphinx may be thought of as simply evolving
the state of these datasets on a frame-by-frame basis.

Since active HMM list and word lattice data are both read
and written, we will refer to these as dynamic data—by
contrast with the large amounts of read-only model data
required for recognition, which we will refer to as static data.
With these definitions in mind, we now move on to present
our hardware architecture.

3. Architecture
In this section we propose a low-power hardware architecture
for the computationally complex backend search component

of HMM-based speech recognition. We begin first, however,
with a brief discussion of our design goals.

3.1. Goals

The primary goal of our hardware architecture is to
implement the Sphinx 3.0 backend search, with negligible
impact on accuracy, at least real-time performance, and
minimal power consumption. To put power consumption in
perspective, we consider modern cell phones, a likely
platform for speech recognition. Typical power budgets for
these devices are around 3W, the majority of which is used
for transmission. Sources within the cell phone industry have
suggested any feature requiring more than 5-10% of this
power budget (150-300mW) would be difficult to justify.
Ideally, we would like to see power consumption in the range
of 100mW.

Furthermore, there are considerations other than accuracy,
speed and power that apply to a mobile system. As both cost
and physical size are under great pressure in this domain, any
hardware speech recognition system should keep chip area to
a minimum. For the same reasons, off-chip resources such as
external SRAM, DRAM or Flash will be limited, as will
bandwidth and access to those (potentially shared) resources.

Finally, we require that our hardware speech recognition
system be scalable. Firstly, a system must be able to scale in
terms of the size recognition task it can handle; we consider
vocabularies in the order of 5,000-60,000 words. Secondly, a
system able to scale well given different power and
performance constraints is also desirable.

3.2. Architecture Motivation

As discussed in Section 2, the state of the recognition process
in any given frame is completely specified by two datasets—
the active HMM list and the word lattice. We note that the
active HMM list:

• Is sufficiently large to require off-chip storage.
• Requires the greatest bandwidth of any data accessed

during recognition, yet must be read and written with
equal measure.

• Contains the data that “drives” the recognition process.

The word lattice, by comparison, is small and infrequently

accessed. This suggests a hardware architecture based on the
following approach: (1) stream active HMM data on-chip; (2)
process each active HMM in turn to yield a new set of active
HMMs, in much the same way a conventional processor
would process instructions; (3) stream these off-chip again.
There are two main advantages to this approach.

First, since active HMM data is read sequentially, it is
possible to hide much of the latency in accessing this data,
while also taking advantage of burst access modes provided
by memories such as DRAM. Second, since it is always
possible to look ahead to unprocessed active HMMs, accesses
to much of the static speech model data needed to process an
active HMM can be effectively scheduled, reducing latency.

It turns out such an approach is feasible, with one small
piece of additional machinery. Previously, we identified three
main phases in the Sphinx back-end recognition process—
Viterbi scoring, transitioning, and language model
consultation. While the Viterbi scoring and transitioning
phases may be cast in a form suitable for operating on
streamed HMMs, the language model phase requires random
access to active HMM data. To circumvent this, we introduce
a new dynamic memory structure, the patch list, which
accepts HMM data from the language model [8,9]. This data

is then combined with (or patches) active HMMs during the
scoring phase of the following frame.

3.3. Proposed Architecture

The inputs to our proposed architecture are senone scores
generated by Gaussian scoring, and the output a word
hypothesis. The architecture is based around three processing
engines, corresponding to the three Sphinx backend
recognition phases. These are the scoring engine, the
transition Engine, and the language engine respectively.
Figure 1 illustrates our proposed architecture.

Figure 1: Proposed low-power architecture.

Communication between the three processing engines is
achieved via the three dynamic memories in the design—the
active HMM list, the word lattice, and the patch list. The
active HMM list links the scoring and transition engines, the
word lattice links the transition engine and language model
(while storing likely recognized words), and the patch list
links the language model back to the scoring engine. The
active HMM list is stored in DRAM, while the word lattice
(managed by the lattice controller) and patch list (managed by
the patch controller) are small enough to reside in on-chip
SRAM.

Recognition of a frame of speech in our hardware
architecture proceeds as follows. The scoring engine first
reads in active HMMs from the previous frame, calculates
new state probabilities for each using the current senone
scores, and writes these back to DRAM. Each newly scored
HMM is then read by the transition engine, where it is either
pruned, written back to DRAM alone, or written back to
DRAM with any additional HMMs to which it may transition.
While processing each active HMM, the transition engine
notes any that complete a word, and generates a word lattice
entry if necessary. These word lattice entries are then used by
the language engine to determine which words should
continue to be considered. Data for such words are entered
into the patch list, and used to update the active HMM list
during scoring of the next frame.

Thus far, we have only discussed dynamic memory in our
architecture. There remains the large quantity of static speech
model data required by each processing engine to perform its
task. As shown in Figure 1, this is stored in either on-chip
SRAM, or external flash memory for the trigram language
model (due to its size). For a standard 5,000 word benchmark
[10], on-chip SRAM requirements are 11.7Mbit, divided
amongst 46 individual SRAMs—certainly a large amount, but
not without precedent in today’s technologies. The six largest
on-chip SRAMs account for 8.8Mbit of this total.

For the same 5,000 word benchmark, the trigram
language model requires 21MByte of external flash memory.
In order to efficiently locate trigrams within this memory, we
employ a novel cuckoo hashing technique [11]. Two hash
functions are used, with two bins per hash. We choose CRC
codes [12] as hash functions since these may be calculated
extremely efficiently in hardware.

4. Results and Analysis
We begin this section by briefly discussing our design
methodology and some implementation details for our
architecture. We then evaluate our design in terms of
accuracy, performance, and power consumption.

4.1. Design Methodology

In implementing our architecture we have several, somewhat
conflicting goals. Firstly, we are concerned with accuracy,
and in particular an ability to accurately determine recognition
speed and power consumption. Accordingly, we decided on a
register-transfer level (RTL) implementation. Secondly, we
desire the ability to modify our design with relative ease in
order to explore different architectural tradeoffs. Thirdly, we
must be able to simulate large datasets. Finally, we would like
a design methodology that offers a clear path to creating
(eventually) a real logic-level netlist. Weighing these, we
chose to implement our architecture using SystemC, since:

• SystemC provides many features useful in modeling our
design with a high degree of accuracy, e.g., clocks,
register-like data structures.

• As SystemC is simply a C++ library, existing C++
simulator code could be made use of.

• Simulation is relatively fast (compared to, say, Verilog).

While choosing to work at the register-transfer level does

have an impact on the flexibility of our simulator, this
provides significant advantages in terms of accuracy, and in
later moving to an actual hardware implementation (i.e.
Verilog). Unfortunately, logic synthesis directly from
SystemC is not a particularly mature process at this time.

In the remainder of this section, we present results based
on simulation of speech selected from the 5,000 word Wall
Street Journal (WSJ) corpus [10], of which we simulate
approximately one hour, or a little under 400,000 frames. We
assume a modest clock speed of 100MHz for our simulations.

Selected implementation details for this design
configuration are shown in Table 1.

Table 1. Selected implementation details.

 Scoring
Engine

Transition
Engine

Language
Engine

State
Machines 5 5 6

Pipelines 1 x 4 stage
1 x 5 stage 1 x 2 stage None

Register
Bits 4,230 1,384 2,407

SRAMs 15 8 20
SRAM

Size 7.1 Mbit 960 Kbit 3 Mbit

Code Size 3,438 lines 1,460 lines 7,534 lines

4.2. Evaluation: Accuracy

Our design currently yields results identical to the Sphinx 3.0
software recognizer. We verify this by comparing the contents
of the two datasets that describe the state of each recognizer—
the active HMM list and the word lattice. For the 5,000 word
WSJ task we therefore maintain the same word error rate as a
similarly configured Sphinx 3.0, or 6.707%.

4.3. Evaluation: Performance

At our chosen clock speed of 100MHz, we assume at most a
single on-chip SRAM read and integer arithmetic operation
may be performed per cycle. We assume 16-bit wide
interfaces to both DRAM and flash, and model these
memories after current commercial parts [13,14]. DRAM is
simulated using DRAMsim [15].

Across the one hour of speech simulated, we achieve a
recognition rate of 0.77x real-time (RT), 1.3 times faster than
real-time. Alternatively, we run 1.4 times faster than Sphinx
3.0, with a clock speed 28 times slower, and using vastly
fewer resources. Access to the active HMM list stored in
DRAM limits our performance quite severely; if active
HMMs could be read in a single cycle, our recognition rate
would increase approximately six-fold.

During recognition, the active HMM list fluctuates in size
depending on the current complexity of input speech.
Typically the active list occupies around 0.4MB; 1MB of
external DRAM would be sufficient to store 99.99% of all
active lists encountered.

4.4. Evaluation: Power

We estimate the power consumption of our backend search
architecture by breaking this into its constituent components
and considering each separately. These components are power
due to: arithmetic operations; SRAM accesses; DRAM
accesses; flash accesses; memory controller operations;
control logic; and clock, register and pin power. We discuss
each in turn.

The power consumption of individual arithmetic
operations is determined by scaling values measured for
similar operations in 90nm CMOS technology [16]; we then
simply count operations. The arithmetic involved is not
particularly complicated—the most complex operation is 6-bit
constant multiplication—and comes to only 0.43mW total.
This is in agreement with our earlier assertion that it is
memory operations that are most important in any hardware
speech recognition system.

In stark contrast, the large amount of on-chip SRAM in
our design is responsible for the majority of power consumed.
We consider the dynamic and static power contributions of
SRAM separately. Dynamic power (i.e. power due to reads
and writes) is based on SRAM compiler output for a 130nm
CMOS node [17] to which we have access, scaled
appropriately for 90nm, and comes to only 0.56mW. Using
Cacti 5.0 [18], however, we find that the static power
consumed by 11.7Mbit of on-chip SRAM comes to 71mW.
The six largest static power contributions by individual
SRAMs are shown in Figure 2.

External DRAM power is determined in the manner of
DRAMsim [15] and totals 70mW for our chosen device [13].
Flash memory power is determined by considering the
proportion of clock cycles in which the memory is active,
while also taking into account burst and sleep modes, and
totals 11.3mW. We take DRAM controller power to be
11mW [19].

Figure 2: Static SRAM power consumption.

We assume 10,000 gates of control logic, consuming
10mW. Clock and register power consumption is determined
using the method outlined in [16]. Performing this calculation
for a 100MHz clock and 4,700 total register bits yields a
result of 12.5mW. We calculate pin power at 9mW [19]. The
contributions of each power component to the total power
consumption of our design are shown in Figure 3.

4.5. Analysis

In agreement with initial expectations, our results show that
access to memory is the predominant factor in determining
both the performance and power consumption of our design.
In particular, arithmetic operations (i.e. actual computation)
contribute little to total power. For the 5,000 word WSJ task,
our proposed design achieved a recognition rate of 0.77x
RT—40% faster than Sphinx 3.0 on our reference system—
while using vastly fewer resources and reducing power
consumption by roughly two orders of magnitude.

At present, our design requires 11.7Mbit of on-chip
SRAM and consumes an estimated 196mW. While this design
is certainly not unrealistic given current manufacturing
technologies, it would be far more attractive with significantly
less on-chip SRAM, and power consumption closer to
100mW (recalling again that a full recognizer will require
power for feature extraction and Gaussian scoring). Of course,
these problems are related, as static SRAM power makes the
largest contribution to total power consumption, which
suggests minimizing on-chip SRAM use to be an important
future research goal.

5. Conclusion
In this work, we proposed implementing the backend search
for high-performance speech recognition in silicon, in
particular with mobile applications in mind. We presented a
first-generation low-power hardware architecture for doing
so, and simulation results showing such an architecture can
meet the stringent demands of mobile systems where software
could never hope to do so. While much research remains in
this area, we believe a migration to silicon offers the
possibility of many novel applications for speech recognition
technology.

6. Acknowledgements
This research was supported by the NSF and the Center for
Circuit & System Solutions (C2S2), one of five centers in the
Focus Center Research Program, an SRC program.

Figure 3: Power consumption breakdown. 196mW total.

7. References
[1] Brodersen, R., “Low-Voltage Design for Portable Systems”,

IEEE Solid State Circuits Conf., Feb. 2002.

[2] Stölzle, A., Narayanaswamy, S., Murveit, H, Rabaey, J.M. and
Brodersen, R.W., “Integrated Circuits for a Real-Time Large-
Vocabulary Continuous Speech Recognition System”, IEEE J.
Solid-State Circuits, 26(1):2-11, Jan. 1991.

[3] Mathew, B., Davis, A. and Fang, Z., “A Low-Power Accelerator
for the SPHINX 3 Speech Recognition System”, Intl. Conf. on
Compilers, Architecture and Synthesis for Embedded Systems,
2003.

[4] Krishna, R., Mahlke, S. and Austin, T., “Architectural
Optimizations for Low-Power, Real-Time Speech Recognition”,
Intl. Conf. on Compilers, Architecture and Synthesis for
Embedded Systems, 2003.

[5] Lin, E.C., Yu, K., Rutenbar, R.A., and Chen, T., “Moving
Speech Recognition from Software to Silicon: the In Silico Vox
Project”, Proc. Interspeech 2006, Sep. 2006.

[6] Ravishankar, M. K., “Efficient Algorithms for Speech
Recognition”, PhD Thesis, Dept. of Computer Science,
Carnegie Mellon Univ., May 1996.

[7] Agaram, K., Keckler, S.W. and Burger, D., “A Characterization
of Speech Recognition on Modern Computer Systems”, Proc. 4th
Workshop on Workload Characterization, Dec. 2001.

[8] Bourke, P.J., “A Queue-Based Architecture for Hardware
Speech Recognition”, M.S. Thesis, Dept. of ECE, Carnegie
Mellon Univ., Aug. 2004.

[9] Bourke, P.J. and Rutenbar, R.A, “A High-Performance
Hardware Speech Recognition System for Mobile
Applications”, Proc. SRC Techcon, 2005.

[10] Pallett, D.S., “A Look at NIST’s Benchmark ASR Tests: Past,
Present, and Future”, Proc. 2003 IEEE Workshop on Automatic
Speech Recognition and Understanding, 2003.

[11] Pagh, R. and Rodler, F.F., “Cuckoo Hashing”, 9th Annual
European Symposium on Algorithms, v.2161 Lecture Notes in
Computer Science, pp. 121-133, Springer-Verlag, 2001.

[12] Peterson, W. W. and Brown, D. T., “Cyclic Codes for Error
Detection”, Proc. IRE, Jan. 1961.

[13] Samsung Electronics, Inc., “K4X28163PH: 8M x 16 Mobile-
DDR SDRAM”, Oct. 2005.

[14] Samsung Electronics, Inc., “K8C5715ETM: 16M x 16
Synchronous Burst, Multi Bank NOR Flash Memory”, Oct.
2006.

[15] Wang, D., Ganesh, B., Tuaycharoen, N, Baynes, K., Jaleel, A.
and Jacob, B., “DRAMsim: A Memory-System Simulator”,
SIGARCH Computer Architecture News, 33(4):100-107, Sep.
2005.

[16] Markovic, D.M., “A Power / Area Optimal Approach to VLSI
Signal Processing”, PhD Thesis, Dept. of EECS, Univ. of
California at Berkeley, May 2006.

[17] TSMC, “0.13µm High-Speed Single-Port Synchronous SRAM”,
1991.

[18] Tarjan, D., Thoziyoor, S. and Jouppi, N.P., “Cacti 4.0”, Tech.
Report HPL-2007-167, Hewlett-Packard Laboratories, Palo
Alto, Oct. 19, 2007.

[19] Horowitz, M., Personal communication, Stanford Univ., Sep.-
Oct. 2007.

