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Abstract
Although Gaussian mixture models are commonly used in 
acoustic models for speech recognition, there is no standard 
method for determining the number of mixture components. 
Most models arbitrarily assign the number of mixture 
components with little justification. While model selection 
techniques with a mathematical derivation, such as the 
Bayesian information criterion (BIC), have been applied, 
these criteria focus on properly modeling the true distribution 
of individual tied-states (senones) without considering the 
entire acoustic model; this leads to suboptimal speech 
recognition performance. In this paper we present a method to 
generate statistically-justified acoustic models that consider 
inter-senone effects by modifying the BIC. Experimental 
results in the CMU Communicator domain show that in 
contrast to previous strategies, the new method generates not 
only attractively smaller acoustic models, but also ones with 
lower word error rate. 

Index Terms: acoustic model training, model selection, BIC, 
Gaussian mixture models 

1. Introduction 
It is common for acoustic models to represent tied-triphone 
states (or senones) with Gaussian mixture models (GMMs). 
For each time frame a feature vector composed of acoustic 
features is computed, and this is then used to calculate senone 
probabilities. Generating an acoustic model of a proper size is 
important for speech recognition performance. If too many 
Gaussian mixture components are used, the acoustic model 
will overfit the training data and require unnecessary 
computational time. On the other hand, if too few mixture 
components are used, there will not be enough resolution to 
model the acoustic complexity or differentiate between 
senones.

While the use of GMMs is widespread, there is no 
consensus on how to determine the optimal number of 
mixture components. To assign a number of mixture 
components to a particular senone, popular methods include 
setting it to an arbitrary constant or a numerical fraction of its 
instances in the training set [1]. However, there is no 
statistical justification for these methods, and the acoustic 
complexity of individual senones is not considered. Another 
approach is to use model selection techniques derived in 
statistics [2], such as the Bayesian information criterion
(BIC) [3], which focus on modeling each individual senone 
accurately. As previously noted [4], this does not consider the 
senone within the context of the entire acoustic model and 
can lead to senone models that encroach onto the space of 
other senones. Discriminant measures to account for 

interactions between senones have been proposed [4] but they 
do not account for acoustic complexity. 

In this paper we introduce a method to generate GMMs 
whose number of mixture components takes into account both 
acoustic complexity and inter-senone effects. We take the 
BIC and add a senone-specific prior on the complexity 
penalty inversely proportional to how often other senones 
encroach on its space. Biem [5] also proposed a change to 
BIC to consider the entire acoustic model, but it was used for 
classifying handwritten digits, a simpler problem with fewer 
states. We test our method in the Communicator domain [6] 
with CMU’s Sphinx 3.0 decoder [7]. Our results show that the 
proposed method generates an acoustic model that has the 
lowest word error rate compared to other common methods 
and only slightly more mixture components used than BIC. 
We also explain why this method allocates mixture 
components more effectively. 

The organization of the paper is as follows. In section 2 
we describe current techniques to generate GMM-based 
acoustic models, and in section 3 we present our proposed 
method. Experimental results and analysis are reported in 
section 4, and conclusions in section 5. 

2. Acoustic model generation methods 
After state-tying to cluster the triphone states into senones, 
the free parameters of a GMM-based acoustic model are the 
means, variances, mixture weights, and the number of 
mixture components. The means, variances, and mixture 
weights are usually calculated using the Baum-Welch 
algorithm or segmental K-means algorithm [8]. Determining 
the number of mixture components is much more difficult, 
and the following are the most common methods. 

2.1. Arbitrary Constant 
In many acoustic models the number of mixture components 
per senone is set to an arbitrary constant. This is usually 
achieved by creating an initial model with one mixture 
component, then iteratively splitting the mixture component 
with the largest mixture weight and re-estimating the model 
parameters until the target number of mixture components is 
reached [9]. This method is the simplest, but it disregards the 
acoustic complexity of individual senones. 

2.2. Proportional to training samples 
Some systems set the number of mixture components per 
senone to be proportional to the number of training set frames 
assigned to the senone, up to a specified maximum [1]. Using 
this method, the number of mixture components for senone X,
denoted as cX, will be 

),/(min MCSDnc XX , (1) 
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where nX is the number of frames assigned to senone X in the 
training set, D is the minimum number of training samples 
required to train a mixture component, and MCS is the 
maximum number of mixture components per senone. D is 
often related to the dimensionality of the feature vector. This 
method requires first using an initial model to segment the 
training data into the optimal sequence of senones, usually 
through Viterbi segmentation. If OX is all the frames assigned 
to senone X, then nX is simply the size of OX. While this 
method ensures each mixture component has sufficient 
training data, the number of times a senone appears in the 
training data does not necessarily correlate with acoustic 
complexity.  

A related method [4] employs a discriminant criterion to 
choose MCS, which is summarized here as follows. The 
number of mixture components is proportional to the training 
set instances, but there are two different values for MCS
depending on how “aggressive” the senone is. The 
aggressiveness of senone X is computed as the average ratio 
of the likelihood of senone X divided by the sum of the 
likelihood of senone X and other senones over OX. If this ratio 
is high, the model of senone X captures the space well. 
However, if the ratio is low, the model for senone X is not 
aggressive enough and other senones have encroached its 
space. Using this ratio the senones are classified into either 
being aggressive or non-aggressive, and the non-aggressive 
senones use a larger MCS value. 

2.3. Model Selection 
Model selection aims to select the GMM whose 
dimensionality best represents the true distribution. Although 
the true distribution is not known, by assuming the 
observations are consistent with the underlying distribution, 
model selection provides a methodical way to maximize the 
likelihood of the training data and simultaneously avoid 
overtraining. Many model selection criteria have been 
proposed in the statistics literature [3], and the most common 
one used in speech recognition is the Bayesian information 
criterion (BIC): 
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where X
j is the jth model for senone X, p(OX | X

j) is the 
likelihood of the data assigned to senone X given X

j, and 
f( X

j) is the number of free parameters in X
j. The BIC is the 

sum of the log likelihood of the data and a complexity penalty 
term, and the model with the largest BIC score will be 
selected. Other information criteria used for model selection 
also include the log likelihood of the data as one term but 
differ on how to penalize for model complexity. The BIC 
compares different models to represent the same senone and 
requires generating GMMs with different numbers of mixture 
components. In some implementations of BIC for acoustic 
model generation, the maximum number of mixture 
components per senone is bounded [8].  

A regularization parameter  was first introduced for 
speech recognition in [2], yielding the form: 
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This added factor helps correct for the fact that the data 
used to train the model may not perfectly represent the 
acoustic space. The same value of  is used for all senones. 
While original (  = 1) BIC may not always produce the model 

with the lowest WER [4], there is no technique to decide a
priori what value of  will minimize the WER. A more 
practical goal for using the regularization term is to adjust the 
size of the acoustic model. Since there are no free parameters 
in (2), only one acoustic model can be generated. For 
applications that are resource-constrained, like embedded 
speech recognition, adding the  term in (3) gives a 
mechanism to generate smaller acoustic models.  

When evaluating senone models, BIC only considers an 
individual senone’s acoustic complexity, not its encroachment 
effect on other senones. This means the chosen model may 
score both its data and other senone’s data with a high 
likelihood, which negatively impact the word error rate. For 
example, consider the decoding of a test sentence by two 
acoustic models in Table 1. Model B has a higher correct 
sentence likelihood than model A because it more accurately 
represents each senone. However, in terms of WER, model B 
is worse than model A because it will decode an incorrect 
sentence since it has a higher likelihood than the correct 
sentence. This simple example illustrates that focusing on 
accurately modeling individual senones is not sufficient; the 
effects of other senones also need to be considered. 

Acoustic
Model

Likelihood of 
Correct Sentence 

Maximum Likelihood 
of an Incorrect Sentence 

A 0.20 0.10 
B 0.50 0.60 

Table 1. Example models and likelihoods of a single test 
sentence.

Overall, BIC models the acoustic complexity and provides 
a statistical justification for the number of mixture 
components. Also, there is at most one free parameter, , in 
BIC for the user to arbitrarily assign. However, when creating 
models for individual senones, the method only compares 
intra-senone models without considering the interaction 
between senones. Inter-senone effects are important because 
they influence speech recognition performance, so using BIC 
does not lead to optimal WER. 

3. Proposed model selection method: mBIC 
Ideally, the acoustic model generated should select numbers 
of mixture components that are statistically justified and also 
account for inter-senone effects. To do this, we propose to 
modify the BIC complexity penalty term to account for the 
effect from other senones, resulting in the following modified 
BIC (mBIC):
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where we define kX as the inter-senone correction factor.
Unlike , a unique kX is calculated for each senone. The factor 
kX can be interpreted as a prior probability proportional to 
how heavily complexity should be penalized, and its value 
should fall between 0 and 1. When kX is equal to 1, mBIC 
simplifies to BIC.  

If the space of senone X in frequently encroached by other 
senones, kX should be close to 0. Reducing the penalty on 
complexity will result in a model with higher likelihood for 
OX and decrease the effects from other senones. Conversely, 
if senone X is rarely affected by other senones, then the 
original BIC formulation is sufficient and the correction 
factor should be close to 1. Since the correction factor can 
only reduce the complexity penalty and never increase it, the 
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acoustic model generated using mBIC will always be larger 
than that using BIC.

We define kX to be the fraction of frames in OX that 
originate from incorrectly-decoded training set sentences and 
where senone X has a lower likelihood than the senone force-
aligned to the frame using the incorrectly-decoded sentence. 
Only frames from incorrectly-decoded sentences are used 
because they have the most significant impact on the word 
error rate. A more complex correction factor could use a ratio 
of the likelihoods, consider correctly-decoded training set 
sentences, or factor in how often a senone encroaches on the 
space of other senones, but we find that our simple definition 
was sufficient to improve performance. 

To generate the acoustic model using mBIC, we follow 
these steps: 

1. Generate an acoustic model by segmenting the 
training data. Create models with different number 
of mixture components. Select models that maximize 
the BIC for each senone. 

2. Decode the training set with the new acoustic model.  
3. Force-align all incorrectly-decoded sentences with 

both the correct transcript and the incorrect sentence 
transcript.

4. For each senone, count the number of frames 
assigned to it by the correct transcript where it has a 
lower likelihood than the senone assigned by the 
incorrect sentence transcript. Divide this by the total 
number of frames assigned to it through force-
alignment with the correct transcript on the entire 
training set to compute the correction factor. 

5. Using the models generated in step 1 and the 
correction factors from step 4, use mBIC to select 
new mixture component numbers and generate the 
final acoustic model. 

6. Re-estimate the means, variances, and mixture 
weights with EM. 

The idea is to augment BIC (steps 1 and 6) with four 
intermediate steps that include inter-senone effects. Note that 
the models generated in step 1 for BIC do not depend on the 
model selection method used, so they can be reused in step 5. 
This is important because creating models with different 
numbers of mixture components is by far the most time-
consuming step. The proposed correction factor can also be 
used to modify the complexity penalty term of other model 
selection methods. Also, as in BIC a regularization factor 
could be added to obtain 

)log()(
2

)|(log)( X
j

XX
j

XX
j

X nfkOpmBIC . (5) 

In summary, the proposed mBIC combines the strengths 
of the discriminant criterion [4] and BIC, without their 
weaknesses. The correction factor is similar to the 
“aggressiveness” factor in the discriminant criterion, but our 
method adds mixture components to senone models in a 
justified, systematic way. Our method builds upon the form of 
BIC, but mBIC considers the entire acoustic model and inter-
senone effects on speech recognition performance. 

4. Experimental results 
Multiple acoustic model generation methods were tested 
using the 2001-word Communicator corpora [6]. The training 
set contains 120,185 utterances totaling slightly less than 68 

hours. A frame size of 10 ms and sliding window of 250 
frames was used, so that the training set had a total of 24.4 
million frames. All acoustic models trained had triphones 
clustered into 2165 senones, and the feature vector was 39 
elements composed of 12 mel frequency cepstral coefficients, 
the log energy, and their first and second derivatives. The 
speech recognizer used was Sphinx 3.0 [7], a flat lexical 
decoder. We use WER to measure speech recognition 
performance.

We compare acoustic models generated by the following 
methods:

Baseline method with arbitrary constant of 32 
mixture components for all senones. 
BIC with no regularization and MCS of 32. 
mBIC with no regularization and MCS of 32. 
BIC with regularization such that the acoustic model 
generated is the same size as the mBIC one, and a 
MCS of 32. This corresponds to  = 0.9765. 
Arbitrary constant of 16 mixture components for all 
senones.

We do not evaluate a model where the number of mixture 
components is proportional to the number of training set 
frames because it would have only been 1% smaller than the 
baseline model when using D = 39. Since only Gaussian 
mixture components with diagonal covariance matrices were 
considered, there are 79 free parameters per mixture 
component (1 mixture weight, 39 means, and 39 variances). 
We use a MCS of 32 for all the methods so none of the 
methods would be able to generate a model larger than the 
baseline model. The average number of components per 
senone, WER, and change in WER for the different models 
are listed in Table 2. 

Method Avg. Comp/Senone WER WER 
Constant (Baseline) 32 14.95 - 

BIC 21.06 15.29 + 2.3% 
mBIC 21.40 14.84 - 0.7% 

BIC,  = 0.9765 21.40 15.10 + 1.0% 
Constant 16 18.14 + 21 % 

Table 2. Comparison of acoustic model generation 
methods.

The proposed mBIC results in a model with not only the 
lowest WER, but it also uses 33% fewer mixture components 
compared to the baseline model. The mBIC model is only 
slightly larger than the BIC model, but it has a 3% better 
relative WER. To show that the improvement is due to the 
algorithm and not the increased number of components, we 
generated a regularized BIC acoustic model to be the same 
size as our mBIC model (second to last row of Table 2); as 
can be seen, mBIC still performs better. 

4.1. Comparison of mBIC and other methods 
In this section we will compare mBIC against the other 
presented methods and try to explain why mBIC produces a 
better acoustic model. 

4.1.1. Arbitrary constant 

Properly representing acoustic complexity is clearly quite 
important. Using an ad hoc arbitrary constant blindly 
allocates the same number of mixture components to all 
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senones, which results in overtrained models and increases 
both the amount of errors and computational time. Both BIC 
and mBIC are able to generate much smaller models with 
nearly as good or better performance than using an arbitrary 
constant.

4.1.2. Proportional to training samples 

This method assumes the acoustic complexity is proportional 
to the number of training set instances per senone. To check 
this, in Figure 1 we plot the number of mixture components 
selected by BIC versus the number of training set examples 
per senone. We use the BIC results because the number of 
mixture components is only dependent on the acoustic 
complexity. For better resolution, we only display the senones 
with less than 45,000 training set instances. We also plot the 
line representing D = 500 as a reference. 
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Figure 1: Plot of number of mixture components as a 
function of training set instances per senones trained 
using BIC, and a line for D = 500. 

In an acoustic model trained with mixture components 
proportional to training set instances using D = 500 and MCS
= 32, the number of mixture components will be the 
minimum of the value on the dotted line and 32. For all the 
senones that are above the dotted line, too few mixture 
components will be used. On the other hand, the senones that 
fall below the dotted line and use less than 32 mixture 
components will be assigned too many mixture components. 
Clearly this does not model the acoustic complexity well, and 
any line with a different D value would not be able to do so 
either. This method is flawed because the relationship 
between training set instances and acoustic complexity is 
more complex than a linear function. Even if multiple MCS
values were used, as with the discriminant criterion, the 
acoustic complexity still would not be fully captured. 

4.1.3. Model selection 

The acoustic models generated with regularized BIC with 
 = 0.9765 and mBIC have the same total number of mixture 

components. They are also similar at the senone level, with 
only 18% of the senones differing in number of mixture 
components. Both start with the same original BIC model, but 
they allocate extra mixture components differently. Since 
regularized BIC applies a global regularization parameter and 
mBIC uses an inter-senone correction factor unique for each 
senone, mBIC is expected to perform better. Our 
experimental results agree, and we further compare BIC and 
mBIC over different acoustic model sizes in Table 3. The 
models were generated by varying the regularization 

parameter in (3) and (5) until the target model size was 
reached. The results show that mBIC consistently 
outperforms BIC. 

Avg. Comp./Senone 12 15 18 
WER of BIC model 16.98 16.00 15.62 

WER of mBIC model 16.75 15.89 15.51 

Table 3. WER of BIC and mBIC with different average 
number of mixture components per senone.

5. Conclusion 
We propose a modification to BIC, mBIC, to generate 
acoustic models whose number of mixture components is 
statistically well-justified. The key idea is to consider inter-
senone effects by introducing an inter-senone correction 
factor, derived from training data, into the BIC model 
complexity penalty term. In our experimental results, we 
show that mBIC has both a lower WER and 33% fewer 
mixture components than the baseline model that uses 32 
mixture components per senone. In addition, it also 
consistently outperforms the BIC method. We also explain 
why mBIC allocates mixture components more effectively 
than other methods. For future work, we plan to study 
whether more complex correction factors can further improve 
speech recognition performance. 
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