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Abstract
Circuit reliability under statistical process variation is an area of
growing concern. For highly replicated circuits such as SRAMs and
flip flops, a rare statistical event for one circuit may induce a not-so-
rare system failure. Existing techniques perform poorly when tasked
to generate both efficient sampling and sound statistics for these rare
events. Statistical Blockade is a novel Monte Carlo technique that al-
lows us to efficiently filter—to block—unwanted samples insuffi-
ciently rare in the tail distributions we seek. The method synthesizes
ideas from data mining and Extreme Value Theory, and shows speed-
ups of 10X -100X over standard Monte Carlo.

1.  Introduction
Circuit reliability under statistical process variation is an area of
growing concern. Designs that add excess safety margin, or rely on
simplistic assumptions about “worst case” corners no longer suffice.
Worse, for critical circuits such as SRAMs and flip flops, replicated
across 10K - 10M instances on a large design, we have the new prob-
lem that statistically rare events are magnified by the sheer number of
these elements. In such scenarios, an exceedingly rare event for one
circuit may induce a not-so-rare failure for the entire system. 

Monte Carlo analysis remains the gold standard for the required sta-
tistical modeling. Standard Monte Carlo techniques are, by construc-
tion, most efficient at sampling the statistically likely cases. Indeed,
classical modifications such as Importance Sampling [1] allow Mon-
te Carlo methods to avoid sampling these unlikely (i.e., unimportant)
events. Ours is the mirror image problem: how can we efficiently
sample only the statistically rare events? How can we model the sta-
tistics in the tails of these heavy-tailed distributions? Importance
Sampling also gives us some help to sample in the tails [2], but
changes the statistics of these rare samples. Unfortunately, we need
both samples and rigorous statistics to determine the reliability of
critical circuits like large SRAMs, or flips flop in aggressively
clocked designs operating with small setup slack. Standard Monte
Carlo methods are poorly suited to this important problem. 

One avenue of attack is to abandon Monte Carlo. Several analytical
and semi-analytical approaches have been suggested to model the
behavior of SRAM cells [3][4][5] and digital circuits [6] in the pres-
ence of process variations. All suffer from approximations neces-
sary to make the problem tractable. [4] and [6] assume a linear
relationship between the statistical variables and the performance
metrics (e.g. static noise margin), and assume that the statistical
process parameters and resulting performance metrics are normally
distributed. This can result in gross errors, especially while model-
ing rare events, as we shall show later. When the distribution varies
significantly from Gaussian, [4] chooses an F-distribution in an ad
hoc manner. [3] presents a complex analytical model limited to a
specific transistor model (the transregional model) and further lim-
ited to only static noise margin analysis for the 6T SRAM cell. [5]

again models only the static noise margin (SNM) for SRAM cells
under assumptions of independence and identical distribution of the
upper and lower SNM, which may not always be valid.

A different avenue of attack is to modify the Monte Carlo strategy.
[2] shows how Importance Sampling can be used to predict failure
probabilities. Recently, [7] applied an efficient formulation of these
ideas for modeling rare failure events for single 6T SRAM cells,
based on the concept of Mixture Importance Sampling from [8].
The approach uses real SPICE simulations with no approximating
equations. However, the method only estimates the exceedence
probability of a single value of the performance metric. A re-run is
needed to obtain probability estimates for another value. No com-
plete model of the tail of the distribution is computed. The method
also combines all performance metrics to compute a failure proba-
bility, given fixed thresholds. Hence, there is no way to obtain sep-
arate probability estimates for each metric, other than a separate run
per metric. Furthermore, given that [2] advises against importance
sampling in high dimensions, it is unclear if this approach will scale
efficiently to large circuits with many statistical parameters.

In this paper, we present a novel, general and efficient Monte Carlo
method that addresses both problems previously described: very fast
generation of samples—rare events—with sound models of the tail sta-
tistics for any performance metric. The method imposes almost no a
priori limitations on the form of the statistics for the process parame-
ters, device models, or performance metrics. The method is conceptu-
ally simple, and it exploits ideas from two rather nontraditional sources. 

To obtain both samples and and statistics for rare events, we may
need to generate and evaluate an intractable number of Monte Carlo
samples. Generating each sample is neither challenging nor expen-
sive: we are merely creating the parameters for a circuit. Evaluating
the sample is expensive, because we simulate it. What if we could
quickly filter these samples, and block those that are unlikely to fall
in the low-probability tails we seek? Many samples could be gener-
ated, but very few simulated. We show how to exploit ideas from
data mining [9] to build classifier structures, from a small set of Mon-
te Carlo training samples, to create the necessary blocking filter. Giv-
en these samples, we show how to use the rigorous mathematics of
Extreme Value Theory (EVT [10], the theory of the limiting behavior
of sampled maxima and minima) to build sound models of these tail
distributions. The essential “blocking” activity of the filter gives the
technique its name: Statistical Blockade.

Statistical blockade has been tested on both SRAM and flip-flop de-
signs, including a complete 64-cell SRAM column (a 403-parameter
problem), accounting for both local and global variations. (In contrast
to several prior studies [5-6,9] we shall see that simulating only one cell
does not correctly estimate the critical tail statistics.) However, statisti-
cal blockade allows us to generate both samples and accurate statistics,
with speedups of 10X -100X over standard Monte Carlo.



This paper is organized as follows. Section 2 reviews the mathemat-
ics for modeling rare event tail distributions, derived from EVT.
Section 3 develops our tail distribution fitting strategy, based on
probability-weighted moments, and our method for probability pre-
diction, once the model has been built. Section 4 develops the core of
the statistical blockade method: an efficient tail sampling strategy,
using a classifier-based blocking filter. Section 5 presents experi-
mental results. Section 6 offers concluding remarks.

2.  Extreme Value Theory
EVT provides us with mathematical tools to build models of the tails
of distributions. It has been used extensively in climatology and risk
management, among other applications: wherever the probability of
extreme and rare events needs to be modeled. Here we introduce the
mathematical concepts from EVT that our approach relies on.

Suppose we define a threshold  for some random variable (e.g. the
SNM of an SRAM cell) with cumulative distribution (CDF) :
All values above  constitute the tail of the distribution. Throughout
this paper, we are considering only the upper tail: this is without loss
of generality, since a simple sign change converts a lower tail to the
upper tail. Now define the conditional CDF of excesses above  as

 for (1)

An important distribution in the theory of extreme values is the Gen-
eralized Pareto Distribution (GPD), which has the following CDF:

(2)

The seminal result we exploit is from Balkema and de Haan [11]
and Pickands [12] (referred to as BdP) who proved that

(3)

if and only if  is in the maximum domain of attraction (MDA) of
the Generalized Extreme Value distribution (GEV): .
This means that when the distribution  satisfies the given condition
( ), the conditional CDF of F tends, as we move the
threshold farther and farther out on the tail, towards a particularly
tractable analytical form. Let us look at the condition in more detail.

The GEV CDF is as follows

 where (4)

It combines three simpler distributions into one unified form:
• for  we get the Gumbel-type (or Type I) distribution

(5)
• for , we get the Fréchet-type (or Type II) distribution

 for (6)

• for , we get the Weibull-type (or Type III) distribution

 for (7)

Let us now look at what the “maximum domain of attraction”
means. Consider the maxima ( ) of  i.i.d. random variables.

Suppose there exist normalizing constants  and , such that

 as (8)

for some non-degenerate . Then we say that  is “in the max-
imum domain of attraction” of . In other words, the maxima of 
i.i.d. random variables with CDF , when properly normalized,
converge in distribution to a random variable with the distribution

. Fisher and Tippett [13] and Gnedenko [14] showed that for a
large class of distributions,

 is of type (9)

For example [10], MDA( ) includes the normal, exponential,
gamma and lognormal distributions; MDA( ) includes the Pare-
to, Burr, log-gamma, Cauchy and t-distributions; MDA( ) in-
cludes finite-tailed distributions like the uniform and beta
distributions. Hence, for a large class of distributions, the BdP the-
orem holds true. In other words, if we can generate enough points
in the tail of a distribution ( ), in most cases, we can fit a GPD
to the data and make predictions further out in the tail.

This is a remarkably practical and useful result for the rare circuit
event scenarios we seek to model. In particular, it shows that most
prior ad hoc fitting strategies are at best sub-optimal, and at worst,
simply wrong. Let us next consider how to use these results.

3.  Model Fitting and Prediction
Assuming we can generate points in the tail, there remains the prob-
lem of fitting a GPD form to the conditional CDF. Several options
are available here [15]: moment matching, maximum likelihood es-
timation (MLE) and probability weighted moments (PWM) [16].
We have chosen PWM because it seems to have lower bias [15] and
does not have the convergence problems of MLE.

The PWMs of a continuous random variable  with CDF  are the
quantities

(10)

which often have simpler relationships with the distribution param-
eters than conventional moments . For the GPD it is conve-
nient to use these particular PWMs

(11)

which exist for : this is true for most cases of interest [15].
The GPD parameters are then given by

, (12)

where the PWMs are estimated from the samples as

(13)

where  are the ordered samples and
.  and  are as suggested in [15].

Given the ability to fit the GPD form, now let us consider the prob-
lem of predicting useful probabilities. Once we have a GPD model
of the conditional CDF above a threshold , we can predict the ex-
ceedence probability—the failure probability—for any value :

(14)
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Here,  can be computed using empirical data obtained from
standard Monte Carlo, or more sophisticated variance reduction tech-
niques, for example, mixture importance sampling [7].  is
just the prediction by the GPD model. Hence, we can write (14) as

(15)

4.  Statistical Blockade: Classification-based Sampling
Even with all the useful theory presented above, we still need a way
to efficiently generate samples in the tail of the distribution of the
performance metric of a circuit. Standard Monte Carlo (MC) is very
unsuited to this job, because it generates samples that follow the
complete distribution. The problem is severe for rare event statis-
tics: if our threshold  is the 99% point of the distribution, only one
out of 100 simulations will be useful for building the tail model.

Our approach is to build a so-called classifier to filter out candidate
MC points that will not generate a performance value in the tail.
Then, we simulate only those MC points that will generate points in
the tail. For clarity, we shall refer to this structure as the blockade fil-
ter, and its action as blockade filtering. We borrow ideas from the
data mining community [9] to build the filter. A classifier is an indi-
cator function that allows us to determine set membership for com-
plex, high-dimensional, nonlinear data. Given a data point, the
classifier reports true or false on the membership of this point in some
arbitrary set. For statistical blockade, this is the set of parameter val-
ues not in the extremes of the distributional tail we seek. The classi-
fier is built from a relatively small set of representative sample data,
and as we shall see, need not be perfectly accurate to be effective.

Let us look at this filter, and its construction. Suppose the statistical
parameters (Vt, tox, etc.) in a circuit are denoted by , and the per-
formance metric being measured is . Our sampling strategy tries to
simulate only those points , that result in values of . This is
accomplished in three steps (shown in Fig. 1):

1) Perform initial sampling to generate data to build a classifier.
This initial sampling is also used for estimating  in (15),
and could be standard Monte Carlo or importance sampling.

2) Build a classifier using a classification threshold . To
minimize false negatives (tail points classified as non-tail
points), choose .

3) Generate more samples using MC, following the CDF ,
but simulate only those that are classified as tail points.

Using the tail points generated by the blockade-filtered sampling, we
can then build a conditional CDF model for the tail, using the tools of
Sections 2 and 3. As long as the number of false negatives is accept-
ably low, the simulated tail points are true to the actual distribution.
Hence, there is no need to unbias the estimates. Note that the ap-
proach is reminiscent of acceptance-rejection sampling [1].

In this work, the classifier used is a Support Vector Machine (SVM,
[17]). The time for model building and classification is negligible
compared to the total simulation time. Apart from this practical
consideration, there is no restriction on the type of classifier that can
be used. Classification is a rich and active field of research in the
data mining community and there are many options for choosing a
classifier [9]. SVMs are a popular, well researched classifier strate-
gy, and optimized implementations are readily available [17].

5.  Experimental Results
We now apply the statistical blockade method to three testcases: a
single 90nm SRAM cell, a 45nm master-slave flip-flop and a full 64-
bit 90nm SRAM column. The initial sampling to construct each
blockade filter was a standard MC run of 1000 points. An SVM clas-
sifier was built using the 97% point (of each relevant performance
metric) as the classification threshold . The tail threshold  was de-
fined as the 99% point. 

One technical point to note about the SVM construction: since the
sample set is biased with many more points in the body of the distri-
bution than in the tail, we need to unbias the classification error [18].
Suppose that, of the 1000 simulated training points,  actually
fall into the tail we seek. Since the two classification sets (true/false)
have an unbalanced number of points, the SVM classifier will be bi-
ased toward the body (1000-T points). Even if all T of the tail points
are misclassified, the error rate is quite low if the body is classified
correctly. Hence, classification error in the tail is penalized more—by
a weighting factor of roughly T—than errors in the body, to try to
avoid missing tail points. We use a weight value of 30 for these results.

5.1  Single 6-T SRAM Cell
The first testcase is shown in Fig. 2: a 6-T SRAM cell, with bit-lines
connected to a column multiplexor and a non-restoring write driver.
The metric being measured is the write time : the time between
the wordline going high to the non-driven cell node (node 2) transi-
tioning. Here, “going high” and “transitioning” imply crossing 50%
of the full voltage change. The device models used are from the Ca-
dence 90nm Generic PDK library. There are 9 statistical parame-
ters: 8 Vt variations to model random dopant fluctuation (RDF,
[19]) effects in the transistors named in the figure, and 1 global
gate-oxide variation. All variations are assumed to be normally dis-
tributed about the nominal value. The Vt standard deviation is

 where W,L are in μm (16)

This variation is too large for the 90nm process, but is in the expect-
ed range for more scaled technologies; this creates a good stress test
for the method. The gate-oxide standard deviation is taken as 2%.

100,000 MC points were blockade-filtered through the classifier,
generating 4,379 tail candidates. After simulating these 4,379
points, 978 “true” tail points were obtained. The tail model obtained
from these points is compared with the empirical tail conditional
CDF obtained after simulating 1 million MC points, in Fig. 3.
Table 1 shows a comparison of the failure probability predictions
for different values of , expressed as equivalent sigma points:

(17)

where  is the standard normal CDF. This is the equivalent point on
a standard normal that would have the same cumulative probability.
For example, =3 implies a cumulative probability of 0.99865 and
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a failure probability of 0.00135. The delays are expressed as multi-
ples of the fanout-of-four (FO4) delay of the process. The table also
shows  predictions from an accurate tail model built using the 1
million MC points, without any filtering. The empirical prediction
fails beyond 2.7 FO4 because there are simply no points generated by
the MC run so far out in the tail (beyond 4.8σ). 

The table shows two important advantages of our approach:
• Even without any filtering, the GPD tail model is better than

Monte Carlo, since it can be used to predict probabilities far
out in the tail, even when there are no points that far out.

• Using blockade filtering, coupled with the tail model, we can
drastically reduce the number of simulations (from 1 million to
5,379) and still generate a reliable tail model.

5.2  Master-Slave Flip-Flop with Scan Chain
A large chip can have tens of thousands of instances of the same
flip-flop. Typically, these flip-flops are in a scan chain to enable

rigorous testing. Random threshold variation in the scan chain tran-
sistors can also impact the performance of the flip-flop. Hence, our
next testcase (Fig. 4) is a commonly seen Master-Slave Flip-Flop
with scan chain (MSFF).

The design has been implemented using the 45 nm CMOS Predictive
Technology Models from [20]. Variations considered include RDF
for all transistors in the circuit and one global gate-oxide variation.
Threshold variation is modeled as normally distributed Vt variation:

 where W,L are in μm (18)

Vt0 is the nominal threshold voltage. This results in 30% standard
deviation for a minimum-sized transistor. The tox standard devia-
tion is taken as 2%. The metric being measured is the clock-output
delay,  in terms of the FO4 delay. A GPD model was built using
692 true tail points, obtained from 7,785 candidates blockade fil-
tered from 100,000 MC samples. Fig. 5 compares this model with
(1) the empirical CDF from 500,000 standard MC simulations, and
(2) a GPD model built from after blockade filtering these 500,000
points. The discrepancy of the models can be explained by looking
at the empirical PDF of the delay in Fig. 6. Due to the heavy tail,
slight variations in the tail samples chosen can cause large varia-
tions in the model. Our method is still able to generate an accept-
ably accurate model, as is evident by the comparison of  in
Table 2. Standard MC starts under-estimating the failure probabili-
ty (over-estimating ) far out in the tail (from row 3 on). The tail
model has much better predictive power (column 2):  = 4.283
implies a failure probability of 9.2 ppm. Even with blockade filter-
ing, the tail model is still quite accurate. The table also shows the
estimates from a standard Gaussian distribution fit to 20,000 MC

FIGURE 2. 6-T SRAM cell with column mux and write drivers. Vt 
variation on named devices and global tox variation. 
.

Standard
MC 

(1M sims)

GPD 
No Blockade Filter

(1M sims)

GPD 
With Blockade Filter 

(5,379 sims)
2.4 3.404 3.408 3.379
2.5 3.886 3.886 3.868
2.6 4.526 4.354 4.352
2.7 4.821 4.845
2.8 5.297 5.356
2.9 5.789 5.899
3.0 6.310 6.493

TABLE 1. Comparison of predictions by Monte Carlo, Monte Carlo 
with tail modeling and statistical blockade filtering, for single SRAM 
cell. The number of simulations includes the 1000 training samples.
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points: it is obvious that such a simplifying assumption severely un-
der-estimates the failure probability.

5.3  64-bit SRAM Column
The next testcase is a 64-bit SRAM column, with non-restoring write
driver and column multiplexor (Fig. 7).Only one cell is being access-
ed, while all the other wordlines are turned off. Random threshold
variation on all 402 devices (including the write driver and column
mux) are considered, along with a global gate-oxide variation. The
device and variation models are the same 90nm technology as the sin-
gle SRAM cell (Section 5.1). In scaled technologies, leakage is no
longer negligible. Hence, process variations on devices that are
meant to be inaccessible can also impact the overall behavior of a cir-
cuit. This testcase allows us to see the impact of leakage through the
63 off cells, along with variations in the write driver.

The metric measured is the write time ( ), from wl0 to node 2. The
number of statistical parameters is 403 in this case. Building a clas-
sifier with only 1000 points in 403 dimensional space is nearly im-
possible. Hence, the dimensionality is reduced by choosing only
those parameters that significantly affect the output. We employ
standard statistical sensitivity techniques. We measure this signifi-
cance with Spearman’s Rank Correlation Coefficient [21], . Sup-
pose  and  are the ranks of corresponding values of two
variables in a dataset, then their rank correlation is given as:

(19)

This measure of correlation is more robust than a linear Pearson’s
correlation, in the presence of non-linear relationships in the data.
Fig. 8 shows the sorted magnitudes of the 403 rank correlation val-
ues, computed between the statistical parameters and the output .
For classification, only the parameters with  > 0.1 were chosen.
This reduced the dimensionality to only 11: the devices chosen by
this method were the pull-down and output devices in the active
AND gate, the column mux device, the bitline pull-down devices
and all devices in the 6-T cell, except for Mp2 (since node 2 is being
pulled down in this case). This selection coincides with a designer’s
intuition of the devices that would have the most impact on the
write time in this testcase. 

The empirical CDF from 100,000 MC samples is compared with
the tail model obtained by blockade filtering 20,000 MC samples
(218 true tail points from 1046 filtered candidates) in Fig. 9. Also
shown is the tail model obtained by blockade filtering the 100,000
MC samples. Table 3 compares the following: the  predictions
from standard MC; a GPD tail model with no filtering; two different
GPD tail models with filtering of 20,000 and 100,000 points, re-
spectively; and a standard Gaussian fit to 20,000 points. We can see
that the 218 true tail points obtained by blockade filtering only

FIGURE 6. Probability density plot for Clock-Output delay of the
MSFF, showing a long, heavy tail.

Standard 
MC 

(500K sims)

GPD 
No Blockade 

Filter 
(500K sims)

GPD 
With Blockade 

Filter 
(8,785 sims)

Gaussian Tail 
Approx 

(20K sims)
30 3.424 3.466 3.431 22.127
40 3.724 3.686 3.661 30.05
50 4.008 3.854 3.837 37.974
60 4.219 3.990 3.978 45.898
70 4.607 4.102 4.095 53.821
80 4.199 4.195 61.745
90 4.283 4.282 69.669

TABLE 2. Comparison of predictions by MC, MC with GPD modeling, 
blockade filtered GPD modeling, and standard Gaussian approximation, 
for MSFF. The number of simulations includes the 1000 training samples.
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20,000 MC samples is not enough to build a reliable tail model.
However, we get much better results using the 1077 true tail points
obtained by blockade filtering 100,000 MC samples (5314 simula-
tions). The Gaussian again under-estimates the failure probability. 

Comparing with Table 1, we can see that simulating variations in a
single cell, without modeling variation in the environment circuitry
(other cells in the column and the write driver itself), can lead to large
underestimation of the delay spread: 3.0 FO4 delay is estimated as a
6.3σ point (Table 1), while it is actually a 4.1σ point (Table 3).

Before concluding, we mention two points. First, across all three
testcases, we see significant improvements in accuracy over simple
Gaussian fits, and similar improvements in fitting if we use our
GPD model and simple MC sampling. However, we also see signif-
icant speedups over simple Monte Carlo, ranging from roughly one
to two orders of magnitude. 

Finally, we mention an obvious extension to these ideas. The
testcases shown herein all measure a single performance metric.
Our method is, however, flexible enough to accommodate multiple
metrics: multiple classifiers can be trained from the same training
set, one for each metric. Each classifier would then identify poten-
tial tail points for its corresponding metric, which can be simulated
and used to build a tail model for every metric. In the worst case,
the tail samples of two metrics might be mutually exclusive, result-
ing in approximately twice the number of simulations as compared
to the case of a single metric. In the best case, the tail samples of the
metrics would overlap and there would not be any significant in-
crease in the number of simulations.

6.  Conclusions
Statistical blockade is a novel, efficient and flexible framework for
(1) generating samples in the tails of distributions of circuit perfor-
mance metrics, and (2) deriving sound statistical models of these
tails. This enables us to make predictions of failure probabilities
given thresholds far out in the tails. This capability has become crit-
ical for reliable and efficient design of high-replication circuits,
such as SRAMs, as transistor sizes move deeply into the nanometer
regime. Our methods offer both significantly higher accuracy than
standard Monte Carlo, and speedups of one to two orders of magni-
tude across a range of realistic circuit testcases and variations.
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MC 

(100K sims)
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Filter 
(100K sims)

GPD 
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Blockade 
Filter 

(20K pts
2,046 sims)

GPD 
w/ Blockade 

Filter 
(100K pts

6,314 sims)

Standard
Gaussian 
Approx. 

(20K sims)
2.7 2.966 2.986 2.990 3.010 3.364
2.8 3.367 3.373 3.425 3.390 3.898
2.9 3.808 3.743 3.900 3.747 4.432
3.0 4.101 4.448 4.088 4.966
3.1 4.452 5.138 4.416 5.499
3.2 4.799 6.180 4.736 6.033
3.3 5.147 - 5.049 6.567
3.4 5.496 - 5.357 7.100

TABLE 3. Comparison of predictions by MC, MC with tail modeling, 
blockade filtered tail modeling and Gaussian approximation, for SRAM 
column. The number of simulations includes the 1000 training samples.
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FIGURE 9. Tail model for SRAM column (2046 and 6314 simulations)
compared with empirical model (100,000 simulations)


