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Abstract 

An organization for a knowledge-based analog (circuit 
synthesis tool is described. Analog circuit topologies are 
represented as a hierarchy of functional blocks; a planning 
mechanism is introduced to translate performance specifica- 
tions between levels in this circuit hierarchy. A prototype im- 
plementation, OASYS, synthesizes sized transistor schematics 
for simple CMOS operational amplifiers from performance 
specifications and process parameters, and demonstrates the 
workability of the a.pproach. 

1. Introduction 
Design automation ideas from digital VLSI have only 

recently begun to migrate into analog circuit design. In part 
this reflects the inherent complexities of the analog design 
process. But it also reflects the success with which some clas- 
sical analog applications have been supplanted by digital tech- 
niques; for example, digital signal processing is frequently 
used in place of analog filtering. There are limits to this re- 
placement process, however. Also, even though many of the 
transistors in an ostensibly analog circuit such as an analog- 
to-digital converter may actually belong to digital sections of 
the circuit, design of the analog sections typically is most 
time-consuming. Moreover, there is large demand for analog 
circuitry in system;3 applications such as telecommunications 
and robotics, where analog interfaces to an external er,viron- 
ment are coupled with digital processing systems. Hence, 
there is growing interest in analog design tools. 

Unfortunately, the state of analog synthesis tools is quite 
primitive in comparison to digital synthesis tools. In the digi- 
tal domain, structured abstractions and hierarchy are com- 
monplace, and are relied upon to make seemingly large syn- 
thesis tasks tractable by breaking them into smaller steps. 
Such abstractions and hierarchy do not currently play a 
central role in analog design. Analog circuits are still 
designed, largely by hand, by experts intimately familiar with 
nuances of the tarl;et application and IC fabrication process. 
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Analog design is commonly perceived to be one of the most 
knowledge-intensive of design tasks: the techniques needed to 
build good analog circuits seem to exist solely as expertise in- 
vested in individual designers. 

This paper describes a knowledge-based framework for an 
analog circuit synthesis tool. Although “knowledge-based” 
has come to be synonymous with “rule-based” in CAD ap- 
plications, our prototype implementation relies more heavily 
on planning mechanisms than on rule execution. We attack 
the behavior-tc+structure portion of the synthesis task; our 
goal is to produce circuit schematics including device sizes, 
from performance specifications for common analog functional 
blocks. This approach is motivated by the lack of tools to 
support the design of custom analog circuits. In particular, 
there are emerging semi-custom methodologies to lay out a 
given circuit schematic, but as yet no real tools to help design 
this schematic of sized interconnected devices from a set of 
performance specifications. 

The paper is organized as follows. Section 2 contrasts 
the analog and digital domains, and summarizes related syn- 
thesis research. Section 3 clescribes the structure of the 
framework in detail, and how it is motivated by traditional 
analog design approaches. We introduce the critical role of 
hierarchy in analog circuits, and describe methods to structure 
and exploit analog design knowledge. Section 4 describes ex- 
perience with a small prototype implementation called 
OASYS, which designs simple CMOS operational amplifiers. 
We analyze the architecture of OASYS, and examine some 
automatically synthesized circuits it has produced. Finally, 
Section 5 presents some concluding observations on the 
workability of the approach. 

2. Background 
Before describing the components of a framework for 

analog synthesis, we review the salient differences between 
analog and digital design problems, and some previous ap- 
proaches to these problems. 

2.1 Analog Design versus Digital Design 
Consider the task of designing a functional block to be 

implemented as a single, perhaps large, cell on a VLSI circuit. 
The overall high-level synthesis task, for either analog or digi- 
tal circuits, is to interconnect a set of appropriately designed 
primitive components (e.g., transistors) to produce the correct 
behavior for the cell. We informally partition the differences 
between analog and digital design tasks into four categories: 
size, hierarchy, process, and performance constraints. We dis- 
cuss each of these below. 

The size difference is easily stated: analog circuits tend 
to have fewer transistors than digital circuits. However, there 
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is typically much more design time invested in each transis- 
tor. A complex analog cell might have 100 transistors, while 
a digital cell of similar functional complexity might have 
1000. The difference derives from the assumed functionality 
of each transistor. In digital circuits, devices tend to work as 
switches, moving 1s and 0s between storage elements at 
known times. Such devices can often have the minimum size 
permissible in the process (to switch faster) and are electri- 
cally identical in their performance; only those devices on 
critical paths or driving large loads need to have radically dif- 
ferent electrical properties. Analog circuits, on the other 
hand, often exploit the full spectrum of capabilities exhibited 
by individual devices. The electrical characteristics of in- 
dividual transistors are more carefully designed, and in- 
dividual devices in a circuit may differ substantially. 
Moreover, macroscopic properties of the entire circuit, such as 
gain, frequency response, or stability, may hinge on the 
relationship among currents, voltages, resistances, and 
capacitances controlled by individual devices. Indeed, the 
generally smaller size of analog circuits is partially a reflection 
of the difficulty of managing more than several tens of 
devices, each of which contributes a dozen interacting electri- 
cal constraints to the synthesis task. 

Digital and analog circuits both employ hierarchy, but in 
substantially different ways. In digital circuits, there is tacit 
agreement on the abstraction levels through which a design 
must pass: behavioral, functional-block, register-transfer, 
gate-network, switch-network, circuit, mask. These abstrac- 
tions play a central role in the organization of synthesis tools, 
which usually help translate from one abstract level to the 
next slightly more concrete level. There is not such a well- 
developed hierarchy for analog circuits, but hierarchy is im- 
portant nevertheless. System-level designs, such as analog-to 
digital (A/D) or digital-to-analog (D/A) converters are com- 
posed of common functional blocks, performing analog func- 
tions such as amplification, sample-and-hold, and so forth. 
These functional blocks are themselves composed of com- 
monly used transistor groups, e.g., differential pairs and cur- 
rent mirrors, each of which typically has fewer than 10 tran- 
sistors. Finally, we have the level of individual primitive 
devices: mainly transistors, capacitors, and resistors. 

We observe that the analog hierarchy seems qualitatively 
to do less information-hiding than the digital hierarchy. For 
example, we can ignore the electrical characteristics of clock 
signals (e.g., skews, rise/fall times) at the higher levels of digi- 
tal synthesis, deferring them until we reach the circuit level. 
Analog designs, by comparison, require closer attention to 
seemingly low-level electrical concerns, even at the system 
level (e.g., (8, 131). W e a so observe that the analog hierarchy 1 
is a loose hierarchy in the following sense. Suppose we require 
a block to perform voltage amplification. In one context, a 
complex circuit such ae an operational amplifier, with perhaps 
20 transistors, is required; in another context, a single transis- 
tor may suffice. Such easy interchange of high- and low-level 
components appears less frequently in the digital domain. 

Conceptually below the levels of hierarchy just described 
is the level of the fabrication process. At the higher levels of 
digital synthesis, process constraints appear in highly 
simplified forms: known constraints on attainable clock fre- 
quencies or drive capabilities can be factored into decisions 
about where extra pipeline stages may be needed, or where ex- 
tra space in a floorplan must be allocated for circuitry to 
drive large loads. In analog synthesis, such process con- 
straints appear in far greater detail, far earlier during the 
design process. For example, a particular design style for a 
high-level analog functional block may require components 

with precisely matched electrical characteristics. If such 
precision cannot be attained with this process, it is simply im- 
possible to pursue this circuit approach. Moreover, design of 
individual device characteristics is largely based on 
parameters extracted or predicted for the process. Inaccurate 
consideration of the effects of a few subtle process parameters 
can easily compromise the behavior of the circuit. The in- 
fluence of process is much stronger during device-by-device 
design for analog circuits. 

Performance constraints on the behavior of analog cir- 
cuits also differ radically from those of digital circuits. Digi- 
tal circuits are often specified using a behavioral language 
such as ISPS 131, which can capture the dataflow for digital 
quantities moving through functional blocks and storage ele- 
ments. For common analog circuits, the qualitative behavior 
is often known implicitly: an A/D converter digitizes con- 
tinuous signals; a phase-locked loop synchronizes the phase of 
different signals. The specification may take the form of a set 
of performance parameters that must be achieved, such as 
gain, bandwidth, input noise, or phase margin. That these 
parameters constrain continuous quantities (e.g., voltages or 
currents) and typically depend on the careful design of several 
mutually interacting devices at potentially different levels of 
the analog hierarchy, all conspire to make the analog syn- 
thesis task difficult. 

2.2 Previous Approaches to Analog Design 
We distinguish here three approaches to tools for analog 

synthesis tasks: layout-based approaches, parameterized- 
structure approaches, and knowledge-based approaches. 

The layout-based approaches show the most direct in- 
fluence of digital design ideas. Semi-custom analog styles, 
such as transistor arrays (analogous to gate arrays) and 
analog standard cells provide a rapid path to silicon for 
analog functions already designed to the level of the primitive 
devices available in the technology [lS, 19, 22). Place and 
route tools that accommodate the sensitive electrical charac- 
teristics of these devices can lay out these analog chips [II]. 
These approaches also constrain the circuit design itself: 
device parameters are not continuously variable because only 
a limited set of device types is available. 

Parameterized-structure approaches fix some portion of a 
circuit’s topology or layout, and parameterize the remainder. 
The result is a module generator for a particular functional 
block. Regular structures, such as switched capacitor filters, 
are particularly amenable to this approach [14]. Other ex- 
amples include the AIDE2 system 111, which uses standard 
cells as the basis for building module generators; experiences 
with a successive-approximation A/D converter generator 
have been discussed [2]. Seattle Silicon Technologies’ 

CONCORDEt” silicon compiler system includes a set of 
analog module generators based on parameterized custom 
layouts for common analog functions. 

Knowledge-based approaches attempt to reason about 
analog circuits, either from first principles, or from detailed 
domain knowledge. Analog circuits have actually provided a 
useful domain for testing many ideas about constraint 
propagation (231, causal models and qualitative reasoning 
[9, 271, but to date most of these techniques seem to advance 

the state of artificial intelligence research more than analog 
CAD research. Several attempts have been made to syn- 
thesize analog circuits. For example, Roylance (211 discusses 
a rule-based system to synthesize simple circuits from an 
abstract description of the required behavior. Ideal com- 
ponents are selected and dynamically connected to achieve the 
correct functionality. Ressler’s CIROP system [20] proposes a 
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grammar from which operational amplifiers (op amps) can be 
derived, and suggests a search heuristic for making choices 
about circuit topologies. Bowman [5] describes a rule-based 
system that assembles op amps from simple component pieces 
such as input stages and output stages. The BLADES s,ystem 
[12] proposes a framework in which individual subcircuit ex- 

perts are coupled by a design manager to build higher-level 
circuits. 

All these know’ledge-based approaches have drawbacks as 
basic models for analog synthesis. For example, Roylance 
[21] rederives circuit equations dynamically during synthesis. 

Manipulation of the resulting symbolic algebra may be tract- 
able for elementary circuits, but poses a serious barrier for 
larger circuits. Ressler’s grammar [20] handles topological 
design, but not device sizing. Bowman [5] seems to avoid 
symbolic algebra by embedding circuit equations directly into 
rules, but it is unclear if the design knowledge, specific to spe- 
cialized amplifier sub-circuits, can be reused in other circuit- 
synthesis tasks. BLADES [12] suggests hierarchy, in the form 
of subcircuit experts, but does not suggest any mechanism by 
which such experts can be coordinated to actually perform 
high-level synthesis. None of these approaches deals ade- 
quately with hierarchy or process dependence as critical 
characteristics of analog design. Moreover, none seem to ad- 
mit straightforward generalizations to different types of 
analog circuits, or to provide mechanisms to attack complex 
performance concerns such as noise or stability. With respect 
to these techniques, there are few reports of synthesized cir- 
cuits that have been functionally verified, either by detailed 
simulation with respect to a reasonable fabrication process, or 
by fabrication itself. 

3. A Framework for Analog Circuit 
Synthesis 
This section presents a framework for organizing the 

component pieces Iof a knowledge-based analog circuit syn- 
thesis tool. We begin by outlining the synthesis task, and 
then discuss the central components of the proposed organiza- 
tion. 

3.1 Overview 

Our intent is to support high-level circuit synthesis for 
specific classes of analog functions. From an input consisting 
of detailed performance specifications, we want to produce a 
sized, transistor-level circuit schematic. The goal is not, 
however, to produce a perfectly optimal circuit in which all 
device sizes have been optimized. Rather, the goal is to 
produce a good first-cut design that is sufficiently “close” to 
optimal that numerical optimization tools can be applied [17]. 

Previous approaches to synthesis have noted the dif- 
ference between topological design, which interconnects 
devices, and sizing, which specifies the performance of in- 
dividual devices. We make a similar distinction. The 
proposed framework is based on three critical ideas: 

l Circuit topologies are selected from among fixed alter- 
natives; they are not constructed transistor-by- 
transistor for each new design. The process of choosing 
from among these fixed alternatives for the design of a 
circuit topology is called design style selection (after 
the analogous digital synthesis task [24]). 

l The fixed alternatives for circuit topologies are 
specified hierarchically. A topology for a high-level 
module (e.g., an A/D converter) is specified as an inter- 
connection of sub-blocks, not as an interconnection of 
transistors. That the topology is fixed implies only 
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Level 3 

that this arrangement of sub-blocks is fixed; the 
detailed design of the individual sub-blocks is not 
specified here. Because of this explicit hierarchy, one 
high-level topology of blocks can specify many device- 
level topologies. 

l After selecting a topology to accommodate a set of per- 
formance specifications given at one level of the hierar- 
chy, we transhte these higher-level specifications into 
specifications for the performance of each sub-block of 
the topology. Informally, we are given the behavior of 
the interconnected sub-blocks taken as a whole, and we 
must deduce the specifications for each sub-block re- 
quired to achieve this overall behavior. 

l Device sizing, in the conventional sense, occurs when 
this process of translation reaches the bottom of the 
hierarchy and specifies the behavior of individual tran- 
sistors. 

Our framework, ss described above, is very similar in 
spirit (but not implementation, see Section 3.3) to one 
recently proposed by Brewer and Gajski [6] for digital design. 
It is interesting to note that our framework was influenced by 
the peculiar characteristics of the analog domain, and not the 
digital domain. For example, reuse of partial circuit 
topologies is extremely common in analog design, and con- 
tributes directly to our notions of hierarchy and design style 
selection. In addition, the framework in its current form 
solves several problems encountered in our own early im- 
plementations of a synthesis tool. The idea of parameterized 
cells is also influential here, but the addition of a hierarchical 
representation is essential for application to high-level syn- 
thesis. Without hierarchy, we would be forced to provide a 
parameterized topology for each of the unmanageably large 
number of nearly identical transistor-level variations for a 
given function. The following sections examine these ideas 
and relevant implementation concerns. 

3.2 Hierarchy, Selection, Translation 

Reliance on explicit hierarchy in analog design has two 
advantages. First, it permits the design process to be recast 
as a sequence of smaller design tasks, alternating between 
design style selection, and translation. Second, it provides a 
measure of generality, in that sub-blocks can be reused in dif- 
ferent contexts. For example, an op amp is a sub-block in 
many A/D converter topologies, but there need be only one 
set of selectors/translators for op amps. 

Figure 1 shows a typical analog hierarchy for a successive 
approximation A/D converter block. It is important to note 
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Figure 1: Hierarchy for Successive Approximation 
A/D Converter 



that analog hierarchy is not strict, in the sense that sub- 
blocks on the same level in the hierarchy do not necessarily 
have the same complexity. For example, in the A/D con- 
verter hierarchy the sample-and-hold circuit might turn out to 
be only a single capacitor and a pair of transistors, while the 
comparator at the same level might include more than 20 
transistors. 

A hierarchical representation makes the synthesis task 
more tractable, but has one disadvantage. By recasting cir- 
cuit design as a sequence of alternating topology selection and 
Lranslation steps, we lose the easy ability to implement design 
tricks that jump across many levels of the hierarchy. Expert 
circuit designers often employ such tricks to push circuits 
close to the limits of achievable performance (e.g., 1261). Since 
the. hierarchy explicitly prevents the designer of one module 
from knowing the details of how other modules are imple- 
mented, we are not able to reach such extremal points in the 
design space of a given block. 

The two-step topology selection and translation process is 
illustrated for an abstract block in Figure 2. A particular 
topology is chosen because it is the one best able to be con- 
figured to match the specified block-level behavior; the trans- 
lation step then decides how the sub-blocks must behave to 
meet the block-level specification. An important advantage of 
recasting analog synthesis as a sequence of selection and 
translation steps is that the design task is uniform at all 
levels of the hierarchy: topology selection and translation oc- 
cur when designing a complex high-level function, and also 
when assembling a few transistors; only the actual implemen- 
tation of this two-step process will vary. 

Our original motivation for using separate selection and 
translation steps was to avoid the need to simultaneously 
design the interconnection and electrical characteristics of 
devices. Restricting the design of sub-block interconnections 
to a choice among fixed alternatives allows us to concentrate 
on specifying the electrical characteristics of the connected 
sub-blocks. The hierarchical representation of topologies 
vastly simplifies the translation task because it tends to 
reduce the number of sub-blocks and simplify their connec- 

Bto& - 
Designe 

Input Performance Specification 
. . . . . . . . . . . . . B . . . . . . . . ~ 

Figure 2: Topology Selection and Translation 

tions. It also simplifies the selection task, because we do not 
require a vast number of nearly identical topologies, differing 
only in low-level details. 

3.3 Implementation Concerns: Applying Analog 
Design Knowledge 

The basic framework just described, although motivated 
by analog design problems, shares many features with digital 
synthesis approaches. For example, the leverage to be gained 
from exploiting fixed design styles has been discussed in 
14, 6] and the utility of recasting the behavior-to-structure 

synthesis task as a sequence of smaller steps is also widely 
known [25]. However, there is one feature of the analog syn- 
thesis task that distinguishes it from digital synthesis: the na- 
ture of analog domain knowledge, 

We observe that good analog designers exhibit two 
characteristics. First, they are adept at choosing highly 
simplified models of devices and device interactions to guide 
their choices for tradeoffs. These models, though simple, are 
informed by detailed knowledge of how subtleties of the 
fabrication process and the desired performance parameters 
will interact in a specific circuit topology. Second, good 
designers have a basic plan of attack for designing common 
functional blocks. These two observations suggest a way to 
implement the framework we have proposed. We can sum- 
marize these implementation choices as follows: 

. For a single topology selection/translation step, design 
knowledge is represented in the form of circuit equa- 
tions and algebraic constraints involving circuit 
specifications. 

l The process by which a high-level block specification is 
translated into sub-block specifications is implemented 
as a planning system. Plans are stored with fixed 
topologies, and executed when the topology is instan- 
tiated. Rules fire at the end of each plan step to cor- 
rect errors, and modify the dynamic flow of the plan. 

We can justify each of these choices by referring again to the 
characteristics of good human designers. 

Analog designers work routinely with simple algebraic 
descriptions (linear and non-linear) of the relationships among 
circuit components; expert designers choose the right descrip- 
tions, and prune away the relationships irrelevant to the par- 
ticular task at hand. Because we represent circuit topologies 
as statically stored templates, we can easily store the relevant 
circuit equations with the template, for use during the trans- 
lation step. Note, systems which dynamically design 
topologies must also re-discover these equations dynamically 
[21]. Unfortunately, storing circuit equations does not com- 

pletely solve the problem. Real design problems are usually 
so under-constrained that many heuristic tradeoffs must be 
made to achieve a workable design that matches intended per- 
formance specifications. Such heuristics are the real basis of 
analog expertise; the critical question then is how to codify 
such heuristics. 

We codify these heuristics as small program fragments 
that numerically manipulate the algebraic constraints to be 
satisfied at particular steps in the translation process. For ex- 
ample, the design of a two-stage op amp requires us to choose 
how to partition the total gain between the two amplifier 
stages. Given a gain partition, circuit equations can tell us 
the resulting performance of the circuit, but these equations 
suggest nothing about how to arrive at this partition. One 
workable initial heuristic is simply to assign the square root of 
the gain to each stage. This is easily stated algebraically, and 
the partition can be modified by subsequent heuristics if a 
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later situation arises which precludes this simple partition. It 
is also important to recognize that the hierarchical form of 
topology templates (only those at the bottom of the hierarchy 
specify transistors) means that most circuit constraints are 
formulated as constraints on the behavior of each abstract 
block as seen at its terminals. 

We apply design knowledge in the form of circuit equa- 
tions and constrains by using plans. Two basic approaches 
to implementing knowledge-based systems are rules and plans. 
Rules codify knowledge in situation-specific IF-THEN actions; 
they are applicable when we know how to react to a specific 
design situation, but not the order in which these situations 
will occur. Plans ccodify knowledge in plan steps, which may 
be implemented as either rules, algorithms, or both. Plans 
specify a rough ordering of the basic design steps, and. may 
need to be modified at run-time depending upon the state of 
the design. It is important to recognize that plans and rules 
are not mutually exclusive: some rule-based CAD tools 
employ planning ideas with differing degrees of sophistication 
[15, 161. In our a.pplication, the translation process is ac- 

complished by executing a plan stored with each topology 
template. The plan represents a basic order in which to at- 
tack the specification of sub-block behaviors. Individual plan 
steps in our implementation are largely algorithmic: they 
manipulate circuit equations and constraints numerically. 
Each plan step has a set of goals it expects to achieve, and a 
set of circuit and process relationships it knows how to 
manipulate to achieve these goals. 

A major weakness of planning systems is that they re- 
quire a mechanism to dynamically modify a plan that fails to 
achieve its goals (this is sometimes referred to as patching a 

plan). Similar to &her planning systems [7], we use rules to 
patch plans. Such rules can either modify circuit specific% 
tions in ways that are beyond the limited scope of individual 
plan steps, or can rerun portions of the plan with new initial 
constraints to avoid the problems previously encountered. 
The feasibility of fixing plans in this way derives from our 
conjecture that good plans have predictable failure modes, 
i.e., when an analog expert fails at a particular step in his 
overall plan of atta.ck, very often the failure can be easily lo- 
cated because therl: are (relatively) few things that can go 
wrong, especially when we are constrained to a fixed topology. 
Figure 3 illustrates this process. 

Such a planning mechanism is useful mainly for the 
translation process, and not for topology selection. Our 
limited implementation experience suggests that circuit equa- 
tions are adequate for discriminating among topologies for 
low-level, primitive topologies, but that other heuristics 
(probably rule-based) are required for high-level topology 
choices. 

4. OASYS: a Prototype Op Amp 
Synthesis System 
OASYS is a prototype tool that can synthesize sized 

transistor-level circuit schematics for simple one-stage and 
two-stage CMOS op amps given a set of performance 
specifications and a description of a fabrication process. It 
was built to test the feasibility of the framework. This sec- 
tion discusses the domain in which OASYS works, its im- 
plementation, and the performance of the circuits it syn- 
thesizes. 

4.1 The Domain and its Constraints 

Operational amplifiers were chosen es a test domain be- 
cause they are ubiquitous components in many system-level 
designs, and because they appear to be the favored first target 

Performance 
specification Selected Topology 

Plan Execution Mechanism 

Figure 3: Planning in Analog Synthesis 

of other synthesis approaches [5, 20, lo]. For simplicity, we 
restrict designs to CMOS. We also deal with a rather limited 
hierarchy. OASYS currently understands two topologies for 
op amps: a standard two-stage unbuffered op amp style, and 
a one-stage operational transconductance amplifier (OTA) 
style. However, OASYS can design the sub-blocks of each of 
these styles in several topologies. The OASYS hierarchy was 
selected to explore two levels of design style selection and 
specification translation: first select op amp design style 
(relatively easy since we currently implement only two styles) 
and translate op amp specifications into specifications for sub- 
blocks (current mirrors, differential pairs, etc.); and second, 
select design styles for each sub-block and then translate each 
sub-block specification into device interconnections and sizes. 
This reflects our basic goal to incorporate just enough hierar- 
chy in the prototype to build a working system. 

To specify the synthesis task we need a description of the 
fabrication process and a set of op amp performance specifica- 
tions. To keep pace with the rapid evolution of process tech- 
nology, OASYS simply reads process parameters from a tech- 
nology file; the parameters currently specifiable in OASYS ap- 
pear in Table 1. Table 2 in Sec. 4.3 gives the performance 
parameters that OASYS can currently design to meet. From 
these inputs, OASYS produces a sized transistor-level circuit 
schematic. 

4.2 The Implementation of OASYS 

The framework in its current form evolved from ex- 
perience with a sequence of three OASYS prototypes. The 
first version was implemented as a classical rule-based system 
with about 100 rules. This version designed op amp 
topologies by composing specialized sub-blocks, similar to [5]. 
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Ptocess Parameters 
1. Threshold Voltage (V) 
2. K (PAN*) 

9. C,, (fF/+m2) 

3. Process Min. Width (pm) 
10. Czd (fF/+m) 

4. Built-in Voltage (V) 
11. C&b (fF/+m) 

5. Min. Drain Width (km) 
12. Cjsv (fF/km) 
13. Cl, (fF&m’) 

6. Supply Voltage (V) o 14. fe, fr, for A = f&” 
7. Oxide Thickness (A) channel length 
8. Mobility (cm’?V-s) modulation 

Table 1: OASYS Process ParameLers 

We found that sizing here was complicated by difficulties in 
specifying the behavior of the sub-blocks (op amp stages) we 
had chosen, based on intuition, to work with. Moreover, we 
conld not reuse these blocks in other types of analog circuits. 
A second version of OASYS used well-specified reusable sub- 
blocks, with more explicit hierarchy; designers for blocks were 
still rule-based. As we evolved toward planning as a control 
mechanism, plan steps manipulating algebraic circuit con- 
straints became tedious to implement in a rule-based 
framework; we then abandoned a purely rule-based approach 
and adopted instead the current plan-based system with rules 
for plan modification. The current version of OASYS com- 

prises about 7500 lines of Franz LISP running under UNIXtm 
on a VAX 111785. 

Figure 4 illustrates an example (two-stage) op amp topol- 
ogy template used in OASYS. Because this version of OASYS 
has just two design styles, there is minimal high-level design 
style selection. We currently attempt to design each style, 
and if both can meet the specification, select the one with the 
best match to the specifications, biasing the choice in favor of 
the design with the smallest estimated area. Area estimates 
include both active device area and compensation capacitor 
area. This version of OASYS mainly does translation, from 
the op amp specifications to the specifications for the in- 
dividual sub-blocks. Sub-blocks include differential pairs, cur- 
rent mirrors, level shifters, and tranconductance amplifiers. 
However, for each sub-block, both style selection and trans- 
lation are required. In the hierarchy implied in Figure 4 it is 
interesting to observe the unique role of feedback compen- 
sation. Unlike the one-stage style, the two-stage style is in- 
ternally compensated with an explicit feedback capacitor. 
But because the feedback compensation scheme depends on 
the specifications of almost every other block in the op amp, 
its design cannot be easily deferred to some lower-level block 
designer. Hence, compensation is explicitly addressed as part 
of the plan associated with the two-stage template: it is con- 
ceptually one level higher in the hierarchy than the other sub- 
blocks. Notice also that none of these sub-blocks is specific to 
a particular topology: they are based on their own independ- 
ent templates and plans, and are fully reuseable as parts of 
other higher-level designs. 

The two-step selection/translation process is best il- 
lustrated in the implementation of one of the simple sub-block 
designers. There are two possible topologies (simple and 
cascade) for a current mirror. Selection is based primarily on 
area, as evaluated from circuit equations; the style with the 
smaller area is selected. However, the detailed design of one 
topology requires some simple heuristics, because many pos- 
sible combinations of device sizes can achieve the same overall 
mirror performance. For example, in a four-transistor cascode 
topology, we choose to fix the length of two devices at their 
minimum size, and require the width of all four devices to be 
equal. This produces a workable, unique solution. These 
translation operations are implemented in their own (albeit 
simple) pIan. 

Figure 4: OASYS Two-Stage Op Amp Topology Template 

The plans attached to overall op amp topologies are more 
complex. Each of the two plans (for one-stage and twestage 
designs) has between 20 and 25 plan steps, and roughly 10 
rules to modify the execution of each plan. Currently, these 
rules match fairly simple conditions that necessitate plan 
modification. However, the corrective actions taken by these 
rules can be complex, requiring as much computation as a 
complete plan step. An example of how plan steps and rules 
interact is the partitioning of overall gain between the stages 
of the twostage topology, mentioned earlier in Section 3.3. 
The heuristic choice for the partition interacts with several 
performance specifications, notably the phase margin. At the 
end of one plan step, we may discover that the tentative par- 
tition is unimplementable; e.g., it might not be possible to 
meet the gain specification. At this point, a rule fires to see if 
either stage is currently in the cascode configuration. If not, 
one stage is cascaded to increase the gain, the gain partition is 
skewed to place more gain in the cascaded stage, and the plan 
is restarted from an earlier step. This example illustrates the 
need for rules that have a more global view of the problem 
than plan steps, and the need to dynamically change the ex- 
ecution of the plan. 

4.3 Performance Evaluation 

To verify that OASYS can synthesize functional circuits, 
we start with three sets of performance specifications (A, B 
and C) and examine the circuits synthesized by OASYS to 
meet these specifications. We employ process parameters 
from a proprietary industrial 5 pm CMOS process. Table 2 
lists the performance parameters specified for each of three 
test cases, and the resulting performance parameters for the 
OASYS-synthesized circuit. SPICE simulations are used to 
estimate the resulting performance of these circuits. Figure 5 
shows the synthesized schematics for each of these circuits. 
Figure 6 gives a gain-phase plot derived from simulation for 
test circuit C, to further illustrate the results of this design 
exercise. 

The three test cases are as follows: 

Specification A is for an ordinary op amp that makes 
no unusual demands on the process, or circuit design 
expertise. OASYS produces a one-stage design that 
meets all specifications. Although a two-stage design is 
also straightforward here, it occupies more area and is 
eliminated on that basis. 

Specification B is slightly more difficult, requiring more 
gain, a lower offset voltage and a larger output voltage 
swing than Specification A. OASYS selects the simplest 
twostage topology here. This design is 
straightforward--for a two-stage implementation--but 
essentially impossible for the one-stage style, which is 
unable to cope wrth the simultaneous demands on gain, 
offset and output swing. To achieve the necessary 
gain, the one-stage plan attempts to increase device 
sizes, which compromises the output swing. In ad- 
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Table 2: Specificatilons and Results for OASYS Test Cases 

Figure 5: Synthesized Circuit Schematics for 
Three Test Cases 

Gain( dB) Phase(deg) 

100 10' 102 103 104 106 loe 

Freq(Hs) 

Figure 6: Gain-Phase Plot for Synthesized Test Circuit C 

dition, the one-stage style always has an inherent sys- 
tematic offset voltage, which cannot be compensated 
for here. 

3. Specification C is the most aggressive performance 
specification, since it requires 100 dB of gain and a low 
output voltage swing of h2.5 volts. OASYS chooses a 
complex twostage style here. Comparison between the 
simple 2-stage circuit synthesized for specification B 
and the circuit produced for case C (Figure 5) shows 
that OASYS cascoded the input current bias and out- 
put load mirror and inserted a level shifter to match 
the output voltage of the differential pair in the first 
stage to the input voltage of the transconductance 
amplifier in the second stage. These additions were 
necessary to meet the more difficult performance 
specifications. Because this example makes more dif- 
ficult demands, OASYS is less able to meet specifica- 

tions precisely; for example, 45O of phase margin was 

specified, whereas 32O was achieved. However, this is 
acceptable for a first-cut design. 

For all these test cases, the CPU time is modest, usually 
under 2 minutes of CPU time per op amp. All the resulting 
designs are acceptably close to the specified performance 
parameters. Recall that OASYS is not intended to produce 
perfectly optimal designs; rather, it is intended to produce 
reasonable designs, very quickly. OASYS satisfies our original 
goal of producing circuits that are “close” enough to apply 
other optimization tools. 

An important advantage of a tool such as OASYS is its 
ability to design with respect a continuo~ range of perfor- 
mance parameters. This is in sharp contrast to design styles 
based on a library of fixed cells, or even parameterizable cells, 
which typically have only a few variable parameters, each ad- 
justable over a limited range. To illustrate this, we reconsider 
the specifications of test case A with a slight modification: we 
now wish to examine the range of achievable gain when driv- 
ing a small load capacitance of 5pF, or a large load of 2QpF. 
Our intent here is to explore what gain is achievable in each 
topology OASYS can design to meet all the relevant con- 
straints. Figure 7 plots area versus gain for all the circuits 
OASYS can design to meet these specifications. Notice that 
the one-stage designs are clearly smaller, but always have a 
smaller range of achievable gains. This is because the OTA 
style has fewer degrees of freedom in design; hence, OASYS 
can ma.ke fewer tradeoffs to achieve the required gain while 
satisfying the remaining specifications. Also shown in the 
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200 l-stage designs (5pF load) 
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Figure 7: OASYS Results with Continuous 
Parameter Variation 

Figure are the points at which OASYS automatically makes a 
topology change to meet the increasing gain requirements. 

These curves also illustrate the need for a design style 
selection component to choose the best style: over some 
ranges of achievable gain, OASYS can design the circuit using 
either op amp style. Style selection at this level is still 
simplistic in OASYS, and is based on breadth-first search. All 
possible styles are designed and a selection among successful 
design styles is made based on comparison of final parameters 
such as estimated area. 

5. Conclusions 
We have presented a framework to support behavior-to 

structure synthesis for analog circuits. A prototype im- 
plementation, OASYS, can design simple CMOS op amps 
from performance specifications and process specifications; the 
correctness of these designs has been verified by detailed cir- 
cuit simulation. Preliminary experience with the OASYS 
prototype is encouraging, and suggests that a hierarchy of 
selection/translation steps is a workable approach to this syn- 
thesis task. 

Our immediate plan is to expand the breadth of circuit 
knowledge in OASYS to include more op amp topologies (e.g., 
folded cascade and fully differential styles) and more sub- 
block types (e.g., comparators). Our longer-range goal is to 
look at functional blocks with a few more layers of hierarchy, 
in particular, data acquisition circuits, for which there is a 
wide range of design styles and with which we already have 
considerable design experience. 
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