
A Prototype Framework for Knowledge-Based Analog Circuit Synthesis*

Ramesh Harjani, Rob A. Rutenbar and L. Richard Carley

Department of Electrical and Computer Engineering
Carnl:gie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

An organization for a knowledge-based analog (circuit
synthesis tool is described. Analog circuit topologies are
represented as a hierarchy of functional blocks; a planning
mechanism is introduced to translate performance specifica-
tions between levels in this circuit hierarchy. A prototype im-
plementation, OASYS, synthesizes sized transistor schematics
for simple CMOS operational amplifiers from performance
specifications and process parameters, and demonstrates the
workability of the a.pproach.

1. Introduction
Design automation ideas from digital VLSI have only

recently begun to migrate into analog circuit design. In part
this reflects the inherent complexities of the analog design
process. But it also reflects the success with which some clas-
sical analog applications have been supplanted by digital tech-
niques; for example, digital signal processing is frequently
used in place of analog filtering. There are limits to this re-
placement process, however. Also, even though many of the
transistors in an ostensibly analog circuit such as an analog-
to-digital converter may actually belong to digital sections of
the circuit, design of the analog sections typically is most
time-consuming. Moreover, there is large demand for analog
circuitry in system;3 applications such as telecommunications
and robotics, where analog interfaces to an external er,viron-
ment are coupled with digital processing systems. Hence,
there is growing interest in analog design tools.

Unfortunately, the state of analog synthesis tools is quite
primitive in comparison to digital synthesis tools. In the digi-
tal domain, structured abstractions and hierarchy are com-
monplace, and are relied upon to make seemingly large syn-
thesis tasks tractable by breaking them into smaller steps.
Such abstractions and hierarchy do not currently play a
central role in analog design. Analog circuits are still
designed, largely by hand, by experts intimately familiar with
nuances of the tarl;et application and IC fabrication process.

-
*
This research was supported in part by the Semiconductor

Research Corporation, and by a grant from the Gould Foundation.

permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, tbe ACM copyright notice and the title of the publication and
its date appear, and noi:ice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fw and/or specific permission.

Analog design is commonly perceived to be one of the most
knowledge-intensive of design tasks: the techniques needed to
build good analog circuits seem to exist solely as expertise in-
vested in individual designers.

This paper describes a knowledge-based framework for an
analog circuit synthesis tool. Although “knowledge-based”
has come to be synonymous with “rule-based” in CAD ap-
plications, our prototype implementation relies more heavily
on planning mechanisms than on rule execution. We attack
the behavior-tc+structure portion of the synthesis task; our
goal is to produce circuit schematics including device sizes,
from performance specifications for common analog functional
blocks. This approach is motivated by the lack of tools to
support the design of custom analog circuits. In particular,
there are emerging semi-custom methodologies to lay out a
given circuit schematic, but as yet no real tools to help design
this schematic of sized interconnected devices from a set of
performance specifications.

The paper is organized as follows. Section 2 contrasts
the analog and digital domains, and summarizes related syn-
thesis research. Section 3 clescribes the structure of the
framework in detail, and how it is motivated by traditional
analog design approaches. We introduce the critical role of
hierarchy in analog circuits, and describe methods to structure
and exploit analog design knowledge. Section 4 describes ex-
perience with a small prototype implementation called
OASYS, which designs simple CMOS operational amplifiers.
We analyze the architecture of OASYS, and examine some
automatically synthesized circuits it has produced. Finally,
Section 5 presents some concluding observations on the
workability of the approach.

2. Background
Before describing the components of a framework for

analog synthesis, we review the salient differences between
analog and digital design problems, and some previous ap-
proaches to these problems.

2.1 Analog Design versus Digital Design
Consider the task of designing a functional block to be

implemented as a single, perhaps large, cell on a VLSI circuit.
The overall high-level synthesis task, for either analog or digi-
tal circuits, is to interconnect a set of appropriately designed
primitive components (e.g., transistors) to produce the correct
behavior for the cell. We informally partition the differences
between analog and digital design tasks into four categories:
size, hierarchy, process, and performance constraints. We dis-
cuss each of these below.

The size difference is easily stated: analog circuits tend
to have fewer transistors than digital circuits. However, there

Paper 3.3
42

24th ACM/IEEE Design Automation Conference

0 1987 ACM 07:18-100X/87/0600-0042$00.75

is typically much more design time invested in each transis-
tor. A complex analog cell might have 100 transistors, while
a digital cell of similar functional complexity might have
1000. The difference derives from the assumed functionality
of each transistor. In digital circuits, devices tend to work as
switches, moving 1s and 0s between storage elements at
known times. Such devices can often have the minimum size
permissible in the process (to switch faster) and are electri-
cally identical in their performance; only those devices on
critical paths or driving large loads need to have radically dif-
ferent electrical properties. Analog circuits, on the other
hand, often exploit the full spectrum of capabilities exhibited
by individual devices. The electrical characteristics of in-
dividual transistors are more carefully designed, and in-
dividual devices in a circuit may differ substantially.
Moreover, macroscopic properties of the entire circuit, such as
gain, frequency response, or stability, may hinge on the
relationship among currents, voltages, resistances, and
capacitances controlled by individual devices. Indeed, the
generally smaller size of analog circuits is partially a reflection
of the difficulty of managing more than several tens of
devices, each of which contributes a dozen interacting electri-
cal constraints to the synthesis task.

Digital and analog circuits both employ hierarchy, but in
substantially different ways. In digital circuits, there is tacit
agreement on the abstraction levels through which a design
must pass: behavioral, functional-block, register-transfer,
gate-network, switch-network, circuit, mask. These abstrac-
tions play a central role in the organization of synthesis tools,
which usually help translate from one abstract level to the
next slightly more concrete level. There is not such a well-
developed hierarchy for analog circuits, but hierarchy is im-
portant nevertheless. System-level designs, such as analog-to
digital (A/D) or digital-to-analog (D/A) converters are com-
posed of common functional blocks, performing analog func-
tions such as amplification, sample-and-hold, and so forth.
These functional blocks are themselves composed of com-
monly used transistor groups, e.g., differential pairs and cur-
rent mirrors, each of which typically has fewer than 10 tran-
sistors. Finally, we have the level of individual primitive
devices: mainly transistors, capacitors, and resistors.

We observe that the analog hierarchy seems qualitatively
to do less information-hiding than the digital hierarchy. For
example, we can ignore the electrical characteristics of clock
signals (e.g., skews, rise/fall times) at the higher levels of digi-
tal synthesis, deferring them until we reach the circuit level.
Analog designs, by comparison, require closer attention to
seemingly low-level electrical concerns, even at the system
level (e.g., (8, 131). W e a so observe that the analog hierarchy 1
is a loose hierarchy in the following sense. Suppose we require
a block to perform voltage amplification. In one context, a
complex circuit such ae an operational amplifier, with perhaps
20 transistors, is required; in another context, a single transis-
tor may suffice. Such easy interchange of high- and low-level
components appears less frequently in the digital domain.

Conceptually below the levels of hierarchy just described
is the level of the fabrication process. At the higher levels of
digital synthesis, process constraints appear in highly
simplified forms: known constraints on attainable clock fre-
quencies or drive capabilities can be factored into decisions
about where extra pipeline stages may be needed, or where ex-
tra space in a floorplan must be allocated for circuitry to
drive large loads. In analog synthesis, such process con-
straints appear in far greater detail, far earlier during the
design process. For example, a particular design style for a
high-level analog functional block may require components

with precisely matched electrical characteristics. If such
precision cannot be attained with this process, it is simply im-
possible to pursue this circuit approach. Moreover, design of
individual device characteristics is largely based on
parameters extracted or predicted for the process. Inaccurate
consideration of the effects of a few subtle process parameters
can easily compromise the behavior of the circuit. The in-
fluence of process is much stronger during device-by-device
design for analog circuits.

Performance constraints on the behavior of analog cir-
cuits also differ radically from those of digital circuits. Digi-
tal circuits are often specified using a behavioral language
such as ISPS 131, which can capture the dataflow for digital
quantities moving through functional blocks and storage ele-
ments. For common analog circuits, the qualitative behavior
is often known implicitly: an A/D converter digitizes con-
tinuous signals; a phase-locked loop synchronizes the phase of
different signals. The specification may take the form of a set
of performance parameters that must be achieved, such as
gain, bandwidth, input noise, or phase margin. That these
parameters constrain continuous quantities (e.g., voltages or
currents) and typically depend on the careful design of several
mutually interacting devices at potentially different levels of
the analog hierarchy, all conspire to make the analog syn-
thesis task difficult.

2.2 Previous Approaches to Analog Design
We distinguish here three approaches to tools for analog

synthesis tasks: layout-based approaches, parameterized-
structure approaches, and knowledge-based approaches.

The layout-based approaches show the most direct in-
fluence of digital design ideas. Semi-custom analog styles,
such as transistor arrays (analogous to gate arrays) and
analog standard cells provide a rapid path to silicon for
analog functions already designed to the level of the primitive
devices available in the technology [lS, 19, 22). Place and
route tools that accommodate the sensitive electrical charac-
teristics of these devices can lay out these analog chips [II].
These approaches also constrain the circuit design itself:
device parameters are not continuously variable because only
a limited set of device types is available.

Parameterized-structure approaches fix some portion of a
circuit’s topology or layout, and parameterize the remainder.
The result is a module generator for a particular functional
block. Regular structures, such as switched capacitor filters,
are particularly amenable to this approach [14]. Other ex-
amples include the AIDE2 system 111, which uses standard
cells as the basis for building module generators; experiences
with a successive-approximation A/D converter generator
have been discussed [2]. Seattle Silicon Technologies’

CONCORDEt” silicon compiler system includes a set of
analog module generators based on parameterized custom
layouts for common analog functions.

Knowledge-based approaches attempt to reason about
analog circuits, either from first principles, or from detailed
domain knowledge. Analog circuits have actually provided a
useful domain for testing many ideas about constraint
propagation (231, causal models and qualitative reasoning
[9, 271, but to date most of these techniques seem to advance

the state of artificial intelligence research more than analog
CAD research. Several attempts have been made to syn-
thesize analog circuits. For example, Roylance (211 discusses
a rule-based system to synthesize simple circuits from an
abstract description of the required behavior. Ideal com-
ponents are selected and dynamically connected to achieve the
correct functionality. Ressler’s CIROP system [20] proposes a

Paper 3.3

43

grammar from which operational amplifiers (op amps) can be
derived, and suggests a search heuristic for making choices
about circuit topologies. Bowman [5] describes a rule-based
system that assembles op amps from simple component pieces
such as input stages and output stages. The BLADES s,ystem
[12] proposes a framework in which individual subcircuit ex-

perts are coupled by a design manager to build higher-level
circuits.

All these know’ledge-based approaches have drawbacks as
basic models for analog synthesis. For example, Roylance
[21] rederives circuit equations dynamically during synthesis.

Manipulation of the resulting symbolic algebra may be tract-
able for elementary circuits, but poses a serious barrier for
larger circuits. Ressler’s grammar [20] handles topological
design, but not device sizing. Bowman [5] seems to avoid
symbolic algebra by embedding circuit equations directly into
rules, but it is unclear if the design knowledge, specific to spe-
cialized amplifier sub-circuits, can be reused in other circuit-
synthesis tasks. BLADES [12] suggests hierarchy, in the form
of subcircuit experts, but does not suggest any mechanism by
which such experts can be coordinated to actually perform
high-level synthesis. None of these approaches deals ade-
quately with hierarchy or process dependence as critical
characteristics of analog design. Moreover, none seem to ad-
mit straightforward generalizations to different types of
analog circuits, or to provide mechanisms to attack complex
performance concerns such as noise or stability. With respect
to these techniques, there are few reports of synthesized cir-
cuits that have been functionally verified, either by detailed
simulation with respect to a reasonable fabrication process, or
by fabrication itself.

3. A Framework for Analog Circuit
Synthesis
This section presents a framework for organizing the

component pieces Iof a knowledge-based analog circuit syn-
thesis tool. We begin by outlining the synthesis task, and
then discuss the central components of the proposed organiza-
tion.

3.1 Overview

Our intent is to support high-level circuit synthesis for
specific classes of analog functions. From an input consisting
of detailed performance specifications, we want to produce a
sized, transistor-level circuit schematic. The goal is not,
however, to produce a perfectly optimal circuit in which all
device sizes have been optimized. Rather, the goal is to
produce a good first-cut design that is sufficiently “close” to
optimal that numerical optimization tools can be applied [17].

Previous approaches to synthesis have noted the dif-
ference between topological design, which interconnects
devices, and sizing, which specifies the performance of in-
dividual devices. We make a similar distinction. The
proposed framework is based on three critical ideas:

l Circuit topologies are selected from among fixed alter-
natives; they are not constructed transistor-by-
transistor for each new design. The process of choosing
from among these fixed alternatives for the design of a
circuit topology is called design style selection (after
the analogous digital synthesis task [24]).

l The fixed alternatives for circuit topologies are
specified hierarchically. A topology for a high-level
module (e.g., an A/D converter) is specified as an inter-
connection of sub-blocks, not as an interconnection of
transistors. That the topology is fixed implies only

Paper 3.3

44

Level 2

Level 3

that this arrangement of sub-blocks is fixed; the
detailed design of the individual sub-blocks is not
specified here. Because of this explicit hierarchy, one
high-level topology of blocks can specify many device-
level topologies.

l After selecting a topology to accommodate a set of per-
formance specifications given at one level of the hierar-
chy, we transhte these higher-level specifications into
specifications for the performance of each sub-block of
the topology. Informally, we are given the behavior of
the interconnected sub-blocks taken as a whole, and we
must deduce the specifications for each sub-block re-
quired to achieve this overall behavior.

l Device sizing, in the conventional sense, occurs when
this process of translation reaches the bottom of the
hierarchy and specifies the behavior of individual tran-
sistors.

Our framework, ss described above, is very similar in
spirit (but not implementation, see Section 3.3) to one
recently proposed by Brewer and Gajski [6] for digital design.
It is interesting to note that our framework was influenced by
the peculiar characteristics of the analog domain, and not the
digital domain. For example, reuse of partial circuit
topologies is extremely common in analog design, and con-
tributes directly to our notions of hierarchy and design style
selection. In addition, the framework in its current form
solves several problems encountered in our own early im-
plementations of a synthesis tool. The idea of parameterized
cells is also influential here, but the addition of a hierarchical
representation is essential for application to high-level syn-
thesis. Without hierarchy, we would be forced to provide a
parameterized topology for each of the unmanageably large
number of nearly identical transistor-level variations for a
given function. The following sections examine these ideas
and relevant implementation concerns.

3.2 Hierarchy, Selection, Translation

Reliance on explicit hierarchy in analog design has two
advantages. First, it permits the design process to be recast
as a sequence of smaller design tasks, alternating between
design style selection, and translation. Second, it provides a
measure of generality, in that sub-blocks can be reused in dif-
ferent contexts. For example, an op amp is a sub-block in
many A/D converter topologies, but there need be only one
set of selectors/translators for op amps.

Figure 1 shows a typical analog hierarchy for a successive
approximation A/D converter block. It is important to note

Level 0
sume

Appmximation

MJ

Figure 1: Hierarchy for Successive Approximation
A/D Converter

that analog hierarchy is not strict, in the sense that sub-
blocks on the same level in the hierarchy do not necessarily
have the same complexity. For example, in the A/D con-
verter hierarchy the sample-and-hold circuit might turn out to
be only a single capacitor and a pair of transistors, while the
comparator at the same level might include more than 20
transistors.

A hierarchical representation makes the synthesis task
more tractable, but has one disadvantage. By recasting cir-
cuit design as a sequence of alternating topology selection and
Lranslation steps, we lose the easy ability to implement design
tricks that jump across many levels of the hierarchy. Expert
circuit designers often employ such tricks to push circuits
close to the limits of achievable performance (e.g., 1261). Since
the. hierarchy explicitly prevents the designer of one module
from knowing the details of how other modules are imple-
mented, we are not able to reach such extremal points in the
design space of a given block.

The two-step topology selection and translation process is
illustrated for an abstract block in Figure 2. A particular
topology is chosen because it is the one best able to be con-
figured to match the specified block-level behavior; the trans-
lation step then decides how the sub-blocks must behave to
meet the block-level specification. An important advantage of
recasting analog synthesis as a sequence of selection and
translation steps is that the design task is uniform at all
levels of the hierarchy: topology selection and translation oc-
cur when designing a complex high-level function, and also
when assembling a few transistors; only the actual implemen-
tation of this two-step process will vary.

Our original motivation for using separate selection and
translation steps was to avoid the need to simultaneously
design the interconnection and electrical characteristics of
devices. Restricting the design of sub-block interconnections
to a choice among fixed alternatives allows us to concentrate
on specifying the electrical characteristics of the connected
sub-blocks. The hierarchical representation of topologies
vastly simplifies the translation task because it tends to
reduce the number of sub-blocks and simplify their connec-

Bto& -
Designe

Input Performance Specification
. B ~

Figure 2: Topology Selection and Translation

tions. It also simplifies the selection task, because we do not
require a vast number of nearly identical topologies, differing
only in low-level details.

3.3 Implementation Concerns: Applying Analog
Design Knowledge

The basic framework just described, although motivated
by analog design problems, shares many features with digital
synthesis approaches. For example, the leverage to be gained
from exploiting fixed design styles has been discussed in
14, 6] and the utility of recasting the behavior-to-structure

synthesis task as a sequence of smaller steps is also widely
known [25]. However, there is one feature of the analog syn-
thesis task that distinguishes it from digital synthesis: the na-
ture of analog domain knowledge,

We observe that good analog designers exhibit two
characteristics. First, they are adept at choosing highly
simplified models of devices and device interactions to guide
their choices for tradeoffs. These models, though simple, are
informed by detailed knowledge of how subtleties of the
fabrication process and the desired performance parameters
will interact in a specific circuit topology. Second, good
designers have a basic plan of attack for designing common
functional blocks. These two observations suggest a way to
implement the framework we have proposed. We can sum-
marize these implementation choices as follows:

. For a single topology selection/translation step, design
knowledge is represented in the form of circuit equa-
tions and algebraic constraints involving circuit
specifications.

l The process by which a high-level block specification is
translated into sub-block specifications is implemented
as a planning system. Plans are stored with fixed
topologies, and executed when the topology is instan-
tiated. Rules fire at the end of each plan step to cor-
rect errors, and modify the dynamic flow of the plan.

We can justify each of these choices by referring again to the
characteristics of good human designers.

Analog designers work routinely with simple algebraic
descriptions (linear and non-linear) of the relationships among
circuit components; expert designers choose the right descrip-
tions, and prune away the relationships irrelevant to the par-
ticular task at hand. Because we represent circuit topologies
as statically stored templates, we can easily store the relevant
circuit equations with the template, for use during the trans-
lation step. Note, systems which dynamically design
topologies must also re-discover these equations dynamically
[21]. Unfortunately, storing circuit equations does not com-

pletely solve the problem. Real design problems are usually
so under-constrained that many heuristic tradeoffs must be
made to achieve a workable design that matches intended per-
formance specifications. Such heuristics are the real basis of
analog expertise; the critical question then is how to codify
such heuristics.

We codify these heuristics as small program fragments
that numerically manipulate the algebraic constraints to be
satisfied at particular steps in the translation process. For ex-
ample, the design of a two-stage op amp requires us to choose
how to partition the total gain between the two amplifier
stages. Given a gain partition, circuit equations can tell us
the resulting performance of the circuit, but these equations
suggest nothing about how to arrive at this partition. One
workable initial heuristic is simply to assign the square root of
the gain to each stage. This is easily stated algebraically, and
the partition can be modified by subsequent heuristics if a

Paper 3.3
45

later situation arises which precludes this simple partition. It
is also important to recognize that the hierarchical form of
topology templates (only those at the bottom of the hierarchy
specify transistors) means that most circuit constraints are
formulated as constraints on the behavior of each abstract
block as seen at its terminals.

We apply design knowledge in the form of circuit equa-
tions and constrains by using plans. Two basic approaches
to implementing knowledge-based systems are rules and plans.
Rules codify knowledge in situation-specific IF-THEN actions;
they are applicable when we know how to react to a specific
design situation, but not the order in which these situations
will occur. Plans ccodify knowledge in plan steps, which may
be implemented as either rules, algorithms, or both. Plans
specify a rough ordering of the basic design steps, and. may
need to be modified at run-time depending upon the state of
the design. It is important to recognize that plans and rules
are not mutually exclusive: some rule-based CAD tools
employ planning ideas with differing degrees of sophistication
[15, 161. In our a.pplication, the translation process is ac-

complished by executing a plan stored with each topology
template. The plan represents a basic order in which to at-
tack the specification of sub-block behaviors. Individual plan
steps in our implementation are largely algorithmic: they
manipulate circuit equations and constraints numerically.
Each plan step has a set of goals it expects to achieve, and a
set of circuit and process relationships it knows how to
manipulate to achieve these goals.

A major weakness of planning systems is that they re-
quire a mechanism to dynamically modify a plan that fails to
achieve its goals (this is sometimes referred to as patching a

plan). Similar to &her planning systems [7], we use rules to
patch plans. Such rules can either modify circuit specific%
tions in ways that are beyond the limited scope of individual
plan steps, or can rerun portions of the plan with new initial
constraints to avoid the problems previously encountered.
The feasibility of fixing plans in this way derives from our
conjecture that good plans have predictable failure modes,
i.e., when an analog expert fails at a particular step in his
overall plan of atta.ck, very often the failure can be easily lo-
cated because therl: are (relatively) few things that can go
wrong, especially when we are constrained to a fixed topology.
Figure 3 illustrates this process.

Such a planning mechanism is useful mainly for the
translation process, and not for topology selection. Our
limited implementation experience suggests that circuit equa-
tions are adequate for discriminating among topologies for
low-level, primitive topologies, but that other heuristics
(probably rule-based) are required for high-level topology
choices.

4. OASYS: a Prototype Op Amp
Synthesis System
OASYS is a prototype tool that can synthesize sized

transistor-level circuit schematics for simple one-stage and
two-stage CMOS op amps given a set of performance
specifications and a description of a fabrication process. It
was built to test the feasibility of the framework. This sec-
tion discusses the domain in which OASYS works, its im-
plementation, and the performance of the circuits it syn-
thesizes.

4.1 The Domain and its Constraints

Operational amplifiers were chosen es a test domain be-
cause they are ubiquitous components in many system-level
designs, and because they appear to be the favored first target

Performance
specification Selected Topology

Plan Execution Mechanism

Figure 3: Planning in Analog Synthesis

of other synthesis approaches [5, 20, lo]. For simplicity, we
restrict designs to CMOS. We also deal with a rather limited
hierarchy. OASYS currently understands two topologies for
op amps: a standard two-stage unbuffered op amp style, and
a one-stage operational transconductance amplifier (OTA)
style. However, OASYS can design the sub-blocks of each of
these styles in several topologies. The OASYS hierarchy was
selected to explore two levels of design style selection and
specification translation: first select op amp design style
(relatively easy since we currently implement only two styles)
and translate op amp specifications into specifications for sub-
blocks (current mirrors, differential pairs, etc.); and second,
select design styles for each sub-block and then translate each
sub-block specification into device interconnections and sizes.
This reflects our basic goal to incorporate just enough hierar-
chy in the prototype to build a working system.

To specify the synthesis task we need a description of the
fabrication process and a set of op amp performance specifica-
tions. To keep pace with the rapid evolution of process tech-
nology, OASYS simply reads process parameters from a tech-
nology file; the parameters currently specifiable in OASYS ap-
pear in Table 1. Table 2 in Sec. 4.3 gives the performance
parameters that OASYS can currently design to meet. From
these inputs, OASYS produces a sized transistor-level circuit
schematic.

4.2 The Implementation of OASYS

The framework in its current form evolved from ex-
perience with a sequence of three OASYS prototypes. The
first version was implemented as a classical rule-based system
with about 100 rules. This version designed op amp
topologies by composing specialized sub-blocks, similar to [5].

paper 3.3

46

Ptocess Parameters
1. Threshold Voltage (V)
2. K (PAN*)

9. C,, (fF/+m2)

3. Process Min. Width (pm)
10. Czd (fF/+m)

4. Built-in Voltage (V)
11. C&b (fF/+m)

5. Min. Drain Width (km)
12. Cjsv (fF/km)
13. Cl, (fF&m’)

6. Supply Voltage (V) o 14. fe, fr, for A = f&”
7. Oxide Thickness (A) channel length
8. Mobility (cm’?V-s) modulation

Table 1: OASYS Process ParameLers

We found that sizing here was complicated by difficulties in
specifying the behavior of the sub-blocks (op amp stages) we
had chosen, based on intuition, to work with. Moreover, we
conld not reuse these blocks in other types of analog circuits.
A second version of OASYS used well-specified reusable sub-
blocks, with more explicit hierarchy; designers for blocks were
still rule-based. As we evolved toward planning as a control
mechanism, plan steps manipulating algebraic circuit con-
straints became tedious to implement in a rule-based
framework; we then abandoned a purely rule-based approach
and adopted instead the current plan-based system with rules
for plan modification. The current version of OASYS com-

prises about 7500 lines of Franz LISP running under UNIXtm
on a VAX 111785.

Figure 4 illustrates an example (two-stage) op amp topol-
ogy template used in OASYS. Because this version of OASYS
has just two design styles, there is minimal high-level design
style selection. We currently attempt to design each style,
and if both can meet the specification, select the one with the
best match to the specifications, biasing the choice in favor of
the design with the smallest estimated area. Area estimates
include both active device area and compensation capacitor
area. This version of OASYS mainly does translation, from
the op amp specifications to the specifications for the in-
dividual sub-blocks. Sub-blocks include differential pairs, cur-
rent mirrors, level shifters, and tranconductance amplifiers.
However, for each sub-block, both style selection and trans-
lation are required. In the hierarchy implied in Figure 4 it is
interesting to observe the unique role of feedback compen-
sation. Unlike the one-stage style, the two-stage style is in-
ternally compensated with an explicit feedback capacitor.
But because the feedback compensation scheme depends on
the specifications of almost every other block in the op amp,
its design cannot be easily deferred to some lower-level block
designer. Hence, compensation is explicitly addressed as part
of the plan associated with the two-stage template: it is con-
ceptually one level higher in the hierarchy than the other sub-
blocks. Notice also that none of these sub-blocks is specific to
a particular topology: they are based on their own independ-
ent templates and plans, and are fully reuseable as parts of
other higher-level designs.

The two-step selection/translation process is best il-
lustrated in the implementation of one of the simple sub-block
designers. There are two possible topologies (simple and
cascade) for a current mirror. Selection is based primarily on
area, as evaluated from circuit equations; the style with the
smaller area is selected. However, the detailed design of one
topology requires some simple heuristics, because many pos-
sible combinations of device sizes can achieve the same overall
mirror performance. For example, in a four-transistor cascode
topology, we choose to fix the length of two devices at their
minimum size, and require the width of all four devices to be
equal. This produces a workable, unique solution. These
translation operations are implemented in their own (albeit
simple) pIan.

Figure 4: OASYS Two-Stage Op Amp Topology Template

The plans attached to overall op amp topologies are more
complex. Each of the two plans (for one-stage and twestage
designs) has between 20 and 25 plan steps, and roughly 10
rules to modify the execution of each plan. Currently, these
rules match fairly simple conditions that necessitate plan
modification. However, the corrective actions taken by these
rules can be complex, requiring as much computation as a
complete plan step. An example of how plan steps and rules
interact is the partitioning of overall gain between the stages
of the twostage topology, mentioned earlier in Section 3.3.
The heuristic choice for the partition interacts with several
performance specifications, notably the phase margin. At the
end of one plan step, we may discover that the tentative par-
tition is unimplementable; e.g., it might not be possible to
meet the gain specification. At this point, a rule fires to see if
either stage is currently in the cascode configuration. If not,
one stage is cascaded to increase the gain, the gain partition is
skewed to place more gain in the cascaded stage, and the plan
is restarted from an earlier step. This example illustrates the
need for rules that have a more global view of the problem
than plan steps, and the need to dynamically change the ex-
ecution of the plan.

4.3 Performance Evaluation

To verify that OASYS can synthesize functional circuits,
we start with three sets of performance specifications (A, B
and C) and examine the circuits synthesized by OASYS to
meet these specifications. We employ process parameters
from a proprietary industrial 5 pm CMOS process. Table 2
lists the performance parameters specified for each of three
test cases, and the resulting performance parameters for the
OASYS-synthesized circuit. SPICE simulations are used to
estimate the resulting performance of these circuits. Figure 5
shows the synthesized schematics for each of these circuits.
Figure 6 gives a gain-phase plot derived from simulation for
test circuit C, to further illustrate the results of this design
exercise.

The three test cases are as follows:

Specification A is for an ordinary op amp that makes
no unusual demands on the process, or circuit design
expertise. OASYS produces a one-stage design that
meets all specifications. Although a two-stage design is
also straightforward here, it occupies more area and is
eliminated on that basis.

Specification B is slightly more difficult, requiring more
gain, a lower offset voltage and a larger output voltage
swing than Specification A. OASYS selects the simplest
twostage topology here. This design is
straightforward--for a two-stage implementation--but
essentially impossible for the one-stage style, which is
unable to cope wrth the simultaneous demands on gain,
offset and output swing. To achieve the necessary
gain, the one-stage plan attempts to increase device
sizes, which compromises the output swing. In ad-

Paper 3.3

47

Table 2: Specificatilons and Results for OASYS Test Cases

Figure 5: Synthesized Circuit Schematics for
Three Test Cases

Gain(dB) Phase(deg)

100 10' 102 103 104 106 loe

Freq(Hs)

Figure 6: Gain-Phase Plot for Synthesized Test Circuit C

dition, the one-stage style always has an inherent sys-
tematic offset voltage, which cannot be compensated
for here.

3. Specification C is the most aggressive performance
specification, since it requires 100 dB of gain and a low
output voltage swing of h2.5 volts. OASYS chooses a
complex twostage style here. Comparison between the
simple 2-stage circuit synthesized for specification B
and the circuit produced for case C (Figure 5) shows
that OASYS cascoded the input current bias and out-
put load mirror and inserted a level shifter to match
the output voltage of the differential pair in the first
stage to the input voltage of the transconductance
amplifier in the second stage. These additions were
necessary to meet the more difficult performance
specifications. Because this example makes more dif-
ficult demands, OASYS is less able to meet specifica-

tions precisely; for example, 45O of phase margin was

specified, whereas 32O was achieved. However, this is
acceptable for a first-cut design.

For all these test cases, the CPU time is modest, usually
under 2 minutes of CPU time per op amp. All the resulting
designs are acceptably close to the specified performance
parameters. Recall that OASYS is not intended to produce
perfectly optimal designs; rather, it is intended to produce
reasonable designs, very quickly. OASYS satisfies our original
goal of producing circuits that are “close” enough to apply
other optimization tools.

An important advantage of a tool such as OASYS is its
ability to design with respect a continuo~ range of perfor-
mance parameters. This is in sharp contrast to design styles
based on a library of fixed cells, or even parameterizable cells,
which typically have only a few variable parameters, each ad-
justable over a limited range. To illustrate this, we reconsider
the specifications of test case A with a slight modification: we
now wish to examine the range of achievable gain when driv-
ing a small load capacitance of 5pF, or a large load of 2QpF.
Our intent here is to explore what gain is achievable in each
topology OASYS can design to meet all the relevant con-
straints. Figure 7 plots area versus gain for all the circuits
OASYS can design to meet these specifications. Notice that
the one-stage designs are clearly smaller, but always have a
smaller range of achievable gains. This is because the OTA
style has fewer degrees of freedom in design; hence, OASYS
can ma.ke fewer tradeoffs to achieve the required gain while
satisfying the remaining specifications. Also shown in the

Paper 3.3

48

-.
200 l-stage designs (5pF load)

I I I I I I I I I

30 40 50 60 70 80 90 too 110
Gain (dB)

Figure 7: OASYS Results with Continuous
Parameter Variation

Figure are the points at which OASYS automatically makes a
topology change to meet the increasing gain requirements.

These curves also illustrate the need for a design style
selection component to choose the best style: over some
ranges of achievable gain, OASYS can design the circuit using
either op amp style. Style selection at this level is still
simplistic in OASYS, and is based on breadth-first search. All
possible styles are designed and a selection among successful
design styles is made based on comparison of final parameters
such as estimated area.

5. Conclusions
We have presented a framework to support behavior-to

structure synthesis for analog circuits. A prototype im-
plementation, OASYS, can design simple CMOS op amps
from performance specifications and process specifications; the
correctness of these designs has been verified by detailed cir-
cuit simulation. Preliminary experience with the OASYS
prototype is encouraging, and suggests that a hierarchy of
selection/translation steps is a workable approach to this syn-
thesis task.

Our immediate plan is to expand the breadth of circuit
knowledge in OASYS to include more op amp topologies (e.g.,
folded cascade and fully differential styles) and more sub-
block types (e.g., comparators). Our longer-range goal is to
look at functional blocks with a few more layers of hierarchy,
in particular, data acquisition circuits, for which there is a
wide range of design styles and with which we already have
considerable design experience.

6.

PI

PI

[31

[41

151

161

171

PI

[91

I101

IllI

Pl

1131

[I41

1151

[161

[I71

1181
[W

PO1

Pll

P21

[23l

[24l

I251

References

P. E. Allen and E. R. Macaluso, “AIDE2: An Automated
Analog IC Design System”, Roe. IEEE Custom Integrated
Circuiuts Conf., 1985.
P. E. Allen and P. R. Barton, “ A Silicon Compiler for Succes-
sive Approximation A/D and D/A Converters”, fioc. IEEE
Custom Integrated Circuiuts Con J., 1986.
M. R. Barbacci, “Instruction Set Specifications (ISPS): The
Notation and its Applications”, IEEE Trans. Computers,
CZO(l), January 1981.
W. P. Birmingham and D. P. Siewiorek, “MICON: A
Knowledge Based Single Board Computer Designer”, fioc. 21st
ACM/IEEE Design Automation Conf., 1984.
R. J. Bowman and D. J. Lane, “A Knowledge-Based System for
Analog Integrated Circuit Design”, Fkoc. IEEE Internat.
Con J. on Computer-Aided Design, 1985.
F. D. Brewer and D. Gajski, “An Expert-System Paradigm for
Design”, Roe. 23rd ACM/IEEE Design Automation ConJ.,
1986.
M. Bushnell and S. Director, “VLSI CAD Tool Integration
using the ULYSSES Environment”, l+oe. 22rd ACM/lEEE
Design Automation Conf., 1986.
R. Castello and P. R. Gray, “Performance Limitations in
Switched-Capacitor Filters”, IEEE Trans. on Circuits and
Systems, GAS-32(9), September 1985.
J. De Kleer and G. J. Sussman, “Propagation of Constraints
Applied to Circuit Synthesis”, Circuit Theory and
Applications, 8,198O.
M. G. R. Degrauwe and W. M. C. Sansen, “The Current Ef-
ficiency of MOS Transconductance Amplifiers”, IEEE Journal
o J Solid-State Circuits, X-19(3), June 1984.
C.D. Kimble, A.E. Dunlop, G.F. Gross, V.L. Hein, M.Y. Luong,
K.J. Stern, E.J. Swanson, “Autorouted Analog VLSI”, I+oc.
Custom Integrated Circuit Conference, 1985.
F. M. El-Turky and R. A. Nordin, “BLADES: An Expert Sys-
tem for Analog Circuit Design”, A-oc. IEEE Intl. Symp. Cir-
cuits and Systems, 1986.
M. W. Hauser and R. W. Brodersen, “Circuit and Technology
Considerations for MOS Delta-Sigma A/D Converters”, IEEE
Zntl. Symp. on Circuits and Systems, May 1986.
W.J. Helms and K.C. Russel, “Switched Capacitor Filter
Compiler”, Proc. Custom Integrated Circuit Conference,
1986.
J. Kim, J. McDermott and D. P. Siewiorek, “Exploiting
Domain Knowledge in IC Cell Layout”, IEEE Design and
Test, 1(3)1984.
T. J. Kowalski and D. E. Thomas, “The VLSI Design Automa-
tion Assistant: What’s in a Knowledge Base”, Rot. 22nd
ACM/IEEE Design Automation Conf., 1985.
B. Nye, A. Sangiovanni-Vincentelli, J. Spoto and A. Tits,
“DELIGHT.SPICE: An Optimization-Based System for the
Design of Integrated Circuits”, Boc. Custom Integrated Cir-
cuit Con Jerence, 1983.
T. W. Pickerrell, “New Analog Capabilities on Semi-Custom
CMOS”, Roe. Custom Integrated Circuit Con Jerence, 1983.
T. Pletersek et al, “Analog LSI Design with CMOS Standard
Cells”, Proc. IEEE Custom Integrated Circuit Conference,
1985.
A. Ressler, A Circuit Grammer Jor Operational AmpliJier
Design, PhD dissertation, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, 1984.
G. L. Roylance, “A Simple Model of Circuit Design”, Master’s
thesis, Massachusetts Institute of Technology, 1980.
G. I. Serhan, “Automated Design of Analog LSI”, Roe. IEEE
Custom Integrated Circuit Conference, 1985.
G. J. Sussman and R. M. Stallman, “Heuristic Techniques in
Computer-Aided Circuit AnaIysis”, IEEE Transactions on
Circuits and Systems, GAS-22(11), November 1975.
D. Thomas, “The Automatic Synthesis of Digital Systems”,
Boc. IEEE, 69(10), October 1981.
D. Thomas, et al, “Automatic Data Path Synthesis”, IEEE - ~,._ . ~~.
Computer, 16(E), December 1983.

[ZS] R. Widlar and M. Yamatake, “A 150W Opamp”, Digest OJ
Tech. Papers, Intl. Solid State Circuits Conf., February 1985.

1271 B. C. Williams, L‘Qualitative Analysis of MOS Circuits”,
Master’s thesis, Massachusetts Institute of Technology, 1984.

Paper 3.3

49

