
Beyond Low-Order Statistical Response Surfaces:
Latent Variable Regression for Efficient, Highly Nonlinear Fitting

Amith Singhee and Rob A. Rutenbar
Dept. of ECE, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213 USA

{asinghee,rutenbar}@ece.cmu.edu

Abstract
The number and magnitude of process variation sources are increas-
ing as we scale further into the nano regime. Today’s most successful
response surface methods limit us to low-order forms -- linear, qua-
dratic -- to make the fitting tractable. Unfortunately, not all variation-
al scenarios are well modeled with low-order surfaces. We show how
to exploit latent variable regression ideas to support efficient extrac-
tion of arbitrarily nonlinear statistical response surfaces. An imple-
mentation of these ideas called SiLVR, applied to a range of analog
and digital circuits, in technologies from 90 to 45nm, shows signifi-
cant improvements in prediction, with errors reduced by up to 21X,
with very reasonable runtime costs.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Design

Keywords
Response Surface, DFM, Dimensionality reduction, Regression

1. Introduction
Statistical manufacturing variations are of growing concern in the
nanoscale regime. There is an urgent need to create robust and effi-
cient models of the impact of these effects on circuit performance.
Any solution to these problems must address three large challenges:

Dimensionality: The number of sources of variations can be
large. Even for a simple flip-flop, there can be over 50 sources,
e.g., random dopant fluctuation (RDF), line edge roughness
(LER), poly crystal orientation (PCO) [1], and gate-oxide
thickness variation. For larger analog cells the dimensionality
can easily be in the hundreds.

Large variations: The relative effect of every variation source
is becoming very large. Just considering RDF, predictions indi-
cate that the standard deviation of the threshold voltage (Vt)
can be 10% of the nominal Vt at the 70nm node [2], growing to
21% for a 25nm device[3], with 0.3V Vt. If other variations
(LER, PCO) are considered, the deviation is even higher [1].
Nonlinearity: Not all performance/variable relationships are
simple. A good example is the relationship between device Vt
in a flip-flop, and the flip-flop delay. Such nonlinearity is even
more pronounced in the case of analog circuits.

Today’s most successful Response Surface Models (RSMs) typi-
cally assume linear or quadratic model behavior. Linear models
have been used extensively in yield optimization [4][5]. However,
these models are weak at capturing nonlinear behavior, i.e., they are
effective mainly when the variations are small enough to allow a
linear approximation. To surmount these problems, quadratic mod-
els have been proposed [6]. The PROBE method of [7], and the
method of [8] derive reduced rank quadratic models to reduce the
problem dimensionality and the quadratic fitting cost. However, as
we shall see, even quadratic models cannot always capture the non-
linearity seen in the presence of large manufacturing variations.

We suggest that Latent Variable Regression (LVR) techniques are
an attractive approach in these scenarios [9]. Roughly speaking,
these techniques iteratively extract the next “most important” sta-
tistical variable (Latent Variable or LV), and minimize the error in
fitting the remainder of the unexplained performance variation.
Hence, they directly reduce the problem dimensionality. However,
these techniques need to be accompanied with flexible, but compact
functional forms for the model, thus reducing a priori assumptions
about the magnitude and behavior of the variations modeled.

The method has a long and interesting track record1 -- much of it
outside the realm of silicon applications, in areas ranging from ch-
emometrics [10], to general statistics[11], to bioinformatics [12].
Many LVR methods still assume a linear relationship, or use a low-
order nonlinear kernel to explain the assumed nonlinear relation-
ships. Thus, our own interest is on LVR methods that support a
more flexible nonlinear framework. Here, Baffi et al., [13], and
Malthouse et al. [14] are noteworthy. In addition to the single vari-
able iterative extraction philosophy, these show how to use a neural
network [15] to capture significant nonlinear behaviors. Of course,
neural network models bring with a them host of ancillary problems
related to model selection and validation. As a result, they have an
(undeserved, in our opinion) reputation as the regressor of last
choice in many scenarios. As we shall show, with proper attention
in the fitting process, one can employ a very small network to mim-
ic linear, quadratic, and more highly nonlinear behaviors, all in a
single, unified LVR formulation. Moreover, we show a more uni-
fied mathematical framework that avoids the speed and reliability
problems of [13], and the complexity burdens of [14].

In the rest of the paper, we show how to adapt LVR to the specific
problems of modeling large manufacturing variations in circuit-level
designs. To emphasize that our interests are in scaled silicon, we refer

1.And, unfortunately, a long and confusing series of related names, includ-
ing: Partial Least Squares (PLS), Canonical Correlation Regression (CCR),
Projection on Latent Structures (PLS), Reduced Rank Regression (RRR),
and Ridge Regression (RR). These methods are similar, differing primarily in
the formulation of their optimization problem; see [12][9].

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4-8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006…5.00

256

14.4

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

to the technique as SiLVR (for Silicon LVR). Section 2 reviews the
concepts of latent variables and latent variable regression. Section 3
describes SiLVR in detail. Section 4 presents our circuit testcases and
experimental results. Section 5 offers concluding remarks.

2. Background: Latent Variable Regression
Suppose we need to model the relationship between variables,

, and circuit responses,
(1)

and our model is
. (2)

Also assume that and have been scaled and centered to have
zero mean and unit standard deviation. Classical LVR methods [9]
start from a linear form for the model function . The standard lin-
ear model can be written as

(3)

where and are matrices containing all the sam-
ples of and the corresponding predictions, respectively.
is a matrix of regression coefficients. LVR modifies this model to

(4)

where is a matrix to project the -dimensional vectors
onto an -dimensional space, where . is a matrix of
the regression coefficients for the projected vectors. Hence, the di-
mensionality of the input space is reduced from to and then a
smaller linear model is fit from this projected space to the output.
The projected vectors () are called the latent variables (LVs).
Comparing (4) to (3), we can see that

(5)

the new constraint being that is not of full rank: .

As mentioned earlier, the primary difference in the theoretical
framework of the LVR methods is the problem that is optimized to
obtain the regression coefficients in . If we pick one column
of the projection matrix , one possible problem formulation is

, s.t. , (6)

where are the LVs. The objective function is proportional to
the sum of squared covariances of the LV and the outputs. It can be
shown [16] that optimizing this objective function for each column
of is equivalent to optimizing the following objective function

; (7)

that is, we compute the projection vectors, , and the reduced re-
gression coefficient matrix, , that minimize the mean-squared er-
ror of the predictions, under the reduced rank constraint. This is

exactly what we want to achieve from our modeling attempts. This
LVR method is commonly known as Reduced Rank Regression
[11]. For a comparison with other LVR methods, refer to [9].

The problem of modeling nonlinear behavior, however, remains
unsolved by these classical LVR techniques. Kernel-based methods
try to address this issue by using the well-known “kernel trick”:
map the inputs (), using fixed nonlinear kernels (, e.g., a
quadratic [8]), to a higher dimensional space, and then create a re-
duced linear model to the output . This has severe limitations: it
increases the problem dimensionality before reducing it, and, more
importantly, assumes a known nonlinear relationship between
and . Baffi [13] proposes adapting these ideas to use a more flex-
ible neural network [15] formulation, but the model fitting is very
slow (a two-step process iterates between model fitting and LV es-
timation) and unreliable (due to weak convergence of this two-step
iteration). Malthouse [14] takes this further, but produces a very
complex neural network model (indeed, three separate neural net-
works, connected together) that can cause undesirable overfitting,
especially for small training datasets, and has a large number of un-
knowns to fit. Also, both these methods solve a problem different
from (7). The PROBE method of [7] also uses a projection-based
approach, but is restricted to a quadratic form, and also does not ex-
plicitly solve for the latent variables, one by one.

SiLVR adopts the central philosophy of the LVR methods: 1) find a
projection to a single latent variable (LV); 2) fit a flexible nonlinear
functional form to the relationship between the LV and the output 3)
repeat for the next LV. We shall often refer to such a LV-based model
as a reduced model. We will now explain SiLVR in detail.

3. SiLVR: a New Latent Variable Regression Strategy
We use a carefully constructed feedforward neural network as our re-
duced model. Neural networks have remarkable flexibility in model-
ing strong nonlinearity, but, this flexibility needs to be carefully
controlled: if the network is overly complex, or not trained carefully,
it can overfit the data: Fig. 1 shows an example. If the network is
carelessly constructed it can overuse its modeling flexibility and lose
track of the primary relationship (triangular in this case). Such over-
fitting can be avoided by keeping the network structure as small as
possible and intelligently guiding the training process. We will pay
careful attention to these issues while constructing our model.

3.1 Structure of the Nonlinear Model
Fig. 2 shows the structure of our model: it takes in all inputs and
predicts one output. In the case of multiple outputs (), we han-
dle each output independently, one at a time. Hence, for simplicity,
we will use a single output variable in the following explanation:

k
x x1 … xk, ,{ }= m y y1 … ym, ,{ }=

y f x()=

ŷ fm x()=

x y

fm

Ŷ XB=

X n k×() Ŷ n m×()
x B k m×()

Ŷ XWaZ=

Wa k a×() k x
a a k< Z a m×()

k a

XWa

B WaZ=

B rank B() a k<=

B wi
Wa

max
wi

wi
TXTYYTXwi wi

TXTXwi 1= wi
TXTXwj 0 i j≠,=

Xwi

overfit

good fit

FIGURE 1. The data has a triangular relationship. The good fit is ab
to capture the relationship well, while overfitting unnecessarily

Wa

min
Wa Z,

Y XWaZ– 2

Wa
Z

x fK x()

y

x
y

+ +

+
+

+

bi,1

bi,2

bi,s

wi,1
wi,2
wi,3

wi,k

ni,11

ni,12

ni,1s

ni,21

ni,22

ni,2s

ni,30

x1
x2
x3

xk

ŷ

ti

Projection Nonlinear function

FIGURE 2. Neural network model structure for extracting one latent
variable (ti) and predicting one output

k
m 1>

y

257

the same methodology is applied for modeling each output. The mod-
el has two main parts:

1) Linear projection from the input () to a latent
variable (). is the projection vector. Hence,
the -th LV is given as

(8)

 are chosen, so that the projection is maximally aligned with .

2) A nonlinear function predicting the output from , com-
posed of a fixed number () of sigmoid functions. The sigmoid
function used is , which has an output range of [-1,1]. Such
a functional form provides welcome flexibility for modeling large
varieties of nonlinear behavior. The variables are internal
weights of the network and are the bias values. The values for
these weights and biases are chosen to minimize the error between
the network prediction and the actual value .

This structure has been carefully selected to closely match the intu-
ition of LVR, and minimize structural overfitting. We fit the two
parts simultaneously, by training the entire network all at once. The
fitting problem can be cast as an optimization problem:

, where (9)

where is the number of training samples. Once a network has
been trained to extract one LV, the values are “deflated” to re-
move the modeled component:

(10)

and (9) is solved again to extract the next LV, and so on. Compared
to [13], we have included the projection as a part of our model, and
use a non-iterative training stage to solve the fitting problem. This
gives us significantly improved convergence and training speed.

Note that the number of model parameters to solve for is ,
per LV, where is the number of neurons in the sigmoid layer.
can be kept very small (12 for our experiments). Hence, for each
output, the number of model parameters is , with the propor-
tionality constant equal to the number of LVs used. We shall see
that the number of LVs needed is very small in most cases (within
2). Hence, this model is very compact and yet, extremely flexible.

3.2 Training the Model
Training the model involves solving the nonlinear optimization
problem (9). Of course, we would like the solution method to be
fast. However, there is the added, and arguably more important, re-
quirement of the solution being generalizable: the model should not
overfit the training data and should have low prediction errors for
new samples. Overfitting would make the model practically use-
less. We use several techniques for fast training and robust model
generalization, standard in the data mining community.

Projection vector initialization. The unknown parameters of the
model have to be assigned some initial values to start the optimiza-
tion from. An intelligent guess about the approximate value of these
parameters can significantly help the optimizer, since it would start
closer to the global minimum. For the projection weights , we
use Spearman’s Rank Correlation ()[17] for this guess. Suppose

 and are the ranks of corresponding values of some input co-
ordinate and the output, respectively, then

(11)

is their rank correlation. This measure of correlation is more robust
than linear Pearson’s correlation, in the presence of non-linear rela-
tionships in the data. Hence, is a measure of how strong the re-
lationship between and is, or how important is for
predicting . Recognizing this, we can initialize

, where (12)

The other parameters, are initialized using the Nguyen-Wid-
row method [18].

Nonlinear optimization. We use the Levenberg-Marquardt (LM)
algorithm for training the network [19]. LM is a combination of the
Steepest Descent (SD) and Gauss-Newton (GN) algorithms [20].
SD takes steps along the direction of maximum slope of the objec-
tive function. GN uses a linear approximation of the local region
around the current point to estimate the minimum point, to use for
the next iteration. GN is a simplified version of the Newton’s meth-
od, which has a very desirable quadratic convergence close to the
minimum point. However, for non-convex surfaces, GN can get
lost far from the global minimum. In such a situation SD is a better
choice. The LM algorithm combines the SD and GN into the fol-
lowing stepping formula

(13)

Here is the vector of unknowns being solved for ().
 is the vector of all the error values at the

current point, and is the Jacobian of this error vector at the
current point. is a parameter that is automatically adjusted during
runtime. If is small, LM behaves like the GN algorithm and if it
is large, it behaves like SD. In spite of its heuristic nature, this algo-
rithm works significantly better than just SD or GN in practice [19].

Bayesian regularization. The LM algorithm alone can often con-
verge to solutions that correspond to overfitting of the training data,
since its sole aim is to minimize the training error (9). To guide the
algorithm to solutions that are more generalizable, we use the stan-
dard technique of regularization [15]. For this, we augment the ob-
jective (9) as follows:

, where , and

(14)

We have added another term , the sum of squares of the network
parameters, to the original objective . Keeping this term small
encourages a smoother (less overfitting) response from the network
[21]. The parameters and can be automatically determined us-
ing a Bayesian framework which maximizes the posterior probabil-
ity of the values of and [21], for the given training data. This
framework fits very well with the LM algorithm: it requires the
Hessian of the objective function, which is already provided by the
LM algorithm. For a detailed explanation, see [22].

K-fold cross-validation. Cross-validation (CV) is a standard tech-
nique to improve model generalizability (reduce overfitting) [15].
The basic concept is as follows. The training set is divided random-
ly into separate sets of equal size. Then, training runs are per-
formed, each time leaving out one set as the testing set, and the
average testing error over all the runs is computed. This entire
procedure is repeated for each candidate model structure, and the

x x1 … xk, ,{ }=
ti wi wi 1, … wi k,, ,{ }=

i

ti xTwi xjwi j,j 1=
k

∑= =

wi y

y ti
s

x()tanh

ni j,
bi

ŷ y

min
wi ni bi, ,

ej
2

j 1=
N

∑ ej yj yj
ˆ–=

N
y

yj yj yj
ˆ–=

k 3s 1+ +
s s

O k()

wi
rs

Rl Sl
xj

rs
j

Rl R–() Sl S–()l∑

Rl R–()2l∑ Sl S–()2l∑
---=

rs
j

xj y xj
y

wi rs rs⁄= rs rs
1 … rs

k, ,{ }=

ni bi,

xn 1+ xn J xn()TJ xn() µI+() 1– J xn()Te xn()–=

x wi ni bi, ,{ }
e xn() ej{ } yj yj

ˆ–{ }= =
J xn()

µ
µ

min
wi ni bi, ,

αED βEP+ ED ej
2

j 1=
N

∑=

EP wi
Twi ni

Tni bi
Tbi+ +=

EP
ED

α β

α β

K K

K

258

one with the lowest testing error is selected. SiLVR has a fixed
small neural net model structure. Thus, we use CV for a different
purpose: to help select the network parameters which give the best
predictions. One set of training runs is run, and the model param-
eters which give the lowest testing error are selected. The value of

 used is 5. This has the further advantage of rejecting solutions
that are stuck in local minima.

4. Experimental Results
We have implemented SiLVR in Matlab. In this section we present
our experimental results for three testcases, each representing a dif-
ferent family of circuit behavior: 1) Master Slave Flip-Flop with
scan chain, 2) two-stage RC-compensated opamp and 3) sub-1V
bandgap voltage reference in CMOS. The number of process pa-
rameters range from 13 to 122 (both inter-die and intra-die). SiLVR
is able to extract good estimates of the LVs, along with the accom-
panying model, using 1,000 training samples for each case, gener-
ated using standard Monte Carlo sampling. We also present
comparisons with a straightforward Matlab implementation of an
optimal reduced quadratic model, using the PROBE [7] algorithm.
The best PROBE results (up to rank 10) are used for graphical com-
parisons. All models are evaluated on a separate test set of 10,000
Monte Carlo samples. Samples where the circuit does not function,
are not used for modeling, but no extra samples are simulated.

4.1 Master-Slave Flip-Flop with Scan Chain
The first testcase is a commonly seen Master-Slave Flip-Flop with
scan chain (MSFF) shown in Fig. 3. The design has been imple-
mented using the 45 nm CMOS Predictive Technology Models of
[23]. Variations considered are Random Dopant Fluctuation (RDF)
for all transistors and one global gate-oxide (tox) variation. RDF is
modeled as normally distributed threshold voltage (Vt) variation:

 where W,L are in µm (15)

Vt0 is the nominal threshold voltage. This results in 30% standard
deviation for a minimum-sized transistor. This is large for current
technologies: we want to make sure SiLVR is powerful enough for
future technologies too. The tox standard deviation is taken as 2%.

The number of input dimensions is 31 and there is one output: the
clock-output delay, .

Fig. 4 shows the projection vector for the first extracted latent
variable , and Fig. 5 plots the simulated and predicted delay val-
ues against . The latter shows the predictions from SiLVR and
also from the best reduced quadratic model. We can clearly observe
two things: 1) only 6-8 out of 31 input dimensions (corresponding
to transistors in the circuit) affect the output, and 2) SiLVR per-
forms much better than a simple quadratic model. Table 2 compares
the errors quantitatively with increasing number of LVs/rank: the
best average error is reduced by 2.5x: from 16.3% (PROBE) to
6.4%. Both PROBE and SiLVR perform best with only one LV (re-
duced rank), beyond which they start overfitting.

4.2 Two-Stage RC-Compensated Opamp
This next testcase [24], shown in Fig. 6, is representative of a large
class of circuits in the analog domain: amplifiers. We test SiLVR on
the DC, AC and transient characteristics of the opamp. The opamp
has been implemented using models from the Cadence 90nm GPDK
library. RDF on all transistors is considered, along with a global tox
variation, and variations on the passives and the current source. All
variations are assumed to be normally distributed. The Vt standard
deviation is (about 18% of nominal Vt)

 where W,L are in µm (16)

(tox) is taken to be 2% and each passive and current component
has its own normally distributed variation, with a standard devia-
tion of 5%. The input dimensionality is 13, and there are 5 outputs:
1) DC gain, 2) unity gain frequency (UGF), 3) phase margin (PM),

K

K

D Q

Scan in

Scan out

Clk1

Clk1

Clk2

Clk2

Clk1

Clk1

Clk2

Clk2
Scan Clk

Scan Clk

Scan Clk

Scan Clk

FIGURE 3. Master-Slave Flip-Flop with Scan Chain component.

FIGURE 4. Normalized projection
vector for the first LV of the MSFF
delay

FIGURE 5. Simulated and
predicted output, plotted against
first LV of MSFF delay

σ Vt() 0.0135Vt0 WL⁄=

τcq

w1
t1

t1

V– V+ Vout

FIGURE 6. Two-stage RC-compensated operational amplifier

FIGURE 7. Normalized projection vector for the first LVs of the Opamp
metrics: we can see the strong relationship between Gain, PM and offset

σ Vt() 5mV WL⁄=

σ

259

4) settling time (ST), and 5) DC offset.

Fig. 7 shows the projection vector for the first extracted LV ,
for every performance metric, and Fig. 8 plots the simulated and
predicted output values against the corresponding . It is clear
from these plots that SiLVR is able to extract the LVs effectively
and is also sufficiently flexible to explain the circuit behavior. The
best (up to rank 10) reduced quadratic model (PROBE) can neither
provide explicit LVs, nor explain the actual circuit behavior in
many cases. Having the explicit projections provides deep insight
into the circuit behavior. First, we can actually see the behavior
clearly (e.g. step-shaped for offset), removing any need for guess-
work. Also, if we look at the projection vectors for Gain, PM and
offset in Fig. 7, we can immediately see that these outputs depend
almost identically on the same parameter subset (parameters 3-6):
these are the driver and load devices in the input differential ampli-
fier. Hence, they are also strongly correlated. This is confirmed by
plotting all three simulated metrics against the gain LV (Fig. 9).
This is where the power of SiLVR is really evident. Table 1 com-
pares the rank correlation () and linear correlation () among
these metrics, with the dot product of the corresponding normalized
LVs (). We refer to this dot product as Input Referred Correlation
(IRC). We can see that performs better than , but both com-
pletely fail to predict the relationship between gain and offset, and
gain and PM, while , succeeds.

Table 2 compares the average errors of PROBE and SiLVR. For the
strongly nonlinear metrics (Gain, PM and offset), PROBE has very
large errors: 16% to 51% for the best case. SiLVR reduces these by

5x to 21x, using one LV. For UGF and settling time, PROBE shows
lower errors, but the SiLVR error is already quite low (<0.5%).

4.3 Sub-1V CMOS Bandgap Voltage Reference
Fig. 10 shows a low-voltage CMOS Bandgap Reference circuit
[25]. This bandgap is able to provide reference voltages that are less
than 1V, and is built using standard CMOS technology. This circuit
was chosen for its relevance in today’s low-voltage designs, and
also because it has very high dimensionality (122) and strongly
nonlinear behavior. The opamp used is the same as in Section 4.2.
The circuit has 101 diodes. The transistor device and variation mod-
els are the same 90nm CMOS as the Opamp. RDF in the diodes is
modeled as normally distributed variations on the saturation cur-
rent, with standard deviation of 10%. Each resistor and capacitor
has its own normally distributed variation source, with a standard
deviation of 5%. There are a total of 121 local variation parameters
and one global tox variation. In this case, we measure two metrics:
1) output voltage (), and 2) dropout voltage (). is the
difference between the supply voltage and , when falls by
1% of its nominal value (0.6V): lower implies a circuit more
robust in the presence of supply variations.

Fig. 11 shows : the 122-dimensional projection vector for the
first LV , and Fig. 12 plots the simulated and predicted and

 against their corresponding s. PROBE performs well for the
linearly varying , but completely breaks down for the nonlin-
early varying . SiLVR is able extract a good estimate of this
strong nonlinear behavior. Fig. 13 shows the simulated and predict-
ed values against the first two LVs (trained using 10,000 points
to make the graphical illustration visually obvious). Even though
we started with a large dimensionality of 122, only 2 LVs can still
explain most of the behavior. Also, the component of normalized
LV1 along normalized LV2 is only 1.2e-3, meaning that they are al-
most orthogonal. This implies that SiLVR can extract all the infor-
mation from LV1 before looking at LV2.

Table 2 compares the average prediction error of SiLVR with that
of the reduced quadratic model (PROBE). In this case, SiLVR per-
forms better for both linear () and nonlinear behavior ().
Here too, we can see that improvement achieved by using 2 LVs for

gain-pm 0.986 0.871 1.000
pm-offset 0.073 0.064 1.000
gain-offset 0.154 0.093 1.000

TABLE 1. Rank and linear correlation compared with IRC as a measure
of correlation between strongly correlated Opamp metrics.

w1 t1

t1

FIGURE 8. Simulated and
predicted Opamp outputs,
plotted against first LV. For the
nonlinear cases, the simulated
and SiLVR-predicted graphs
coincide in many places.

rs rp

rl
rs rp

rl
rs rp rl

FIGURE 9. Simulated Opamp gain, phase margin and offset plotted
against the LV for gain, showing strong correlation among the three.

–
+

Va
Vb

Va Vb

Vref

Vrst

FIGURE 10. Low-voltage CMOS bandgap voltage reference circuit,
with a parameter space of 122 dimensions.

Vref Vdo Vdo
Vref Vref

Vdo

w1
t1 Vref

Vdo t1
Vref

Vdo

Vdo

Vref Vdo

260

: the SiLVR error decreases from 11.1% to 10.4%.

We also note that the training times to build each LV are quite rea-
sonable, even with the complex cross-validation strategy to im-
prove neural network robustness: each LV requires 13-24 CPU
seconds of Matlab computation. This is especially attractive for the
for higher dimensional testcases like the voltage reference.

5. Conclusions
SiLVR is a fast and flexible statistical response surface modeling
framework, that can efficiently handle the large and highly nonlin-
ear effects from process variations in nanoscale technologies. It
makes few assumptions about the problem size or nonlinear func-
tional form, unlike most of the RSM tools available today. It pro-
vides the user with explicit latent variables, that maximally explain
the observed circuit performance, and deep insight into the circuit
behavior. When the relationship we seek to extract is itself of a sim-
ple form (e.g., linear, or nearly so), our simple neural network forms
mimic a low-dimensional regressor. But when the relationship is
more nonlinear, we can explain it with very few extracted latent
variables. We believe the SiLVR methodology is an attractive basis
for future work on nonlinear yield optimization strategies.

References
[1] M. Hane, T. Ikezawa, T. Ezaki, “Atomistic 3D process/device simula-

tion considering gate line-edge roughness and poly-Si random crystal
orientation effects”, IEEE Internat. Electron Devices Meeting, 2003.

[2] T. Ezaki, T. Ikezawa, M. Hane, “Investigation of realistic dopant fluctu-
ation induced device characteristics variation for sub-100nm CMOS by
using atomistic 3d process/device simulator”, IEEE IEDM, 2002.

[3] D.J. Frank et al.,“Monte Carlo modeling of threshold variation due to
dopant fluctuations”, Symp. VLSI Tech., 1999.

[4] H. Chang, S. Sapatnekar, “Statistical timing analysis considering spa-
tial correlations using a single PERT-like traversal”, ICCAD, 2003.

[5] Z. Wang, S. Director, “An efficient yield optimization method using a
two step linear approximation of circuit performance”, EDAC, 1994.

[6] A. Dharchoudhury, S.M. Kang, “Worst-case analysis and optimization
of VLSI circuit performances”, IEEE Trams. CAD, 14(4), 1995.

[7] X. Li et al., “Projection-based performance modeling for inter/intra-die
variations”, IEEE/ACM ICCAD, 2005.

[8] Z. Feng, P. Li, “Performance-oriented statistical parameter reduction of
parameterized systems via reduced rank regression”, ICCAD, 2006.

[9] A.J. Burnham, R. Viveros, J.F. MacGregor, “Frameworks for latent
variable multivariate regression”, J. of Chemometrics, 10, 1996.

[10] S. Wold, M. Sjöström, L. Eriksson, “PLS-regression: a basic tool of
chemometrics”, Chemometrics and Intelligent Lab. Sys., 58, 2001.

[11] P.T. Davies, M.K-S. Tso, “Procedures for reduced-rank regression”,
Applied Statistics, 31(3), 1982.

[12] A-L. Boulesteix, K. Strimmer, “Partial least squares: a versatile tool for
the analysis of high-dimensional genomic data”, Brief. in Bioinf., 2006.

[13] G. Baffi, E.B. Martin, A.J. Morris, “Non-linear projection to latent
structures revisited (the neural network PLS algorithm)”, Computers
Chem. Engg., 23(9), 1999.

[14] C. Malthouse, A.C. Tamhane, R.S.H. Mah, “Nonlinear partial least
squares”, Computers Chem. Engg., 21(8), 1997.

[15] B.D. Ripley, “Pattern recognition and neural networks”, Cambridge
University Press, 1996.

[16] K.E. Muller, “Relationships between redundancy analysis, canonical
correlation, and multivariate regression”, Psychometrika, 46(2), 1981.

[17] G.E. Noether, “Introduction to Statistics: The Nonparametric Way”,
Springer, 1990.

[18] D. Nguyen, B. Widrow, “Improving the learning speed of 2-layer neu-
ral networks by choosing initial values of the adaptive weights”, Int.
Joint Conf. Neural Nets., 1990.

[19] M.T. Hagan, M.G. Menhaj, “Training feedforward networks with the
Marquardt algorithm”, Trans. Neural Nets., 5(6), Nov. 1994.

[20] D.P. Bertsekas, “Nonlinear programming”, 2nd ed, Athena Scientific, 1995.
[21] D.J.C. MacKay, “A practical Bayesian framework for backpropagation

networks”, Neural Comput., 4(3), 1992.
[22] F.D. Foresee, M.T. Hagan, “Gauss-Newton approximation to Bayesian

learning”, Int. Conf. Neural Nets., 1997.
[23] W. Zhao, Y. Cao, ‘New Generation of Predictive Technology Model for

sub-45 Design Exploration”, ISQED, 2006.
[24] D. Johns, K. Martin, “Analog Integrated Circuit Design”, Wiley, 1996.
[25] H. Banba et al., “A CMOS Bandgap Reference Circuit with Sub-1-V

Operation”, IEEE J. Solid State Cir., 34(5), pp. 670-674, 1999.

Vdo

FIGURE 11. Normalized projection vector for the first LVs of the
voltage reference metrics.

FIGURE 12. Simulated and predicted voltage reference outputs. The
quadratic method breaks down for nonlinear behavior.

FIGURE 13. Simulated and predicted Vdo against the first two LVs

Rank MSFF delay Opamp Gain UGF PM Settling Time Offset Bandgap

(LV) SiLVR PROBE SiLVR PROBE SiLVR PROBE SiLVR PROBE SiLVR PROBE SiLVR PROBE SiLVR PROBE SiLVR PROBE
1 6.41 16.3 1.69 35.7 0.061 0.042 1.90 16.7 0.507 0.248 10.0 51.7 0.278 0.639 11.1 35.4
2 7.24 19.7 1.74 36.4 0.063 0.022 1.97 16.8 0.517 0.240 10.2 52.0 0.341 0.707 10.4 39.9
3 8.15 21.3 1.73 36.9 0.066 0.013 1.94 16.9 0.528 0.243 10.5 52.4 0.374 0.726 11.9 41.9
4 8.17 22.2 1.66 37.2 0.068 0.010 1.99 16.9 0.531 0.244 11.1 55.1 0.375 0.736 11.9 42.3
6 7.79 23.2 1.72 37.0 0.072 0.009 2.03 16.9 0.552 0.245 12.2 55.5 0.374 0.738 11.9 42.4
8 8.08 24.1 1.78 37.1 0.075 0.008 2.11 16.9 0.577 0.245 13.4 55.7 0.403 0.738 12.2 42.4

10 8.60 24.7 1.83 37.1 0.078 0.008 2.16 16.9 0.603 0.245 15.3 55.8 0.459 0.738 11.9 42.4

TABLE 2. Average percentage error on a test set of 10,000 Monte Carlo samples

Vref Vdo

261

