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ABSTRACT
The introduction of simulation-based analog synthesis tools creates a
new challenge for analog modeling. These tools routinely visit 103 to
105 fully simulated circuit solution candidates. What might we do
with all this circuit data? We show how to adapt recent ideas from
large-scale data mining to build models that capture significant
regions of this visited performance space, parameterized by
variables manipulated by synthesis, trained by the data points
visited during synthesis. Experimental results show that we can
automatically build useful nonlinear regression models for large
analog design spaces.

CATEGORIES AND SUBJECT DESCRIPTORS

B.7.2 [Integrated Circuits]: Design aids—verification

GENERAL TERMS: Algorithms

I. INTRODUCTION

The use of simplified macromodels for analog circuits, both to acceler-
ate simulation and to enhance early design exploration, has a long his-
tory in mixed-signal design. The earliest techniques for macromodel
construction relied on design expertise to create a suitably simplified
circuit model, and the analytical equations needed to map the perfor-
mance of the full circuit into parameters for the macromodel. More re-
cent techniques mix design expertise about model structure with non-
linear regression (i.e., curve fitting) to fit macromodel parameters from
samples of the full circuit’s performance obtained from simulation.
Two recent developments suggest a need to revisit this area: the recent
standardization of analog/mixed-signal hardware description languag-
es, and the recent introduction of commercial analog synthesis tools.

The introduction of standardized behavioral simulation languages
for mixed-signal systems (e.g., Verilog-AMS and VHDL-AMS
[1],[2]) offers designers the ability to mix device-level models, ana-
log behavioral models, and digital blocks, all in the same simulation
environment. These languages are widely expected to be significant
enablers for a more top-down mixed-signal design style. But to real-
ly exploit these AMS languages, we need a more rigorous approach
to building macromodels for arbitrary analog blocks. For linear sys-
tems, the last decade has seen enormous progress in the construction
of reduced-order models with mathematically guaranteed accuracy,

[3]. For general nonlinear systems, we have no such mature tech-
niques. Theoretical work on nonlinear reduced-order modeling is
still quite new (e.g., [4]), and as yet limited in its applicability. 

A different challenge is posed by the recent development of practi-
cal analog synthesis tools [5]. These tools take a fixed circuit topology
and solve for the sizing/biasing parameters needed to meet a set of per-
formance specifications. Today’s synthesis techniques come in two
broad styles. Equation-based synthesis techniques require that each
circuit topology we seek to size be represented as a set of analytically
tractable performance equations. The most successful of these use
ideas from geometric programming [6]. The disadvantages of this ap-
proach are the need to build custom equations for each new topology
(and the underlying device models as well), and the inability to cap-
ture all performance requirements in an accurate form. In contrast,
simulation-based synthesis ([7]-[11]) uses simulator-in-the-loop nu-
merical search techniques that fully simulate each visited solution can-
didate. They are capable of sizing any circuit that can be simulated,
need no partial sizing starting solution, and reuse the same qualified
verification environment used for manual design sign-off. Distributed
workstation parallelism renders the overall approach tractable. 

Simulation-based synthesis creates a wholly new opportunity for
modeling: each synthesis run visits between 103 and 105 fully simu-
lated samples of the design space for a given circuit topology. If we
synthesize just one uniquely sized circuit per day for a year, we
might easily visit a few million samples of a design space. What can
we do with all these circuit data points?

Today’s ad hoc model simplifications and low-dimensional curve
fitting strategies seem ill-equipped to exploit this opportunity. Of
course, building regression models from simulations is not new: re-
sponse surface methods for design centering have been in widespread
use for years [12], [13]. What is new here is the scale of the problem. In
a typical centering scenario, we try to avoid simulating more than a few
hundred different circuits to build a low-dimensional local response sur-
face. In contrast, a single synthesis run may generate 10-100X more cir-
cuit samples, and range widely over the entire design space. 

The question we address in this paper is the how to build models
that can capture significant regions of this performance space, param-
eterized by variables manipulated by synthesis, trained by the data
points visited during synthesis. We build such models by adapting re-
cent ideas from large-scale data mining [14], which focuses on tech-
niques for extracting patterns, predictive formulas, or classifiers from
large amounts of high-dimensional data. 

The remainder of the paper is organized as follows. Sec. II re-
views relevant background work. Sec. III introduces our data mining
formulation. Sec. IV presents a small illustrative example. Sec. V
presents experimental results from real synthesis data. Finally, Sec.
VI offers concluding remarks.
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II. BACKGROUND: MACROMODELING

The term “macromodel” has historically been used to refer to a variety
of different analog modeling problems, with different associated mod-
el-building techniques, and intended end applications. Fig. 1 offers a
simple taxonomy to categorize these different approaches, and clarify
our own goals. We identify three separate axes in this taxonomy:
• Use: distinguishes between models built primarily to accelerate

simulations, and those built to enable wider exploration of the de-
sign space in synthesis. Of course, these are not always mutually
exclusive; the distinction usually appears on the other two axes.

• Style: distinguishes between models that are built explicitly as
physical circuits, from those that are only intended to “fit” some of
the original circuit’s “true” responses, without any underlying
physical model. Physical macromodels usually are circuits--albeit
simpler circuits. Mathematical macromodels are usually obtained
from some form of nonlinear regression, and offer no guarantees
that all of their internal behaviors can be physically realized.

• Dimensionality: distinguishes between models that represent a single
circuit (called an instance) from models intended to represent a pa-
rameterized range of circuits (called a design space). Instance mod-
els are built for simulation; design space models for optimization. 

We can categorize relevant prior work using this simple taxonomy.
Analog macromodeling initially focused on accelerating simulation.
The earliest work built simplified physical macromodels for single
circuit instances, e.g., the classical Boyle opamp model [15]. To han-
dle more complex circuits and devices, later efforts turned to curve-
fitting to obtain the parameters for these physical models from sam-
ples of the original instance’s simulated performance [16]. Unfortu-
nately, we often lack a good physical model to parameterize. Auto-
mated extraction of a reduced-order model is now easily done for lin-
ear systems [3]. This not the case for nonlinear systems, though recent
efforts have appeared [4],[17]. The common strategy is to apply non-
linear regression techniques [18] to fit either a conjectured functional
form, or use so-called black box modeling in which the regression it-
self chooses the functional form. 

Synthesis-directed macromodeling usually focuses on design space
models, since the goal is to explore or optimize over some space of cir-
cuit parameters. In the context of circuit tuning, response surface
methods fall into this category [12], [13]. Similar ideas have been used
for microwave synthesis [19]. Harjani [20] appears to be the first to
explicitly build carefully constructed nonlinear regression models of
analog design spaces, for use in hierarchical analog synthesis [21].
This work minimized the number of circuit simulations via careful de-
sign of experiments (DOE [22]), and proposed a regression formula-
tion based on radial basis functions. More recently, Daems [23] devel-

oped a similar strategy for design space modeling, using a different
DOE model, and regression via posynomials, motivated by [6].

In this paper, we focus on the problem of building models of an-
alog design spaces, emphasizing synthesis rather than simulation ap-
plications. As a result, we are willing to trade some modeling accu-
racy for the ability to model a larger region of design space. Prior ef-
forts here [19],[20],[23] relied on two critical assumptions: (1)
simulations to obtain samples of the design space are expensive and
must be minimized; and (2) model construction can control directly
where to sample in this design space. In contrast, we start with many
more fully simulated samples of the design space (e.g., 10,000 ver-
sus 100). However, we do not control where these samples are locat-
ed, since our data is the by-product of circuit synthesis. This wealth
of synthesis-produced data creates both opportunities and problems. 

III. MACROMODELING BY DATA MINING
In classical nonlinear regression, we have data points of the form

, where  and , which represent samples of some
unknown, high-dimensional function . We seek to con-
struct an approximation to this function , called a regressor,
which minimizes some error function that penalizes the difference
between the true function and our approximation (e.g., sum of
squared errors), measured over a population of sample data points

:

(1)

To construct a suitable regressor we must solve three problems:
• Model selection: select an appropriate functional form for 

• Model fitting: determine parameters for this model, so as to min-
imize overall fitting error (1), using the training data from P.

• Model validation: using a different set of testing data, verify how
well the model fits data points outside of the training data points.

The essential problem is that for a large population of high-dimen-
sional data points, it becomes extraordinarily difficult to find a suit-
able functional form for the regressor that can adequately fit the data,
while remaining simple enough to allow us to solve for the fitting pa-
rameters. This is the principal motivation behind the radial basis func-
tions in [20] and posynomial-approximated signomials in [23]; these
are both forms with relatively tractable fitting procedures.

However, recent work in the data mining community suggests a
different direction for coping with the problem of large, high-dimen-
sional data sets. Rather than struggling to build a single regressor ca-
pable of fitting well across a very large sample space, we build instead
a committee of regressors, each of which fits very well in some por-
tions of the design space, and less well in others [14]. We predict the
output value for any new data point by combining the individual re-
gressors, in a procedure called voting. The mechanics of committee
construction and voting are attractively simple. To build the commit-
tee of regressors, we use a powerful, relatively new statistical tech-
nique called boosting [14],[24]; to vote the regressors, we adapt ideas
from instance-based methods [25]. We describe these ideas next.

A. Building a Committee of Regressors via Boosting.

The original idea was first developed by Freund and Schapire [24]
and applied to so-called categorical classification problems, in

Fig. 1.  A Simple Taxonomy of Analog Macromodels
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which the model to be fit has a discrete two-element output range,
e.g., {0, 1}. The idea is illustrated in Fig. 2. We begin with some data
set S with N weighted training samples. Each sample  has
weight , all samples equally weighted to start. We sequentially fit
a set of regressors , each more heavily weighting those data
points that were poorly fit in the previous iteration. Thus, after each
iteration, we up-weight those points that were poorly fit, and down-
weight points that were well fit. This has the interesting side effect
of allowing well-fit samples to vanish from the population as boost-
ing progresses: these points are so well fit by prior regressors that we
no longer want to focus fitting efforts on them. The number of iter-
ations t varies by application, but it is not uncommon to run hun-
dreds of boosting cycles [14]. At the end, we have a committee of
regressors, which we combine via weighted voting to construct the
final output. The boosting method is easy to implement, and inde-
pendent of the form of the individual regressors, . With a care-
fully constructed weighting update, boosting also comes with some
surprisingly good theoretical bounds on its performance [24].

For building macromodels for large analog design spaces, a
boosted committee of regressors is immediately attractive. Howev-
er, boosting has to date been used primarily for classification--fitting
regressors that map real-valued inputs to a small set of discrete cat-
egory labels. The assumption of a discrete output set is critical to the
construction of theoretically strong voting methods for boosting
[24]. On the other hand, our interest is to apply boosting to quantita-
tive nonlinear regression. Prior work here is more sparse, with
Drucker [26] perhaps the most notable.

We use the boosting iteration from [26], illustrated in Fig. 3.
However, we suggest a different mechanism for voting the individ-
ual regressors, discussed in the following subsection. 

As a practical matter, note that the choice of form for individual re-
gressors  will determine whether one can weight the training data
for suitable effect. If not, the alternative is to resample the data. With
suitable normalization, we can interpret weight  on each point as a
probability. Given the data set  used to build regressor , con-
struct  via sampling from  with  as the probability of selec-
tion for any point. Well-fit points, having small probabilities, may not
be sampled. Poorly fit points, with large probabilities, may be dupli-
cated in the population. When we cannot upweight an individual data
point, we can replicate it in the population to increase its importance
during fitting. To enhance this effect, we can choose a population size
for each  larger than , the size of the original data set. 

B. Voting a Committee of Regressors via an Instance-Based Method

Prior efforts in both classification and regression have assumed that
all the regressors in a boosted committee should be combined to cre-
ate the final voted prediction. This fits well with categorical data,
where we literally “outvote” the poor predictors. We argue that this
is inappropriate when we know that our input data is likely to be
sparse and of high dimension, and for circuits, is sampling very non-
linear behaviors. We want an alternative that selects the “best” set of
regressors to combine.

Another technique from data mining can be applied here. In clas-
sical regression, we use our training data to build a suitable nonlin-
ear regressor, but then we only use the analytical form of the regres-
sor to make future predictions--the training data itself is abandoned.
Like the scaffolding used to construct a building, we expect the scaf-
folding to be removed when the building is completed. This need not
be the case: we might instead use the training data itself as an inte-
gral part of the final regressor. These are called instance-based
methods; our strategy was influenced by the instance-based locally
weighted polynomial regression ideas from Moore [25].

Fig. 4 shows our instance-based heuristic for combining regres-
sors. For any new data point x’, we look up the K nearest neighbors
of x’ in the training data, using ordinary Euclidean point-to-point
distance. With each of these training samples (x, y)j we associate the
index t(j) of the best boosted regressor from among our committee
of boosted regressors . Thus, the K nearest neighbor data pointsFig. 2.  Boosting for Regression
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also specify (at most) K different regressors that we know fit well in
this local region. This has two very useful advantages:
• Efficient scaling to large data sets: Although the size of the train-

ing data set itself may be quite large, we only need to use a few
data points for any given prediction. Nearest-neighbor lookup in
high dimensions is a well studied area, and there are several data
structures that make look-up efficient, e.g., [27]. In our work, we
use simple linear scans through all the data points.

• Many regressors are fit, few are evaluated: we are free to fit a large
number of boosted regressors if this is necessary to “cover” our de-
sign space. But for any given prediction, we only need the regres-
sors on the nearest K neighbors to compute our new data point. Of
course, we also hope--but cannot guarantee--that we need fewer
than K regressors in many well-fit regions of our design space.

These K nearest-neighbor points (x, y)n1, (x, y)n2, ..., (x, y)nK,
specify K regressors  through . How might we

combine these into a single numerical prediction? Simple averaging
proves to be a workable scheme. However, when the data is of high
dimension and sparse, even a few “nearest” neighbors may not be all
that near. As well as an appropriate, empirically chosen value for K,
it is also useful to weight each local regressor inversely with its dis-
tance from the point to be predicted. If the set of distances to the K
nearest neighbors is {dn1, dn2, ..., dnK}, then we vote our K local re-
gressors as

(2)

where . Note that if each neighbor has a unique

best local regressor, then this simply favors the regressors on the
closer points. But in the opposite case, where each neighbor chooses
the same regressor, this weighting does not distort the prediction.

C. Fitting Each Local Regressor
The final component of our regression strategy is the choice of the
individual regressors  for each boosting iteration. It is again
worth emphasizing that both boosting and our instance-based voting
heuristic can be applied to any choice for the regressor.

We use a standard feed-forward neural network for each regressor
[28]. Neural nets have a reputation for successful fitting for highly
nonlinear functions, and are reasonably close to “black box” models
in that the structural choices needed to select a neural network model

are relative few. They have also been successfully used in other cir-
cuits-oriented modeling and optimization applications [19]. We use
two hidden layers (10 sigmoid neurons per layer) and one output lay-
er (1 linear unit) as the network architecture. Our implementation is
based on the Matlab Neural Network toolbox [30].

IV. A SIMPLE MACROMODELING EXAMPLE
We first illustrate our macromodeling formulation with a simple RF
LNA circuit shown in Fig. 5. The circuit has 5 independent sizing
parameters, variable over the ranges given in the figure The circuit
is realized in 0.35µm TSMC CMOS. 

Since the problem is rather small, we simply generate uniform
random samples over the 5-dimensional hypercube defined by the
input ranges. We generated 2000 total samples of the performance
of this circuit (each of which required several SPICE runs), and used
a randomly selected half to train our regressors, and reserved the
other half to test (validate) our regressors. As does [23], we omit cir-
cuits whose random sizing renders them improperly biased (e.g.,
transistors turned off). Fig. 6 shows the results using 10 boosting cy-
cles to vote up to 10 boosted neural net regressors. We show both
mean and maximum errors. (Note that in contrast to [23], this is a
rather harsher set of metrics: there are always some very poorly pre-
dicted points for any regressor, and we evaluate on testing data not
seen during model construction.) The data are interpreted as follows:
• train1: the leftmost column on each plot shows the error from fit-

ting one single neural net regressor to the training data itself. We ex-

Fig. 4.  Instance-Based Voting with K=2 Nearest Neighbors for 2-D 
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pect this to provide the best fit, since we evaluate only training data.

• test1: the second plot column to the right show the error from us-
ing only this single neural net regressor to predict the points in the
testing data set. We expect this to be inferior, since this is data un-
seen during fitting. These are the points against which we need to
compare and validate our new fitting techniques.

• K=1,...K=30: the rightmost 4 plot columns show the errors from
predicting outputs over the testing data, using instance-based vot-
ing of the K nearest-neighbors from the training data, each labeled
with the best from among 10 boosted neural net regressors. We
evaluate K as 1, 5, 10, and 30.

The results are encouraging. For gain, center-frequency, power,
and IIP3, boosting improves both the maximum and mean errors
over the use of a single conventional neural net predictor. Usually,
K=1 or K=5 nearest neighbors are sufficient: we select the local 1 or
5 best regressors and combine them, via inverse-distance weighting.
Setting K too large usually has the effect of increasing the error: we
are overfitting, trying to use “too much” model for the data. These
extra neighbors are too far away to be of use in improving the local
prediction accucuracy.

The log error scale of Fig. 6 obscures the impact that boosting has
on the actual distribution of the errors; we illustrate this more directly
in Fig. 7 by showing histograms of the prediction error at each testing
point for the IIP3 fitting experiment of Fig. 6. Note how even K=1 (se-
lect the best boosted regressor on the single training point nearest the
testing point) improves the average error--though not the worst-case
error in this case. K=5 trims the worst errors from the right-side tail of
the distribution. Subsequent boosting with K=10 has minimal effect,
and boosting with K=30 neighbors starts to degrade the fitting, as
shown in the increased spiking in the distribution. 

V. MACROMODELING A SYNTHESIS DESIGN SPACE
We turn now to a much larger experiment. Fig. 8 shows a circuit

automatically sized in a commercial simulation-based analog syn-
thesis tool [29]. The schematic has roughly 50 devices, and has been
sized to achieve roughly 450MHz with power under 15mW. We
have approximately 37,000 samples of the design space for this cir-
cuit, as a result of synthesis. Each data point has 27 independent de-
sign variables, and 12 circuit performance outputs. In contrast to pri-
or fitting experiments of which we are aware, this is a much larger,
much higher-dimensional case study.

It is also different for a reason fundamental to synthesis: synthesis
tools are designed to converge to a good solution [7]-[11]. No par-
ticular invocation of synthesis need necessarily explore any region
of the space beyond that needed to find a good solution. To empha-
size this, we fit two portions of the this data set: the first 20% of the
data points (time-ordered by synthesis) and the last 20%. This cre-
ates two populations of roughly 7500 samples of the design space.

One salient difference from the experiments of the last section is that
these two data sets are very different in character. Samples from the
first 20% of the run range more widely over the design space (as ex-
pected, since search ranges widely at the start). Samples from the
last 20% of the run cluster more closely about the final solution. As
a consequence, we see much larger worst-case prediction errors for
the first 20% because the of existence of more “outlier” points. 

We fit using the same techniques as in the previous section. We
randomly select 3/4 of each data set to use for training, and reserve
the remaining 1/4 for validation of our regression fit. We boost 10
cycles of regressors. Fitting the next neural network in each boosting
cycle requires roughly 1 hour of CPU time, in our current Matlab im-
plementation. We evaluate using instance-based nearest-neighbor
voting for K=1,5,10,30. Results appear in Fig. 9. Let us briefly con-
sider each experiment:
• Gain: boosting at K=1 or K=5 clearly helps for the first data set,

but interestingly, does little to help the last data set. Mean error
declines very slightly (but the fit is quite good in the first place),
while maximum error increases. 

• Power: boosting is more clearly helpful on the first data set. On the
the later data, boosting helps the mean slightly, but at the cost of an
increased maximum error. Bias/variance trade-offs are a common
by-product of regression. A single regressor probably suffices.

• Slew rate: this is clearly a very challenging fit. Boosting improves
the mean, but at the cost of some deterioration in maximum error.

• Unity Gain Frequency (UGF): as with slew, the trade-off is an
improved mean, but a worsened maximum error.

• Phase Margin: also a very difficult fit like the slew, but in this
case, boosting shows a clear advantage in both data sets.

This analysis should simply remind us of the need to regard these
data mining techniques with an eye toward proper model selection
and validation. A single trained regressor sometimes fits well, a
committee of boosted regressors is sometimes “too much” fitting.
On the other hand, a boosted committee is sometimes able to achieve
significant fitting improvements. We regard this as a very satisfac-
tory set of initial results for this very difficult new problem.

VI. CONCLUSIONS

Simulation-based synthesis tools routinely visit many fully simulated
circuit solution candidates. We showed how to adapt ideas from
large-scale data mining to build models that capture significant re-
gions of these large, nonlinear high-dimensional spaces. Results are
encouraging: there are spaces where our boosted regressors are clearly
superior. However, as with all regression problems, no one technique
fits best in all circumstances; in some cases a single regressor suffices,
in others, our boosting techniques offer useful trade-offs between
mean and worst-case error. Our regression architecture is a first at-
tempt to apply these ideas to analog design space modeling; other con-
structions using these techniques also appear promising.
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Fig. 8.   Amplifier Circuit for Synthesis Design Space 
Macromodel Experiment.

Fig. 9.  Regression Results for Design Space of Circuit from Fig. 8.
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