IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 6, JUNE 2000 703

Anaconda: Simulation-Based Synthesis of Analog
Circuits Via Stochastic Pattern Search

Rodney PhelpsStudent Member, IEEBichael Krasnicki, Rob A. RutenbaFellow, IEEE L. Richard Carley, and
James R. HellumsSenior Member, IEEE

Abstract—Analog synthesis tools have traditionally traded But these digital strategies are inapplicable to analog designs,
quality for speed, substituting simplified circuit evaluation which rely for basic functionality on tight control of low-level
methods for full simulation in order to accelerate the numerical device and circuit properties that vary from technology to tech-

search for solution candidates. As a result, these tools have failed | Th | " fth t il desi d
to migrate into mainstream use primarily because of difficulties nology. 1he analog portions of these systems are still designe

in reconciling the simplified models required for synthesis with Dy hand today. They are even routinely ported by hand as a given
the industrial-strength simulation environments required for val-  IC migrates from one fabrication process to another.

idation. We argue that for synthesis to be practical, it is essential A significant amount of research has been devoted to cell-
to synthesize a circuit using the same simulation environment |5 q| analog synthesis, which we define as the task of sizing

created to validate the circuit. In this paper, we develop a new .. . L -
numerical search algorithm efficient enough to allow full circuit and biasing a device-level circuit with 10-50 devices. How-

simulation of each circuit candidate, and robust enough to find €ver, as noted in [1], previous approaches have failed to make
good solutions for difficult circuits. The method combines the the transition from research to practice. This is due primarily
population-of-solutions ideas from evolutionary algorithms with a  tg the prohibitive effort needed to reconcile the simplified cir-
novel variant of pattern search, and supports transparent network o i+ mndels needed for synthesis with the “industrial-strength”
parallelism. Comparison of several synthesized cell-level circuits T . .
against manual industrial designs demonstrates the utility of the MOdels needed for validation in a production environment. In
approach. digital design, the bit-level, gate-level and block-level abstrac-
Index Terms—Algorithms, analog synthesis, mixed-signal tions used_ln syn_theS|s are faithful to the corresponding models
design, pattern search. used for simulation-based validation. This is not the case for
analog synthesis.
Fig. 1 illustrates the basic architecture of most analog syn-
thesis tools. Aroptimization engineisits candidate circuit de-
IXED-SIGNAL designs are increasing in number as aigns and adjusts their parameters in an attempt to satisfy de-
large fraction of new integrated circuits (IC’s) require asigner-specified performance goals. &raluation engingquan-
interface to the external, continuous-valued world. The digittifies the quality of each circuit candidate for the optimizer.
portion of these designs can be attacked with modern cell-badéast research here focuses on tradeoffs between the optimizer
tools for synthesis, mapping, and physical design. The analgghich wants to visit many circuit candidates) and the evalu-
portion, however, is still routinely designed by hand. Althoughtor (which must itself trade accuracy for speed to allow suffi-
it is typically a small fraction of the overall design size (e.ggiently vigorous search). Much of this work is really an attempt
10000-20 000 analog transistors), the analog partition in theéseevade a harsh truth—that analog circuits are difficult and
designs is often the bottleneck because of the lack of automattame-consuming to evaluate properly. Even a small cell requires
tools. a mix of ac, dc, and transient analyzes to correctly validate. In
The situation appears to be worsening as we head into the madern design environments, there is enormous investment in
of System-on-Chip (SoC) designs. To manage complexity asnulators, device models, process characterization, and “cell
time-to-market, SoC designs require a high level of reuse, asign-off’ validation methodologies. Indeed, even the sequence
cell-based techniques lend themselves well to a variety of strapé-circuit analyzes, models, and simulation test-jigs is treated
gies for capturing and reusing digital intellectual property (IPas valuable IP here. Given these facts, it is perhaps no surprise
that analog synthesis strategies that rely on exotic, nonstandard,
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Optimization focused on coercing the required equations into a form more
amenable to optimization; [11] shows results from rendering

Evaluated W%% Candidate t_he equations as posynpmials, thL_Js, creating aconvex optimiza—

Circuit Circuit tion problem solvable via geometric programming. Hierarchical
Performance Design systems [12]-[15] introduced compositional techniques to as-
Evaluation semble equation-based subcircuits, but still faced the same up-

~ Engine.. | date/accuracy difficulties. Some of these systems can manip-

ulate circuit equations automatically to suit different steps of

Fig. 1.  Abstract model of analog synthesis tools. the synthesis task [7]. Qualitative and fuzzy reasoning tech-

niques [16], [17] have been tried to capture designer expertise,

a numerical optimizer. And, of course, the CPU time to visit aH%_ut V‘_’ith Iimite_d SUCCess. Equation-ba_sed synthesis _offers fast
simulate this many solution candidates may be unacceptablé:.Ircult eva_luatlon a_nd is, thus, well s_u!ted to aggressive search
In this paper, we develop a new strategy to support efficiefver §0Iut|on candidates. Howeve_r, it is often prohibitively ex-
simulator-in-the-loop analog synthesis. The approach relies fpnsive to create the;e modelg—lndeed, often More expensive

three key ideas. First, wencapsulatezommercial simulators t an'man.ually designing the circuit. .Also,. thg simplifications
so that their implementation idiosyncrasies are hidden from Orlﬁq_uwe_d n th_ese closed-form analytical circuit models neces-
ily limit their accuracy and completeness.

search engine. Second, we develop a novel global optimizatﬁﬁ'[c’ bol i hni hich h de sianifi
algorithm calledstochastic pattern searctcombining ideas ymbolic analysis techniques, which have made significant

from evolutionary algorithms and pattern search, that is robL%fid,eS of late [7f],r58]’ [1(;3]_,[21] offer an autor:nated pith, to ob-
in finding workable circuits, and avoids the starting-poin‘t"’unlng some of these design equations. These techniques au-

dependency problems of gradient and other down-hill sea atically derive reduced-order symbolic models of the linear
methods. Third, we exploinetwork-level workstation par- transfer function of a circuit. The resulting symbolic forms can

allelism to render the overall computation times tractablé).e obtained fairly quickly, offer good accuracy and can, thus,

Our new optimization algorithm was designed to Suppo§§rve as evaluation engines. However, they are strictly limited to
transparent distribution dfoththe search tasks and the circuii!near perfo_r_mance specifications, or at most some weakly non-
evaluation tasks across a network. inear specifications [22]. Even a small analog cell may require

We have implemented these ideas in a tool callsg@oNDA a wide portfolio of dc, ac, and transient simulations to validate

ANACONDA Uses framework components from a companio'ﬁ Sy_mbolllc ar_waly3|s is a valuable but incomplete approach to
synthesis tool, MELSTROM [2]. ANACONDA has been suc- Circult evaluation.

cessfully run on networks of 10-20 UNIX workstations, hi «/ d1th
and currently runs Texas Instrument’s proprietary TISpiéQt is paper are ATRX/OBLX [1], [4] and the RIDGE system

circuit simulator as its evaluation engine [3]. In this paper, vJéom Slev'llil [23]. ]!n AslTRW%E.;IFX’ Weh attacked_lthe f(ljmdel\-
extend the original treatment, describe in more detail the bafigntal problem of tool usability with a compile-and-solve
algorithms underlying AACONDA, and present an expandecfnethOdOIng'_ ATRX starts irom a SPICE declf .des_crlbmg an
set of experimental synthesis results that demonstrate tHH?'Z?d circuit and Qe3|red performance speC|f|cat|_or$sr.RA
simulator-in-the-loop synthesis can be made both practi&ﬂmp'les, this deck mtq a custom C program that implements
and efficient for industrial designs. The remainder of th@ ”‘ém?‘”c?" C?St_ fu?cu%n whose m'n'mug corres_por:ds ;0 a
paper is organized as follows. In Section II, we briefly revie@©2d circuit solution for these constraintsiQl uses simulate

prior work. In Section I, we formulate the overall synthesi?nnealing [24] to solve this function for a minimum. This

problem and focuses on our global optimization algorithn?,”Stom'ge”erated cost code evaluates circuit performance via

which we call stochastic pattern searchn Section IV, we model-order reduction [25] for linear, small-signal analysis,

offer experimental results on circuits. Finally, we offer som@nd user-supplied  equations fqr nonh_near s_pecmcatlons.
concluding remarks in Section V. ASTRX/OBLX was able to synthesize a wide variety of cells,

but was still limited to essentially linear performance specifica-
tions. FRRIDGE similarly uses annealing for search, but actually
runs a SPICE-class simulator in its annealer. However, this
Referring again to Fig. 1, we can broadly categorize previotsol appears to employ a simulator customized for synthesis,
work on analog synthesis by how it searches for solutions aodly evaluates a few thousand circuit candidates in a typical
how it evaluates each visited circuit candidate. See [4] for a ma@gnthesis run (in contrast,BDx evaluates 18-10° solutions),
extensive survey. and has only been demonstrated solving problems with a small
Early work on synthesis used simple procedural techniquesmber of independent design variables.
[5], rendering circuits as explicit scripts of equations whose di- Finally, we also note that there are several ciroytimiza-
rect evaluation completed a design. Although fast, these tetion techniques that rely on simulator-based methods (e.g.,
nigues proved to be difficult to update, and rather inaccuraf@6]-[28]). For circuit optimization we assume a reasonable
Numerical search has been used with equation-based evala#ial circuit solution, and seek to improve it. This can be
tors [6]-[8], and even combinatorial search over different cieccomplished with gradient and sensitivity techniques requiring
cuit topologies [9], [10], but equation-based approaches remainrmodest number of circuit evaluations. In contrast, in circuit
brittle in the face of technology changes. Recent work here hagthesiswe can assume nothing about our starting circuit

The synthesis systems most relevant to the ideas we develop

Il. REVIEW OF PRIOR APPROACHES
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(indeed, we usually haveo initial solution). This scenario sult, the goal becomes minimization of a scalar cost function,
is much more difficult as a numerical problem, and requireS(x), defined by

a global search strategy to avoid being trapped in poor local
minima that happen to lie near the starting point.

The problem with all these synthesis approaches is that they
use circuit evaluation engines different from the simulators and
simulation strategies that designers actually use to validate theifThe key to this formulation is that the minimum&fx) cor-
circuits. These engines tradeoff accuracy and completenesseasiponds to the circuit design that best matches the given spec-
evaluation for speed. We argue that this is no longer an accdfitations. Thus, the synthesis task becomes two more concrete
able tradeoff. tasks: evaluating’(x) and searching for its minimum. Neither
of these are simple. Our major contributions here are a new al-
gorithm for global search that is efficient enough to allow use of
commercial circuit simulators to evaluat& ), and a method-

In this section, we present the full synthesis formulation aflogy for encapsulating simulators to hide unnecessary details
ANACONDA. Our circuit synthesis strategy relies on three kefyom this search process. We treat the encapsulation method-
ideas: simulator encapsulation, a novel combination of popology next.
lation methods and pattern search, and scalable network paral-
lelism. We describe these ideas below, beginning with a reviddv Simulator Encapsulation for Simulation-Based Evaluation

k §
Clz) = ij%‘fi(w) + ngjﬁj(w)- @)

I1l. SYNTHESIS FORMULATION

of our basic synthesis-via-optimization formulation. Our overall goal is to be able to use the simulation methods
trusted by designers—buwturing analog cell synthesis. This
A. Basic Optimization Formulation means invoking a sequence of detailed circuit simulations for

We use the basic synthesis formulation fronsL® [1], each evaluation;’(x), during numerical search. Although dif-

which we review here. We begin with a fixed circuit topolog);erent SPICE-class simulation engines share core mechanisms

that we seek to size and bias. We approach circuit synthe&fi! Offer similar input/output formats, they remain highly id-

using a constrained optimization formulation, but solve it in ahqsym;)ra(t;g.m many felaturgs. _Ig our exper_|en|ce, the mechanics
unconstrained fashion. We map the circuit design problem Q(f)erkn b‘T '”Qda su;r]w.u ator |nS|I e ag}umer'lca opt|m|zekr are re-
the constrained optimization problem of (1), where is the set garkably untidy. This is a real problem since we seek a strict

independent variables—geometries of semiconductor devicggParation of the circuit optimization and circuit évaluation en-
device multiplicities, and values of passive circuit compcg'nes' and would like ultimately to be able to “plug in” different

nents—we wish to change to determine circuit performanc%immators' We handle this problem using a technique we refer

f(x) is a set of objective functions that codify performancl® assimulator encapsulatian _ ,
specifications the designer wishes to optimize, e.g., power g imulator e_ncaps_ulatlon_ hides the details of a particular
bandwidth; andy(x) is a set of constraint functions that codifys'mUIator behind an insulating layer of software. This software

specifications that must be beyond a specific goal, e.g., (gamrgpper” renders the s_imulat_oran object with a_lset_of methods,
>60 dB). Scalar weightsy;, balance competing objectives similar to standard object-oriented programming ideas. Class

members are invoked to perform a simulation, to change circuit
parameters, to retrieve simulation results, and so forth. Clearly

& one major function of this encapsulation is to hide varying
Hi;mzwfi Jile) stg(e) <0. (1) data formats from the optimizer; this engine need not concern

=1 itself with the details of how to invoke or interpret an ac, dc,
¢ or transient analysis.

A more subtle function of encapsulation is to insulate the
%)timization engine from “unfriendly” behavior in the simu-
rI.f’;\éor. Most simulators are designed either for batch-oriented
operation, or for interactive schematic-update-then-simulate
operation. In the latter, the time scales are optimized for

Formulation of the individual objectivg(z) and constrain
g(z) functions adapts ideas from [26]. We requirgamdvalue,
and abad value for each specification. These are used both
set constraint boundaries and to normalize the specificatio
range. For example, a single objectifigx) is internally nor-

malized as . T )
humans—overheads of a few seconds per simulation invocation
A _ fi(z) — good 5 are negligible. But inside a numerical optimizer that seeks to
fi(z) = bad; — good;” COR perhaps 100000 simulations, these overheads are magni-

fied. Our ideal is a simulator which can be invoked once, and,
This normalization process provides a natural way for the deemaining live, can interpret quickly a stream of requests to
signer to set the relative importance of competing specificatiomsodify circuit values and resimulate. Few simulators approach
and it provides a straightforward way to normalize the range tifis ideal. For example, some insist on rechecking a licence
values that must be balanced in the cost function. manager key (possibly located remotely on a network) for
To support the stochastic pattern search optimizer we intvery new simulation request; others flush all internal state or
duce in Section IV, we perform the standard conversion of thisop myriad temporary files in the local file system. Of course,
constrained optimization problem to an unconstrained optimiziie maximally difficult behavior exhibited by a simulator
tion problem with the use of additional scalar weights. As arés a crash, an occurrence far from rare even in commercial
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e techniques, and dynamic updates on cost function weights. As
an experiment, we encapsulated the Cadence Spectre circuit
simulator [30] and used it with ANEAL-++ to resynthesize a
standard ®Lx benchmark circuit: the custom folded-cascode
opamp from [31]. The circuit has 32 devices and 27 designable
variables; the circuit schematic and associated synthesis results
appear in Fig. 2.

This rather straightforward synthesis strategy yields an ad-
equate result, albeit somewhat slowly. (In this simplified ex-
ample, manufacturability concerns were ignored, which is the
source of the extreme performance/area results; for annealing-
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(a) Custom folded cascode opamp circuit [31]

(b) Simulation-based synthesis result for above circuit,

on a S5SMHz IBM Power2 . .
" | Auto-Synthes: style synthesis, these concerns can be addressed; we will return
anua uto-syntnesis: . . . .

Attribute Design Spec Result to these issues in Section IV.) Fig. 3 shgws a seF of sampled
CLoad (pF) 125 125 cross sections from the cost-surface for this annealing-style syn-
vdd (V) 5 5 thesis formulation. At an intermediate point in the synthesis, we
DC Gain (dB) 71.2 271 91 stopped the optimizer, and then iteratively stepped each inde-
UGF (MHz) 473 248: 33 pendent variable over its range, while freezing all other vari-
Phase Margin (deg) 774 277 83 ables. At each step point we evaluated the synthesis cost func-
PSRR - Vss (dB) 92.6 293 119 ADIES. / p point we evalu Y IS costiu
PSRR - Vdd (dB) 7.3 >72: 9 tion using Spectre. Fig. 3 shows a few of these resulting cross
Output Swing (V) £14 £14: 14 sections, suitably normalized for comparison. The mix of gently
Settling Time (1135)2 - e 47 sloping plateaus and jagged obstacles is typical of these land-
éf’“"?tsAéeal(“i ﬁ) 687 ¥ . 10%)8 scapes. We require global optimization algorithms because of
Cg[cjuzhou::)uae - their potential to avoid many of these inferior local minima.

However, annealing algorithms in particular have a reputation
for slow execution because of the large number of solution can-
Fig. 2. Custom folded cascode opamp circuit and basic simulation-baddiglates that must b? visited. This is greaﬂy exgcerbated when
we choose to fully simulate each solution candidate. There are
three broad avenues of solution here.

a. T means maximize, while 4 means minimize.

annealing synthesis result.

offerings. This is especially problematic in synthesis, since the 1) Less searchattempt to sample the cost function at fewer
optimization engine may often visit circuit candidates with points. This is essentially the approach taken by [23],
highly nonphysical parameter values, which occasionally cause  which uses an unusual, truncated annealing schedule with

simulator failure. Our encapsulation not only detects the crash
but also restarts and reinitializes the simulator, all transparent
to the optimizer. All these difficult behaviors can be hidden via

appropriate encapsulation. 2)

some of the character of a random multistart approach.
However, in our experience, wider search always yields
better solutions and a more robust tool.

Parallel circuit evaluation: each visited circuit candi-

date requires more than one circuit simulation to evaluate
it. We can easily distribute these over a network to par-
allel workstations. Indeed, our implementation supports
this simple parallelism. For example, if we resynthesize
the circuit of Fig. 2, but distribute the five simulations re-
quired to evaluate each circuit across three workstations,
the 11-h sequential time drops to 192 min. This is a useful
form of parallelism to exploit, but it is strictly limited.
Parallel circuit search: what we really seek is a tech-
nigue to allow multiple, concurrent points of the cost
landscape to be searched in parallel, but synchronized in
some manner that guarantees convergence to a final cir-
cuit or set of circuits of similar quality.

C. Global Optimization Issues

As in OBLX [1], we again favor global, stochastic search al-
gorithms for the optimization engine because of their empirical
robustness in the face of highly nonlinear, nonconvex cost func-
tions. However, in ®LX we made an explicit tradeoff to use a
customized, highly tuned, very fast circuit evaluator to permit
search over a large number of solution candidates. When we re=* )
place this custom evaluator with commercial circuit simulation,
we are faced with a 10 to 100x increase in CPU time. The
central question we address in this section is how to retain the
virtues of global, stochastic search, but deal with the runtime
implications of simulator-in-the-loop optimization. Unfortunately, annealinger sedoes not easily support par-

Before we describe our new optimizer, it is worth justifyinallel search. An annealing-based optimizer generates a serial
our focus on global, rather than gradient-style local optimizatream of proposed circuit perturbations, and relies on statis-
tion. Given a good implementation of simulator encapsulatiotics from previous circuits to adjust its control parameters. To
we can replace the custom circuit evaluation usedsnxQwith  parallelize search itself, an obvious set of methods to consider
full, detailed simulation. We have rewritten the core annealirigere are the genetic [32], and evolutionary algorithms [33], [34],
engine of @Lx in the form of a new, component-basedvhose population-based evolution models distribute over par-
optimization library called ANEAL++ [29]. ANNEAL++ allel machines more naturally. We focus on a novel popula-
offers a range of annealing cooling schedules, move selectim-based strategy in Section II-D.
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D. Global Optimization via Stochastic Pattern Search 22::“3 - - ' ' ]
TN A NN _A_]

We have developed two separate attacks on the global of 0 02 04 06 08 1var-x;
timization problem. We initially focused on extending the an- 22::"3 ' ' ' ' ]
nealing paradigm (which has empirically performed very well ZW'
on the circuit synthesis task) to support an aggressively scal 15 02 04 06 o8 1Var. x,
able form of parallelism. We employed an idea from Goldberg N°"“'3_ : ' ‘ ' ]

[35] calledparallel recombinative simulated anneali(@RSA). Cost 2 M
PRSA, which has its roots in genetic algorithms, can be re- Il R 73 5 78 JVar. x;
garded as a strategy for synchronizing a population of annealeiNorm. T T T y

as they cooperatively search a cost surface. When generatingCOSt EW

new circuit candidate, each annealer in the population make 1. . . .

Var. x4
one of two choices: perturb an element value in its previously

generated solution, or recombine its previously generated $95.3.  Four one-dimensional normalized cross sections of the cost-surface for
lution with a solution obtained from another annealer in thetypical simulation-based synthesis problem.

population. Recombination is thossover(mating) operator
from genetic algorithms, which randomly combines features of
two parent solutions into a single new offspring solution. The
technigue works extremely well to synchronize global search.
In particular, good solutions found by one annealer quickly dif-
fuse through the population, and drive annealers stuck in un-
promising local minima toward better global solutions. Mea-
sured performance scaled essentially linearly out to 30 parallel 1a. gample in +Ix girection o 1b. gizsplsz'; I);déggzge cost?
UNIX CPU’s, with Cadence Spectre [30] as the evaluation en- oS o rease Cos e ant point ;
gine. Experimental results from our implementation of these

ideas, called MELSTROM, appear in [2].

Annealing is one member of a general class of optimization
techniques for nondifferentiable cost functions. When cost sur-
faces are convex or nearly so, or we can assume we start op-
timization close to an acceptable final solution, gradient and
sensitivity-based optimization techniques work well. However, 1, sample in +y direction 1d. Sample in -y direction
these are generally unworkable in synthesis when we often have  Does sample decrease cost? Does sample decrease cost?
no feasible starting solution, many local minima, and gradients ~ '\o- Reiect point No. Reject point.
are either unreasonably expensive to compute (recall that we
insist on full circuit-level simulation to evaluate solution can-
didate) or, more likely, numerically unreliable. In these cases,
researchers have favored global optimization techniques based
on sampling of the cost surface, with decisions for search based
on the properties of previous samples. Annealing in particular
has long been a favored approach here.

2a. Sample in +x direction 2b. Sample in +y direction

Does sample decrease cost? Does sample decrease cost?
However, there are alternatives. An obvious class of methods ~ Yes- Accept point. Yes. Accept point.
are the so-calledlirect-searchtechniques, which sample the . . .

. L . . . Fig. 4. Classical coordinate search algorithm.

cost in a deterministic locus around a given solution point, and
use this sample to construct a deterministic direction and dis-
tance to a conjectured better solution. As the optimization pro-Consider first a classical coordinate search algorithm, illus-
ceeds, the shape of the locus changes to reflect the succedsated in Fig. 4, for a simple two-dimensional problem. Coordi-
failure of samples from previously visited regions of the costate search visits in fixed order the individual coordinatesof
surface. Ultimately, the locus converges to a single final Idhe current solution, perturbs each in a deterministic pattern, and
cally optimal minimum. Coordinate search, Box search [363ccepts only perturbations that decrease the cost. By making the
Hook-Jeeves [37], and Nelder—Mead Simplex [38] are all vastarting perturbation suitably large, some local minima can be
ants of this idea. However, Torczon has recently suggested a @avieided: we “skip over” the hills, rather than accepting directly
fied formulation that renders many of these classical methodsaasuphill move, as in annealing. By shrinking the perturbation
particular cases of a more general method caiktern search size appropriately over the course of the search, we can localize
[39], [40]. Surprisingly, Torczon was able to show pattern seartie search to converge on (we hope) a good local minimum.
to have provable convergence properties. The theoretical inNelder—Mead Simplex has been tried in some circuit syn-
terest generated by Torczon’s results motivates us to reconsithesis and optimization tools. Results to date have been neg-
direct search ideas. ative: for very small problems with very simply cost surfaces
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. . . . Fig. 6. Convergence to a cost-surface minimum during stochastic pattern
Fig.5. A flow representation of the stochastic pattern search algorithm. SteRSrch. The population model allows us to search multiple samples of the cost

1-4 are performed, and repeated until the population’s cost can no longgfrace concurrently, all of which ultimately converge to solutions (circuits) of
be decreased. Step 3 corresponds to the subroutine decrease_cost() injthigar quality.

pseudocode of Fig. 7.

- solutions in the population coerces this search to converge to a
they perform adequately; large and difficult problems, they pega; of solutions of similar quality, yet the combination of the
form poorly. Forexample, in our preliminary comparisons to 0y jation model and the randomized pattern searches helps
own Nelder-Mead implementation MNEAL +-+ was always su- ihe gptimization swarm over a suitably diverse set of samples
perior—although it obtained its solutions at the cost of consids ihe cost surface. This gives the technique its nastoehastic
erably more CPU time. _ pattern search

To overcome these problems, we suggest coupling patterirgrczon-style pattern search admits parallelism in the ob-
search strategies with the population-of-circuits idea frofjoys form of concurrent exploration of different search pat-
MAgLSTROM, and add a random component to the pattefarns [41]. In our case, the population model allows us to per-
search itself. The overall architecture is conceptually simple.o,m multiple pattern searches in parallel. A detailed descrip-

1) Population of partial circuit solutions: we maintain a tion of the stochastic pattern search algorithm in the form of

large population of partial solutions. It is the populatiopseudocode appears in Fig. 7. We begin with a simple coor-
itself which combats the problem of cost surfaces withinate search algorithm, which is shown in pseudocode begin-
local minima. Each element is one sample of that cost swing on line 25 of Fig. 7. The main loop of the subroutite

face. By maintaining a suitably diverse set of samples, aggkase_cost(perturbs each independent variable (coordinate)
preferentially updating the population so that lower-cogf the current solution vector; we refer to the process of per-
samples survive and higher-cost samples are culled, webing all coordinates as one atonpiattern-searchHowever,

avoid the need to do explicit hill-climbing. the order in which each variable is perturbed is random, and the

2) Simple population update:from a population of” par-  perturbation amount is also random, although bounded. Each

tial solutions, we seledt candidates, apply a short patvariable may be perturbed in both the positive and negative
tern search improvement process to each candidate, tigg®ction: the goal is to find a perturbation that decreases the
replace these in the population. From this updated popgbst. Perturbation bounds decrease as the algorithm progresses,
lation of P + £ solutions, we remove the solutions of shrinking around the evolving solution. One nonrandom com-
highest (worst) cost. ponent is the acceptance criterion for each coordinate pertur-

3) Evolution by random pattern search: the update bation: we only accept solutions that decrease the cost. Unlike

process for a candidate selected from the populati@fmnealing, we do not accept uphill moves; however, because co-

is a truncated pattern search in the style of coordinaggdinate search can take very large steps, we can “skip over”

search, but with the key difference that the search pattdifs.

(direction and step size) are themselves randomized.  The algorithm uses a master-slave organization for managing
We evolve the population via short, randomized pattethe population. The code for each parallel node begins on line
searches, and allow only superior solutions to survive adyof Fig. 7. We start with a population d@? circuit solutions,
update. The overall flow is illustrated in Fig. 5. The conversorted on cost. We randomly select a subset of these so-
gence of a population of cost samples to a set of solutionslofions, with some bias toward those of lower cost. We perform
similar numerical quality is illustrated in Fig. 6. Our intuitionone pattern-search on each of thesandidates, add them back
here is that pattern searches work well in the neighborhoodtofthe population, re-sort, and then cull out the wdrstolu-
minima, but that the reliance on evolving only one solutiortions. This repeats until no more improvements can be found
and doing so in a deterministic pattern, does not provideirmany elements of the population, i.e., all circuits have essen-
sufficiently vigorous search. A population of solutions partially similar cost. We can distribute the pattern-search for each
tially combats the problem of local minima. Evolving severadf the k£ candidates in parallel, and each individual coordinate
elements of the population via short bursts of randomizegarch itself requiressmultiple circuit simulations, allowing us
downhill pattern search provides a suitably vigorous pressureeasily exploitkt parallel workstations. So, as noted earlier,
to explore promising local minima. Favoring only improvedve can distribute both search and evaluation.
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1 if this node is the master
2 spawn m slaves
3 initialize the population, P, with n random points
4 while the population cost is still decreasing
5 foreach slave, s
6 choose a point, p, from the population, P
7 sendptos
8 end
9 wait for a single point from each slave, m total points
10 foreach point, p, received from the slaves
1 if p decreases the cost of P
12 insert p into P
13 remove the highest cost point tfrom P
14 end
15 end
16 end
17 else this node is a slave
18 wait for a point, p, from the master
19 p_new = decrease_cost(p)
20 send p_new to the master
21 adjust step size bounds
22 end
23
24 subroutine decrease_cost(p)
25 p_proposed = p
26 min_cost = cost of p
27 while there is a coordinate of p_proposed that has not been visited
28 choose a random index, i, that has not been chosen yet
29 p_proposed[i] += random_petrurbation
30 if the cost of p_proposed is less than min_cost
31 min_cost = the cost of p_proposed
32 else
33 p_proposed[i] = p[i]
34 end
35 end
36 if min_cost < the cost of p
37 return proposed_p
38 else
39 return p
40 end
a1 end subroutine
Fig. 7. Pseudocode for parallel stochastic pattern search.
E. Network Architecture CPUr's as necessary. Indeed, the actual mechanics of managing

Our implementation distributes all computation over a pogﬂe population and updating the required state information con-
of workstations. We use software components and organizaMe & negllg_|ble fraction of _the _ovgrall e>_<ecut|on time, which
tional ideas from MELSTROM, which at the lowest level man- IS Wholly dominated by the circuit simulations. The two phys-
ages concurrency and interprocessor communication using igl characteristics of the method that we must deal with are as
publicly available PVM library [42]. The overall network archi-follows.
tecture is illustrated in Fig. 8. The important point to make is 1) Supportforan arbitrary number of available workstations.
that the master-slave structure implied by the stochastic pattern We should be able to use as many machines as we have
search pseudocode of Fig. 7 is onlyogical organization for available, or from which we can harvest spare cycles. But,
the required parallel computation, nophysicalorganization. we must be able to make progress on synthesis even if we
In other words, we do not bind the master and individual slave  have fewer machines than we would prefer.
nodes each to a separate physical CPU. In our terminology, the?) Support for intelligent scheduling of the simulation tasks
process of selecting and updatihgandidates in the population among available workstations. Different simulation tasks
is handled byt slaves But each slave can use as many physical (dc, ac, transient, test-jig setup, early parameter estima-
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Processor 1

Evaluation R.elquast Simulation Riquest

Evaliation Result SImH!atlon Result
i Evaluation Master
(1) Maps SPICE servers

to processor pool

Processor 2

2) Maps evaluation

requests to SPICE
servers, organizes
results and returns them
to optimization engine

The optimization engine may
span multiple processors
if necessary

Fig. 8. ANACONDA network architecture.

tion, etc.) can each require vastly different amounts of h‘}““efg“fs
time. Assuming that each simulation needs its own CPU is Stdegz;:'l%
not only impractical, but inefficient. Our progress would 2.75 ‘ (2 outliers not shown)
always be limited by the slowest simulation. X :
. I . 255 +------qeo---g
The architecture in Fig. 8 addresses these concerns via a sep- )

arate layer of software called tiewaluation masterit brokers 235 1- Paf::;h;i‘;ch y

requests for simulations (from concurrent pattern searches on 215 T Mean=1.24

elements of the evolving population) among a set of available - 1.95 1 - StdDev=0.14 .

CPU’s (slaves) that perform actual simulations. Any individual 5 vs b N\

CPU may be performing several simulations in series. The eval- '

uation master dynamically schedules simulation tasks to max- 155 7----1 &}~

imize the throughput on the available machines, using simple 135 1---- .-

bin-packing heuristics. Thus, one CPU might be tasked to run 115 4----le@)l----

several small simulations, each of which is expected to com-

plete quickly, while another CPU might run only one simulation, 0.95 '

which is expected to be long. The evaluation master tracks com- 0 10000 20000 30000

pletion times for each simulation task on each node, and uses Perturbations

t_hls information to periodically reSCheFIUIe al_l tasks. SIml"latlolﬂg. 9. Parallel stochastic pattern search compared to a well-tuned serial
times can vary over the course of a simulation both becauseaghealer for synthesis of the circuit in Fig. 10(c). Thexis is the number of
transient changes in machine loading, and because circuit casgiial perturbations. The total number of design points evaluated by the pattern

. . . . rch algorithm was 20the number of serial perturbations, or approximately
dates migrate around in the solution space, and not all SO'”“@@% 000. The total number of design points evaluated by the annealer is 25 000

are equivalently easy to simulate. Dynamic scheduling makegause it is a serial annealer.
for efficient use of the available computational resources.

At this point, we can offer a simple experiment that shows threughly 100 000 circuits, but with a CPU time proportional to
merits of our approach. We revisited the simulator-in-serial-annly 10 000 circuit simulations.
nealer approach used in Fig. 2, and compared it to stochasti®Note that stochastic pattern search is producing both a better
pattern search when applied to the task of synthesizing the &verage answer (i.e., finding a better expected minimum, which
dustrial circuit (to be described in Section IV) of Fig. 10(c)corresponds to a better circuit solution), and a tighter spread of
Twenty synthesis runs were performed using each algorithemswers. We believe this is a result of our parallel population
and the results are shown in Fig. 9. We show a scatter ptabdel, which not only allows us to visit more solutions in a
of cost [the @Lx-form cost-function being minimized, from reasonable amount of time, but also does a better job of pruning
(3)] versus “perturbations.” For the annealer, this is the numbegeak solution candidates before search becomes trapped in poor
of circuit candidates visited sequentially. For stochastic pattdotal minima. This is critical since any stochastic optimizer pro-
search, each perturbation actually vigitaew circuits, and we duces a spread of solutions on repeated runs; tighter spreads
evaluate these in parallel across a pool of ten workstations. reean a higher likelihood of finding a good solution on each in-
this result, the parallel pattern search algorithm actually visitedcation of the tool.
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M10 plots the mean cost of each population of 200 circuits for
each of the five synthesis runs, for each of the three bench-
marks. An immediate and striking feature of the data is
how closely the individual populations track each other, even
across separate synthesis runs. We take this as indication that
the population update/replacement strategies are performing

(a) Simple two-stage opamp well: they are maintaining an appropriately diverse sample

12 of the cost surface, while encouraging convergence to solu-
m22 M21 M15 |— M1t Mg
Ibias M16 l |
mM20 }— i
M9 i—

tions of similar cost by culling always the weakest solutions.
Fig. 13 plots the maximum, mean, and minimum cost sam-
ples seen in each population for one sample run for each of
the three circuits. As expected, there is significant disparity
between the minimum and maximum values at the start of
synthesis, but these rapidly converge as weaker solutions are
culled and the solution candidates cluster around a single
best value. Perhaps more interesting is the qualitative dif-
ference between the dynamics of the smaller two-stage and

(b) Folded cascode opamp folded-cascode circuits, which show somewhat larger final
T ] spreads in contrast to the larger, more difficult power amp
L_lll"'” "'”}";_‘J M3 1 ma circuit. We interpret this as related to the size of the de-
",J '"}M e S|gn—_the number of_ degrees of_freedom (DOF)._The power
M'1'; M17 ““I Ret e amp is a large design; we believe there are simply more
Iil:L“ M14], w12 nearby solutions of equivalent quality than for the other
M1 M2 M18 | i —Cc1 . . ;
L ;m_;mm N e smaller designs. qu the smgller designs, the_re simply appear
Ibias J I M, w11 tp be fewer .good flpal solutions that' are unique, hencg the
a3 a1 imso M15 | e M':;z final po_pulgtlon retains a I_arger fractlor_1 qf Weal_<er deS|gns.
I:] j Mzsﬁ A contributing factor here is also that, in industrial practice,
m2s |‘4{ ILq ,,_,I’"" {Lj"'” M“}Lj M7 ms device sizes are not continuous, but are restricted to some
— discrete (though closely spaced) values. This discretization
(c) Power amplifier affects the smaller designs somewhat more noticeably. Fi-

nally, it is worth noting that the cost scale is logarithmic:
even though the spreads are visible in the plots, in reality
the costs are extremely close. Table | gives the input per-
formance constraints, simulation environment, and runtime
statistics for each synthesized circuit. For our experiments,
the performance constraints were set by running nominal
The ideas presented in this paper have been implemented giraulations on the original hand designs. Each design was
tool called ANACONDA and tested on site at Texas Instruments isynthesized using a pool of 16 300-MHz Ultra 10’s and four
Dallas, TX. We benchmarkedMhCONDA on the three opamps, 300-MHz dual-processor Ultra 2's. Note that although we
shown in Fig. 10, that are all examples of production circuitsnly update ten circuits in the population in parallel, each
for which we also have complete TI manual designs. The powarcuit required between five and seven simulations to eval-
amp was designed in a 0;8n CMOS process and the other twauate. Thus, we can make use of the entire pool of 24 CPU'’s.
opamps were designed in a .61 CMOS process. Because runtime is highly dependent on the size of the cir-
ANACONDA consists of a parallel stochastic pattern search @it and the type of simulation being performed, there was
gorithm coupled (via encapsulation) to an industrial circuit sinsignificant variation among the circuits. For example, for the
ulator that evaluates each candidate solution. The simulator upesver amp, each total harmonic distortion (THD) analysis
was TI's proprietary TISpice. In addition, all three circuits weréook a few CPU seconds and, consequently, that circuit had
synthesized using the same parameters for the pattern seaighificantly longer synthesis times. Overall, each synthesis
algorithm: the population size was set to 200, and ten logidalsk required between a few hours and overnight on a pool
slaves (i.e., we select and replace ten elements of the populatibr(typically) 20 available workstations.
concurrently) were used to evaluate circuits in the population.Fig. 11 shows the results of five consecutive synthesis runs
Simulation tasks were dynamically rescheduled every 100 sifor each circuit. Given the large number of performance speci-
ulations. Also, the same weightings in the cost function from (8gations for each circuit, we summarize these results as power-
were used for all three circuits. The constraints for each desigersus-area scatter plots. For each design, the objectives were to
had a weighting of one while the objectives had a weighting afinimize area and static power dissipation. In all but one case,
0.5. the synthesized circuits matl of the performance constraints
Figs. 12 and 13 offer some insight into the population dyspecified in Table I. Several of these designs are in fact supe-
namics as these sets of benchmark circuits evolved. Fig. d@ to their manual counterparts. And, it is worth noting again

Fig. 10. Industrial test circuits for our synthesis experiments.

IV. RESULTS
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Fig. 11. Static power versus area scatter plots for five consecutive synthesis runs for each test circuit. Each scatter includes a manuarcnepi¢sested

by a square point. Designs such as “1” in result (a) that have significantly higher static power dissipation typically are over-designed foricatierspiec

result “1” the settling time was slightly smaller than necessary. Design “2” in (b) had a UGF of 159 MHz, and this was slightly less than the 162 Mi#dz requir
Designs such as “3” in (c) that have significantly larger area again represent over-design in a performance constraint; for result “3,” the THZmalet5%
than necessary.
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Fig. 12. Evolution of the population’s mean cost over five consecutive synthesis runs, for the synthesis results shown in Fig. adisT¢he total number
of design points that have been evaluated.
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Fig. 13. A sample synthesis run for each test circuit from Fig. 10, illustrating how the minimum, mean and maximum cost of candidates in the papuation e
over time. Ther axis is the total number of evaluated design points.

that the quality metrics—meeting specifications under detailéokming synthesis algorithm can push a final design very close
circuit simulation—arddentical to those used during manualto the edge of the feasible region where all constraints are met.
design. Even modest changes in process or operating conditions can
Our results so far suggest thaNACONDA is effective for then render the circuit nonfunctional [43]. We have two broad
nominal cell-level analog synthesis. But we must also makéasses of solutions: add first-order constraints to the synthesis
some efforts to address manufacturing process variations aask, mimicking the “conservative” design practices of skilled
environmental operating range constraints. We know from egtesigners, or fold a numerical manufacturability optimization
perience that we cannot ignore these issues, since a well-pete the synthesis process itself [44]. We choose the former
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Fig. 14. A sample of the monte-carlo results for the simple two-stage opamp. Histograms for the performance specs are shown first for the hadd design an
second for the synthesized design.

option here, and focus on how to properly constrain a circidtlvantage of using simulator-in-the-loop synthesis is that when
so that synthesis yields a result with design centering comphe constraint is met one can be assured that the effective
rable to an expert manual design. INACONDA, the two types voltage will be the value specified.
of constraints supported for this purpose aperating region Designers can eliminate unnecessary or possibly dangerous
constraintsandcomponent constraint§ hese adapt ideas fromDOF by specifyingzomponent constraintés an example, con-
ASTRX/OBLX. sider the simple two-stage opamp in Fig. 10(a). Clearly, a rea-
Operating region constraints simply specify that individusdonable design would have the input differential pair matched.
devices should be “far enough” into the desired region th&his could be specified using the simple constraifits = W2
process or environmental variations cannot force the devi@adZ1 = 2. Such constraints are trivial to accommodate. But
out of this region. If operating region constraints are not use#), real designs, many component values are determined para-
the optimizer may choose to bias a transistor on the edgenogtrically, as functions of other designables in the circuit. For
the active region for nominal performance gains. To avoikample, itis common practice to set the compensation resistor
such a situation, we can designate how large we would li& in the circuit of Fig. 10(a) to the value
the effective voltagei.e., how far abovd’ we requireVgs 146
to be for a MOSFET, for individual devices in the design. For Rc = (4)
example, a typical number when designing CMOS opamps in gms
micron-scale processes is simply to fix this effective voltagghereé is a designer-input constant reflecting the degree of
to 250 mV; we do not expect individual devices each to hawverdesign desired, angn;, the transconductance of another
precisely tailored, unique voltage constraints. When designidgvice in the circuit, requires separateSPICE simulation to
by hand the value for the effective voltage is set using firsbmpute. Indeed, it is not uncommon to require a series of these
order equations. Unfortunately, the simulated value may bsetup” simulations to first create the proper component rela-
significantly different than the hand calculated value. Orntgonshipsbeforereal evaluation of the circuit can begin. Sim-
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Fig. 15. Histograms illustrating how the two-stage opamp’s low-frequency
gain (x axis) varies across process variations. Results from the hand designmeads than the hand design. The main reason for these overall

shown first, followed by results for the five consecutive synthesis runs. Th : : : ;
histograms illustrate the consistent quality across consecutive synthesis run ﬁzt spreads IS ihe rlgct)ro_u? en_{_?]rcementtOf tf]le operta'u.ngt] region
and component constraints. These sorts of constraints are a
. . . , standard part of good manual design practice—but not always
ulation-based synthesis algorithms likewtConba (and also enforced with the discipline we can achieve in a numerical
MAELSTROM) extend gracefully to handle these sorts of pra%'ynthesis tool
tlc_la_lhusa_ge s_cer;arlosl.:_ 10 and Its f Fig. 11 These results are noteworthy in several respects. First, these
€ C|rcu_|ts rom Fig. and resu ts_ rom Fig. WerSre production-quality industrial analog cells with difficult
obtained using these common-practice, first-order constrai Srformance specifications. Second, our synthesis approach
-LO ?55353 thg robustnesslfc.)fdths appr]?ach_, each of tf&e é/nﬂsing as its evaluation engine thdentical simulation
t.eS|Ize. eS|.grr]1$ was verl '1600/ y Iper ormln? Mogtg a%wironment used by TI's designers to validate their manual
simulations with3o process, 0 voltage supply, and O to designs. As aresult, we can deal accurately with difficult design
100 °C temperature variations. Selected results are '"us”a:\iﬁeciﬁcation such as noise, settling time, and THD, which
n F||gs. 14-16. Fig, 14, ShO\?’S h|stograms_f1_‘or .mOStAOf_t quire detailed simulations to evaluate complex nonlinear
S|mphe tyvo-staggle opan;]p S performance Speci |ca(;uons. h S'E%%ects. Finally, nearly all of these synthesized designs compare
zynt. eS'FS resuht, hsynt esis run 1, 'Sh corr']npare hto.t zd N orably with their manually designed counterparts, both
esflgn. rom t ﬁ |stohgra;1ms(;/vg se_et atthe synthesize deﬁjmg_Berformance and in robustness across manufacturing and
performs as well as the hand design across process and eMGironmental corners. We believe this is a significant advance

ronment variations for each of the performance specifications. demonstrating how an analog synthesis tool can attack
Figs. 15-17 shows sample histograms for the Iow-frequen@/(,i”stiC industrial circuit designs

gain of the three test designs. Notice that all five consecutive
synthesis runs are shown. This illustrates how the robustness of
the circuits varies from one synthesis run to the next. For the
simple two-stage and folded cascode opamps there is very littleMe have presented a novel synthesis strategy for custom
variation. However, for the power amplifier, Fig. 17, we seanalog cells. Our central contribution is stochastic pattern
that four of the five synthesized designs actually have tightsearch, a parallelizable global optimization algorithm that

V. CONCLUSION
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Fig. 16. Histograms illustrating how the folded cascode opampBig. 17. Histograms illustrating how the power amp’s low-frequency gain
low-frequency gain 4 axis) varies across process variations. Resulte: axis) varies across process variations. Results from the hand design are
from the hand design are shown first, followed by results for the fivehown first, followed by results for the five consecutive synthesis runs. These
consecutive synthesis runs. These histograms illustrate the consistent quaigyograms illustrate the consistent quality across consecutive synthesis runs.
across consecutive synthesis runs.

combines ideas from evolutionary algorithms and numericgr Richey and F. James (TI) for valuable discussions about this
pattern search. By encapsulating commercial circuit simulatd¥8rk-

and distributing the search across a pool of workstations, we

can visit 50 000—100 000 circuit candidates, and fully simulate
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