
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 6, JUNE 2000 703

Anaconda: Simulation-Based Synthesis of Analog
Circuits Via Stochastic Pattern Search

Rodney Phelps, Student Member, IEEE, Michael Krasnicki, Rob A. Rutenbar, Fellow, IEEE, L. Richard Carley, and
James R. Hellums, Senior Member, IEEE

Abstract—Analog synthesis tools have traditionally traded
quality for speed, substituting simplified circuit evaluation
methods for full simulation in order to accelerate the numerical
search for solution candidates. As a result, these tools have failed
to migrate into mainstream use primarily because of difficulties
in reconciling the simplified models required for synthesis with
the industrial-strength simulation environments required for val-
idation. We argue that for synthesis to be practical, it is essential
to synthesize a circuit using the same simulation environment
created to validate the circuit. In this paper, we develop a new
numerical search algorithm efficient enough to allow full circuit
simulation of each circuit candidate, and robust enough to find
good solutions for difficult circuits. The method combines the
population-of-solutions ideas from evolutionary algorithms with a
novel variant of pattern search, and supports transparent network
parallelism. Comparison of several synthesized cell-level circuits
against manual industrial designs demonstrates the utility of the
approach.

Index Terms—Algorithms, analog synthesis, mixed-signal
design, pattern search.

I. INTRODUCTION

M IXED-SIGNAL designs are increasing in number as a
large fraction of new integrated circuits (IC’s) require an

interface to the external, continuous-valued world. The digital
portion of these designs can be attacked with modern cell-based
tools for synthesis, mapping, and physical design. The analog
portion, however, is still routinely designed by hand. Although
it is typically a small fraction of the overall design size (e.g.,
10 000–20 000 analog transistors), the analog partition in these
designs is often the bottleneck because of the lack of automation
tools.

The situation appears to be worsening as we head into the era
of System-on-Chip (SoC) designs. To manage complexity and
time-to-market, SoC designs require a high level of reuse, and
cell-based techniques lend themselves well to a variety of strate-
gies for capturing and reusing digital intellectual property (IP).

Manuscript received October 1, 1999. This work was supported in part by
the Semiconductor Research Corporation (SRC) under contract 068, by the
National Science Foundation (NSF), and grants from Texas Instruments and
Rockwell Semiconductor. This paper was recommended by Associate Editor
E. Charbon.

R. Phelps, M. Krasnicki, and L. R. Carley are with the Department of Elec-
trical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA,
15213 USA.

R. A. Rutenbar is with the Department of Electrical and Computer Engi-
neering, Carnegie Mellon University, Pittsburgh, PA, 15213 USA (e-mail:
rutenbar@ece.cmu.edu).

J. R. Hellums is with the Mixed Signal Products Division, Texas Instruments
Inc., Dallas, TX 75243 USA.

Publisher Item Identifier S 0278-0070(00)05346-X.

But these digital strategies are inapplicable to analog designs,
which rely for basic functionality on tight control of low-level
device and circuit properties that vary from technology to tech-
nology. The analog portions of these systems are still designed
by hand today. They are even routinely ported by hand as a given
IC migrates from one fabrication process to another.

A significant amount of research has been devoted to cell-
level analog synthesis, which we define as the task of sizing
and biasing a device-level circuit with 10–50 devices. How-
ever, as noted in [1], previous approaches have failed to make
the transition from research to practice. This is due primarily
to the prohibitive effort needed to reconcile the simplified cir-
cuit models needed for synthesis with the “industrial-strength”
models needed for validation in a production environment. In
digital design, the bit-level, gate-level and block-level abstrac-
tions used in synthesis are faithful to the corresponding models
used for simulation-based validation. This is not the case for
analog synthesis.

Fig. 1 illustrates the basic architecture of most analog syn-
thesis tools. Anoptimization enginevisits candidate circuit de-
signs and adjusts their parameters in an attempt to satisfy de-
signer-specified performance goals. Anevaluation enginequan-
tifies the quality of each circuit candidate for the optimizer.
Most research here focuses on tradeoffs between the optimizer
(which wants to visit many circuit candidates) and the evalu-
ator (which must itself trade accuracy for speed to allow suffi-
ciently vigorous search). Much of this work is really an attempt
to evade a harsh truth—that analog circuits are difficult and
time-consuming to evaluate properly. Even a small cell requires
a mix of ac, dc, and transient analyzes to correctly validate. In
modern design environments, there is enormous investment in
simulators, device models, process characterization, and “cell
sign-off” validation methodologies. Indeed, even the sequence
of circuit analyzes, models, and simulation test-jigs is treated
as valuable IP here. Given these facts, it is perhaps no surprise
that analog synthesis strategies that rely on exotic, nonstandard,
or fast-but-incomplete evaluation engines have fared poorly in
real design environments. To trust a synthesis result, one must
first trust the methods used to quantify the circuit’s performance
during synthesis. Most prior work fails here.

Given the complexity of, investment in, and reliance on sim-
ulator-centric validation approaches for analog cells, we argue
that for a synthesis strategy to have practical impact, itmustuse
a simulator-based evaluation engine that isidenticalto that used
to validate ordinary manual designs. This, however, poses sig-
nificant challenges. For example, commercial circuit simulators
are not designed to be invoked 50 000 times in the inner loop of

0278–0070/00$10.00 © 2000 IEEE

704 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 6, JUNE 2000

Fig. 1. Abstract model of analog synthesis tools.

a numerical optimizer. And, of course, the CPU time to visit and
simulate this many solution candidates may be unacceptable.

In this paper, we develop a new strategy to support efficient
simulator-in-the-loop analog synthesis. The approach relies on
three key ideas. First, weencapsulatecommercial simulators
so that their implementation idiosyncrasies are hidden from our
search engine. Second, we develop a novel global optimization
algorithm calledstochastic pattern search, combining ideas
from evolutionary algorithms and pattern search, that is robust
in finding workable circuits, and avoids the starting-point
dependency problems of gradient and other down-hill search
methods. Third, we exploitnetwork-level workstation par-
allelism to render the overall computation times tractable.
Our new optimization algorithm was designed to support
transparent distribution ofboth the search tasks and the circuit
evaluation tasks across a network.

We have implemented these ideas in a tool called ANACONDA.
ANACONDA uses framework components from a companion
synthesis tool, MAELSTROM [2]. ANACONDA has been suc-
cessfully run on networks of 10–20 UNIX workstations,
and currently runs Texas Instrument’s proprietary TISpice
circuit simulator as its evaluation engine [3]. In this paper, we
extend the original treatment, describe in more detail the basic
algorithms underlying ANACONDA, and present an expanded
set of experimental synthesis results that demonstrate that
simulator-in-the-loop synthesis can be made both practical
and efficient for industrial designs. The remainder of the
paper is organized as follows. In Section II, we briefly review
prior work. In Section III, we formulate the overall synthesis
problem and focuses on our global optimization algorithm,
which we call stochastic pattern search. In Section IV, we
offer experimental results on circuits. Finally, we offer some
concluding remarks in Section V.

II. REVIEW OF PRIOR APPROACHES

Referring again to Fig. 1, we can broadly categorize previous
work on analog synthesis by how it searches for solutions and
how it evaluates each visited circuit candidate. See [4] for a more
extensive survey.

Early work on synthesis used simple procedural techniques
[5], rendering circuits as explicit scripts of equations whose di-
rect evaluation completed a design. Although fast, these tech-
niques proved to be difficult to update, and rather inaccurate.
Numerical search has been used with equation-based evalua-
tors [6]–[8], and even combinatorial search over different cir-
cuit topologies [9], [10], but equation-based approaches remain
brittle in the face of technology changes. Recent work here has

focused on coercing the required equations into a form more
amenable to optimization; [11] shows results from rendering
the equations as posynomials, thus, creating a convex optimiza-
tion problem solvable via geometric programming. Hierarchical
systems [12]–[15] introduced compositional techniques to as-
semble equation-based subcircuits, but still faced the same up-
date/accuracy difficulties. Some of these systems can manip-
ulate circuit equations automatically to suit different steps of
the synthesis task [7]. Qualitative and fuzzy reasoning tech-
niques [16], [17] have been tried to capture designer expertise,
but with limited success. Equation-based synthesis offers fast
circuit evaluation and is, thus, well suited to aggressive search
over solution candidates. However, it is often prohibitively ex-
pensive to create these models—indeed, often more expensive
than manually designing the circuit. Also, the simplifications
required in these closed-form analytical circuit models neces-
sarily limit their accuracy and completeness.

Symbolic analysis techniques, which have made significant
strides of late [7], [8], [18]–[21] offer an automated path to ob-
taining some of these design equations. These techniques au-
tomatically derive reduced-order symbolic models of the linear
transfer function of a circuit. The resulting symbolic forms can
be obtained fairly quickly, offer good accuracy and can, thus,
serve as evaluation engines. However, they are strictly limited to
linear performance specifications, or at most some weakly non-
linear specifications [22]. Even a small analog cell may require
a wide portfolio of dc, ac, and transient simulations to validate
it. Symbolic analysis is a valuable but incomplete approach to
circuit evaluation.

The synthesis systems most relevant to the ideas we develop
in this paper are ASTRX/OBLX [1], [4] and the FRIDGE system
from Seville [23]. In ASTRX/OBLX, we attacked the funda-
mental problem of tool usability with a compile-and-solve
methodology. ASTRX starts from a SPICE deck describing an
unsized circuit and desired performance specifications. ASTRX

compiles this deck into a custom C program that implements
a numerical cost function whose minimum corresponds to a
good circuit solution for these constraints. OBLX uses simulated
annealing [24] to solve this function for a minimum. This
custom-generated cost code evaluates circuit performance via
model-order reduction [25] for linear, small-signal analysis,
and user-supplied equations for nonlinear specifications.
ASTRX/OBLX was able to synthesize a wide variety of cells,
but was still limited to essentially linear performance specifica-
tions. FRIDGE similarly uses annealing for search, but actually
runs a SPICE-class simulator in its annealer. However, this
tool appears to employ a simulator customized for synthesis,
only evaluates a few thousand circuit candidates in a typical
synthesis run (in contrast, OBLX evaluates 10–10 solutions),
and has only been demonstrated solving problems with a small
number of independent design variables.

Finally, we also note that there are several circuitoptimiza-
tion techniques that rely on simulator-based methods (e.g.,
[26]–[28]). For circuit optimization we assume a reasonable
initial circuit solution, and seek to improve it. This can be
accomplished with gradient and sensitivity techniques requiring
a modest number of circuit evaluations. In contrast, in circuit
synthesiswe can assume nothing about our starting circuit

PHELPSet al.: ANACONDA: SIMULATION-BASED SYNTHESIS OF ANALOG CIRCUITS 705

(indeed, we usually haveno initial solution). This scenario
is much more difficult as a numerical problem, and requires
a global search strategy to avoid being trapped in poor local
minima that happen to lie near the starting point.

The problem with all these synthesis approaches is that they
use circuit evaluation engines different from the simulators and
simulation strategies that designers actually use to validate their
circuits. These engines tradeoff accuracy and completeness of
evaluation for speed. We argue that this is no longer an accept-
able tradeoff.

III. SYNTHESIS FORMULATION

In this section, we present the full synthesis formulation of
ANACONDA. Our circuit synthesis strategy relies on three key
ideas: simulator encapsulation, a novel combination of popu-
lation methods and pattern search, and scalable network paral-
lelism. We describe these ideas below, beginning with a review
of our basic synthesis-via-optimization formulation.

A. Basic Optimization Formulation

We use the basic synthesis formulation from OBLX [1],
which we review here. We begin with a fixed circuit topology
that we seek to size and bias. We approach circuit synthesis
using a constrained optimization formulation, but solve it in an
unconstrained fashion. We map the circuit design problem to
the constrained optimization problem of (1), where is the set of
independent variables—geometries of semiconductor devices,
device multiplicities, and values of passive circuit compo-
nents—we wish to change to determine circuit performance;

is a set of objective functions that codify performance
specifications the designer wishes to optimize, e.g., power or
bandwidth; and is a set of constraint functions that codify
specifications that must be beyond a specific goal, e.g., (gain

60 dB). Scalar weights, , balance competing objectives

s.t. (1)

Formulation of the individual objective and constraint
functions adapts ideas from [26]. We require agoodvalue,

and abadvalue for each specification. These are used both to
set constraint boundaries and to normalize the specification’s
range. For example, a single objective is internally nor-
malized as

(2)

This normalization process provides a natural way for the de-
signer to set the relative importance of competing specifications,
and it provides a straightforward way to normalize the range of
values that must be balanced in the cost function.

To support the stochastic pattern search optimizer we intro-
duce in Section IV, we perform the standard conversion of this
constrained optimization problem to an unconstrained optimiza-
tion problem with the use of additional scalar weights. As a re-

sult, the goal becomes minimization of a scalar cost function,
, defined by

(3)

The key to this formulation is that the minimum of cor-
responds to the circuit design that best matches the given spec-
ifications. Thus, the synthesis task becomes two more concrete
tasks: evaluating and searching for its minimum. Neither
of these are simple. Our major contributions here are a new al-
gorithm for global search that is efficient enough to allow use of
commercial circuit simulators to evaluate , and a method-
ology for encapsulating simulators to hide unnecessary details
from this search process. We treat the encapsulation method-
ology next.

B. Simulator Encapsulation for Simulation-Based Evaluation

Our overall goal is to be able to use the simulation methods
trusted by designers—butduring analog cell synthesis. This
means invoking a sequence of detailed circuit simulations for
each evaluation, , during numerical search. Although dif-
ferent SPICE-class simulation engines share core mechanisms
and offer similar input/output formats, they remain highly id-
iosyncratic in many features. In our experience, the mechanics
of embedding a simulator inside a numerical optimizer are re-
markably untidy. This is a real problem since we seek a strict
separation of the circuit optimization and circuit evaluation en-
gines, and would like ultimately to be able to “plug in” different
simulators. We handle this problem using a technique we refer
to assimulator encapsulation.

Simulator encapsulation hides the details of a particular
simulator behind an insulating layer of software. This software
“wrapper” renders the simulator an object with a set of methods,
similar to standard object-oriented programming ideas. Class
members are invoked to perform a simulation, to change circuit
parameters, to retrieve simulation results, and so forth. Clearly
one major function of this encapsulation is to hide varying
data formats from the optimizer; this engine need not concern
itself with the details of how to invoke or interpret an ac, dc,
or transient analysis.

A more subtle function of encapsulation is to insulate the
optimization engine from “unfriendly” behavior in the simu-
lator. Most simulators are designed either for batch-oriented
operation, or for interactive schematic-update-then-simulate
operation. In the latter, the time scales are optimized for
humans—overheads of a few seconds per simulation invocation
are negligible. But inside a numerical optimizer that seeks to
run perhaps 100 000 simulations, these overheads are magni-
fied. Our ideal is a simulator which can be invoked once, and,
remaining live, can interpret quickly a stream of requests to
modify circuit values and resimulate. Few simulators approach
this ideal. For example, some insist on rechecking a licence
manager key (possibly located remotely on a network) for
every new simulation request; others flush all internal state or
drop myriad temporary files in the local file system. Of course,
the maximally difficult behavior exhibited by a simulator
is a crash, an occurrence far from rare even in commercial

706 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 6, JUNE 2000

Fig. 2. Custom folded cascode opamp circuit and basic simulation-based
annealing synthesis result.

offerings. This is especially problematic in synthesis, since the
optimization engine may often visit circuit candidates with
highly nonphysical parameter values, which occasionally cause
simulator failure. Our encapsulation not only detects the crash
but also restarts and reinitializes the simulator, all transparent
to the optimizer. All these difficult behaviors can be hidden via
appropriate encapsulation.

C. Global Optimization Issues

As in OBLX [1], we again favor global, stochastic search al-
gorithms for the optimization engine because of their empirical
robustness in the face of highly nonlinear, nonconvex cost func-
tions. However, in OBLX we made an explicit tradeoff to use a
customized, highly tuned, very fast circuit evaluator to permit
search over a large number of solution candidates. When we re-
place this custom evaluator with commercial circuit simulation,
we are faced with a 10 to 100 increase in CPU time. The
central question we address in this section is how to retain the
virtues of global, stochastic search, but deal with the runtime
implications of simulator-in-the-loop optimization.

Before we describe our new optimizer, it is worth justifying
our focus on global, rather than gradient-style local optimiza-
tion. Given a good implementation of simulator encapsulation,
we can replace the custom circuit evaluation used in OBLX with
full, detailed simulation. We have rewritten the core annealing
engine of OBLX in the form of a new, component-based
optimization library called ANNEAL [29]. ANNEAL

offers a range of annealing cooling schedules, move selection

techniques, and dynamic updates on cost function weights. As
an experiment, we encapsulated the Cadence Spectre circuit
simulator [30] and used it with ANNEAL to resynthesize a
standard OBLX benchmark circuit: the custom folded-cascode
opamp from [31]. The circuit has 32 devices and 27 designable
variables; the circuit schematic and associated synthesis results
appear in Fig. 2.

This rather straightforward synthesis strategy yields an ad-
equate result, albeit somewhat slowly. (In this simplified ex-
ample, manufacturability concerns were ignored, which is the
source of the extreme performance/area results; for annealing-
style synthesis, these concerns can be addressed; we will return
to these issues in Section IV.) Fig. 3 shows a set of sampled
cross sections from the cost-surface for this annealing-style syn-
thesis formulation. At an intermediate point in the synthesis, we
stopped the optimizer, and then iteratively stepped each inde-
pendent variable over its range, while freezing all other vari-
ables. At each step point we evaluated the synthesis cost func-
tion using Spectre. Fig. 3 shows a few of these resulting cross
sections, suitably normalized for comparison. The mix of gently
sloping plateaus and jagged obstacles is typical of these land-
scapes. We require global optimization algorithms because of
their potential to avoid many of these inferior local minima.

However, annealing algorithms in particular have a reputation
for slow execution because of the large number of solution can-
didates that must be visited. This is greatly exacerbated when
we choose to fully simulate each solution candidate. There are
three broad avenues of solution here.

1) Less search:attempt to sample the cost function at fewer
points. This is essentially the approach taken by [23],
which uses an unusual, truncated annealing schedule with
some of the character of a random multistart approach.
However, in our experience, wider search always yields
better solutions and a more robust tool.

2) Parallel circuit evaluation: each visited circuit candi-
date requires more than one circuit simulation to evaluate
it. We can easily distribute these over a network to par-
allel workstations. Indeed, our implementation supports
this simple parallelism. For example, if we resynthesize
the circuit of Fig. 2, but distribute the five simulations re-
quired to evaluate each circuit across three workstations,
the 11-h sequential time drops to 192 min. This is a useful
form of parallelism to exploit, but it is strictly limited.

3) Parallel circuit search: what we really seek is a tech-
nique to allow multiple, concurrent points of the cost
landscape to be searched in parallel, but synchronized in
some manner that guarantees convergence to a final cir-
cuit or set of circuits of similar quality.

Unfortunately, annealingper sedoes not easily support par-
allel search. An annealing-based optimizer generates a serial
stream of proposed circuit perturbations, and relies on statis-
tics from previous circuits to adjust its control parameters. To
parallelize search itself, an obvious set of methods to consider
here are the genetic [32], and evolutionary algorithms [33], [34],
whose population-based evolution models distribute over par-
allel machines more naturally. We focus on a novel popula-
tion-based strategy in Section II-D.

PHELPSet al.: ANACONDA: SIMULATION-BASED SYNTHESIS OF ANALOG CIRCUITS 707

D. Global Optimization via Stochastic Pattern Search

We have developed two separate attacks on the global op-
timization problem. We initially focused on extending the an-
nealing paradigm (which has empirically performed very well
on the circuit synthesis task) to support an aggressively scal-
able form of parallelism. We employed an idea from Goldberg
[35] calledparallel recombinative simulated annealing(PRSA).
PRSA, which has its roots in genetic algorithms, can be re-
garded as a strategy for synchronizing a population of annealers
as they cooperatively search a cost surface. When generating a
new circuit candidate, each annealer in the population makes
one of two choices: perturb an element value in its previously
generated solution, or recombine its previously generated so-
lution with a solution obtained from another annealer in the
population. Recombination is thecrossover(mating) operator
from genetic algorithms, which randomly combines features of
two parent solutions into a single new offspring solution. The
technique works extremely well to synchronize global search.
In particular, good solutions found by one annealer quickly dif-
fuse through the population, and drive annealers stuck in un-
promising local minima toward better global solutions. Mea-
sured performance scaled essentially linearly out to 30 parallel
UNIX CPU’s, with Cadence Spectre [30] as the evaluation en-
gine. Experimental results from our implementation of these
ideas, called MAELSTROM, appear in [2].

Annealing is one member of a general class of optimization
techniques for nondifferentiable cost functions. When cost sur-
faces are convex or nearly so, or we can assume we start op-
timization close to an acceptable final solution, gradient and
sensitivity-based optimization techniques work well. However,
these are generally unworkable in synthesis when we often have
no feasible starting solution, many local minima, and gradients
are either unreasonably expensive to compute (recall that we
insist on full circuit-level simulation to evaluate solution can-
didate) or, more likely, numerically unreliable. In these cases,
researchers have favored global optimization techniques based
on sampling of the cost surface, with decisions for search based
on the properties of previous samples. Annealing in particular
has long been a favored approach here.

However, there are alternatives. An obvious class of methods
are the so-calleddirect-searchtechniques, which sample the
cost in a deterministic locus around a given solution point, and
use this sample to construct a deterministic direction and dis-
tance to a conjectured better solution. As the optimization pro-
ceeds, the shape of the locus changes to reflect the success or
failure of samples from previously visited regions of the cost
surface. Ultimately, the locus converges to a single final lo-
cally optimal minimum. Coordinate search, Box search [36],
Hook–Jeeves [37], and Nelder–Mead Simplex [38] are all vari-
ants of this idea. However, Torczon has recently suggested a uni-
fied formulation that renders many of these classical methods as
particular cases of a more general method calledpattern search
[39], [40]. Surprisingly, Torczon was able to show pattern search
to have provable convergence properties. The theoretical in-
terest generated by Torczon’s results motivates us to reconsider
direct search ideas.

Fig. 3. Four one-dimensional normalized cross sections of the cost-surface for
a typical simulation-based synthesis problem.

Fig. 4. Classical coordinate search algorithm.

Consider first a classical coordinate search algorithm, illus-
trated in Fig. 4, for a simple two-dimensional problem. Coordi-
nate search visits in fixed order the individual coordinates, of
the current solution, perturbs each in a deterministic pattern, and
accepts only perturbations that decrease the cost. By making the
starting perturbation suitably large, some local minima can be
avoided: we “skip over” the hills, rather than accepting directly
an uphill move, as in annealing. By shrinking the perturbation
size appropriately over the course of the search, we can localize
the search to converge on (we hope) a good local minimum.

Nelder–Mead Simplex has been tried in some circuit syn-
thesis and optimization tools. Results to date have been neg-
ative: for very small problems with very simply cost surfaces

708 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 6, JUNE 2000

Fig. 5. A flow representation of the stochastic pattern search algorithm. Steps
1–4 are performed, and repeated until the population’s cost can no longer
be decreased. Step 3 corresponds to the subroutine decrease_cost() in the
pseudocode of Fig. 7.

they perform adequately; large and difficult problems, they per-
form poorly. For example, in our preliminary comparisons to our
own Nelder-Mead implementation, ANNEAL was always su-
perior—although it obtained its solutions at the cost of consid-
erably more CPU time.

To overcome these problems, we suggest coupling pattern
search strategies with the population-of-circuits idea from
MAELSTROM, and add a random component to the pattern
search itself. The overall architecture is conceptually simple.

1) Population of partial circuit solutions: we maintain a
large population of partial solutions. It is the population
itself which combats the problem of cost surfaces with
local minima. Each element is one sample of that cost sur-
face. By maintaining a suitably diverse set of samples, and
preferentially updating the population so that lower-cost
samples survive and higher-cost samples are culled, we
avoid the need to do explicit hill-climbing.

2) Simple population update:from a population of par-
tial solutions, we select candidates, apply a short pat-
tern search improvement process to each candidate, then
replace these in the population. From this updated popu-
lation of solutions, we remove the solutions of
highest (worst) cost.

3) Evolution by random pattern search: the update
process for a candidate selected from the population
is a truncated pattern search in the style of coordinate
search, but with the key difference that the search pattern
(direction and step size) are themselves randomized.

We evolve the population via short, randomized pattern
searches, and allow only superior solutions to survive any
update. The overall flow is illustrated in Fig. 5. The conver-
gence of a population of cost samples to a set of solutions of
similar numerical quality is illustrated in Fig. 6. Our intuition
here is that pattern searches work well in the neighborhood of
minima, but that the reliance on evolving only one solution,
and doing so in a deterministic pattern, does not provide a
sufficiently vigorous search. A population of solutions par-
tially combats the problem of local minima. Evolving several
elements of the population via short bursts of randomized
downhill pattern search provides a suitably vigorous pressure
to explore promising local minima. Favoring only improved

Fig. 6. Convergence to a cost-surface minimum during stochastic pattern
search. The population model allows us to search multiple samples of the cost
surface concurrently, all of which ultimately converge to solutions (circuits) of
similar quality.

solutions in the population coerces this search to converge to a
set of solutions of similar quality, yet the combination of the
population model and the randomized pattern searches helps
the optimization swarm over a suitably diverse set of samples
of the cost surface. This gives the technique its name:stochastic
pattern search.

Torczon-style pattern search admits parallelism in the ob-
vious form of concurrent exploration of different search pat-
terns [41]. In our case, the population model allows us to per-
form multiple pattern searches in parallel. A detailed descrip-
tion of the stochastic pattern search algorithm in the form of
pseudocode appears in Fig. 7. We begin with a simple coor-
dinate search algorithm, which is shown in pseudocode begin-
ning on line 25 of Fig. 7. The main loop of the subroutinede-
crease_cost()perturbs each independent variable (coordinate)
of the current solution vector; we refer to the process of per-
turbing all coordinates as one atomicpattern-search. However,
the order in which each variable is perturbed is random, and the
perturbation amount is also random, although bounded. Each
variable may be perturbed in both the positive and negative
direction: the goal is to find a perturbation that decreases the
cost. Perturbation bounds decrease as the algorithm progresses,
shrinking around the evolving solution. One nonrandom com-
ponent is the acceptance criterion for each coordinate pertur-
bation: we only accept solutions that decrease the cost. Unlike
annealing, we do not accept uphill moves; however, because co-
ordinate search can take very large steps, we can “skip over”
hills.

The algorithm uses a master-slave organization for managing
the population. The code for each parallel node begins on line
1 of Fig. 7. We start with a population of circuit solutions,
sorted on cost. We randomly select a subset ofof these so-
lutions, with some bias toward those of lower cost. We perform
one pattern-search on each of thesecandidates, add them back
to the population, re-sort, and then cull out the worstsolu-
tions. This repeats until no more improvements can be found
in any elements of the population, i.e., all circuits have essen-
tially similar cost. We can distribute the pattern-search for each
of the candidates in parallel, and each individual coordinate
search itself requiresmultiple circuit simulations, allowing us
to easily exploit parallel workstations. So, as noted earlier,
we can distribute both search and evaluation.

PHELPSet al.: ANACONDA: SIMULATION-BASED SYNTHESIS OF ANALOG CIRCUITS 709

Fig. 7. Pseudocode for parallel stochastic pattern search.

E. Network Architecture

Our implementation distributes all computation over a pool
of workstations. We use software components and organiza-
tional ideas from MAELSTROM, which at the lowest level man-
ages concurrency and interprocessor communication using the
publicly available PVM library [42]. The overall network archi-
tecture is illustrated in Fig. 8. The important point to make is
that the master-slave structure implied by the stochastic pattern
search pseudocode of Fig. 7 is only alogical organization for
the required parallel computation, not aphysicalorganization.
In other words, we do not bind the master and individual slave
nodes each to a separate physical CPU. In our terminology, the
process of selecting and updatingcandidates in the population
is handled by slaves. But each slave can use as many physical

CPU’s as necessary. Indeed, the actual mechanics of managing
the population and updating the required state information con-
sume a negligible fraction of the overall execution time, which
is wholly dominated by the circuit simulations. The two phys-
ical characteristics of the method that we must deal with are as
follows.

1) Support for an arbitrary number of available workstations.
We should be able to use as many machines as we have
available, or from which we can harvest spare cycles. But,
we must be able to make progress on synthesis even if we
have fewer machines than we would prefer.

2) Support for intelligent scheduling of the simulation tasks
among available workstations. Different simulation tasks
(dc, ac, transient, test-jig setup, early parameter estima-

710 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 6, JUNE 2000

Fig. 8. ANACONDA network architecture.

tion, etc.) can each require vastly different amounts of
time. Assuming that each simulation needs its own CPU is
not only impractical, but inefficient. Our progress would
always be limited by the slowest simulation.

The architecture in Fig. 8 addresses these concerns via a sep-
arate layer of software called theevaluation master. It brokers
requests for simulations (from concurrent pattern searches on
elements of the evolving population) among a set of available
CPU’s (slaves) that perform actual simulations. Any individual
CPU may be performing several simulations in series. The eval-
uation master dynamically schedules simulation tasks to max-
imize the throughput on the available machines, using simple
bin-packing heuristics. Thus, one CPU might be tasked to run
several small simulations, each of which is expected to com-
plete quickly, while another CPU might run only one simulation,
which is expected to be long. The evaluation master tracks com-
pletion times for each simulation task on each node, and uses
this information to periodically reschedule all tasks. Simulation
times can vary over the course of a simulation both because of
transient changes in machine loading, and because circuit candi-
dates migrate around in the solution space, and not all solutions
are equivalently easy to simulate. Dynamic scheduling makes
for efficient use of the available computational resources.

At this point, we can offer a simple experiment that shows the
merits of our approach. We revisited the simulator-in-serial-an-
nealer approach used in Fig. 2, and compared it to stochastic
pattern search when applied to the task of synthesizing the in-
dustrial circuit (to be described in Section IV) of Fig. 10(c).
Twenty synthesis runs were performed using each algorithm,
and the results are shown in Fig. 9. We show a scatter plot
of cost [the OBLX-form cost-function being minimized, from
(3)] versus “perturbations.” For the annealer, this is the number
of circuit candidates visited sequentially. For stochastic pattern
search, each perturbation actually visitsnew circuits, and we
evaluate these in parallel across a pool of ten workstations. For
this result, the parallel pattern search algorithm actually visited

Fig. 9. Parallel stochastic pattern search compared to a well-tuned serial
annealer for synthesis of the circuit in Fig. 10(c). Thex axis is the number of
serial perturbations. The total number of design points evaluated by the pattern
search algorithm was 10� the number of serial perturbations, or approximately
100 000. The total number of design points evaluated by the annealer is 25 000
because it is a serial annealer.

roughly 100 000 circuits, but with a CPU time proportional to
only 10 000 circuit simulations.

Note that stochastic pattern search is producing both a better
average answer (i.e., finding a better expected minimum, which
corresponds to a better circuit solution), and a tighter spread of
answers. We believe this is a result of our parallel population
model, which not only allows us to visit more solutions in a
reasonable amount of time, but also does a better job of pruning
weak solution candidates before search becomes trapped in poor
local minima. This is critical since any stochastic optimizer pro-
duces a spread of solutions on repeated runs; tighter spreads
mean a higher likelihood of finding a good solution on each in-
vocation of the tool.

PHELPSet al.: ANACONDA: SIMULATION-BASED SYNTHESIS OF ANALOG CIRCUITS 711

Fig. 10. Industrial test circuits for our synthesis experiments.

IV. RESULTS

The ideas presented in this paper have been implemented in a
tool called ANACONDA and tested on site at Texas Instruments in
Dallas, TX. We benchmarked ANACONDA on the three opamps,
shown in Fig. 10, that are all examples of production circuits
for which we also have complete TI manual designs. The power
amp was designed in a 0.8-m CMOS process and the other two
opamps were designed in a 0.6-m CMOS process.

ANACONDA consists of a parallel stochastic pattern search al-
gorithm coupled (via encapsulation) to an industrial circuit sim-
ulator that evaluates each candidate solution. The simulator used
was TI’s proprietary TISpice. In addition, all three circuits were
synthesized using the same parameters for the pattern search
algorithm: the population size was set to 200, and ten logical
slaves (i.e., we select and replace ten elements of the population
concurrently) were used to evaluate circuits in the population.
Simulation tasks were dynamically rescheduled every 100 sim-
ulations. Also, the same weightings in the cost function from (3)
were used for all three circuits. The constraints for each design
had a weighting of one while the objectives had a weighting of
0.5.

Figs. 12 and 13 offer some insight into the population dy-
namics as these sets of benchmark circuits evolved. Fig. 12

plots the mean cost of each population of 200 circuits for
each of the five synthesis runs, for each of the three bench-
marks. An immediate and striking feature of the data is
how closely the individual populations track each other, even
across separate synthesis runs. We take this as indication that
the population update/replacement strategies are performing
well: they are maintaining an appropriately diverse sample
of the cost surface, while encouraging convergence to solu-
tions of similar cost by culling always the weakest solutions.
Fig. 13 plots the maximum, mean, and minimum cost sam-
ples seen in each population for one sample run for each of
the three circuits. As expected, there is significant disparity
between the minimum and maximum values at the start of
synthesis, but these rapidly converge as weaker solutions are
culled and the solution candidates cluster around a single
best value. Perhaps more interesting is the qualitative dif-
ference between the dynamics of the smaller two-stage and
folded-cascode circuits, which show somewhat larger final
spreads in contrast to the larger, more difficult power amp
circuit. We interpret this as related to the size of the de-
sign—the number of degrees of freedom (DOF). The power
amp is a large design; we believe there are simply more
nearby solutions of equivalent quality than for the other
smaller designs. For the smaller designs, there simply appear
to be fewer good final solutions that are unique, hence the
final population retains a larger fraction of weaker designs.
A contributing factor here is also that, in industrial practice,
device sizes are not continuous, but are restricted to some
discrete (though closely spaced) values. This discretization
affects the smaller designs somewhat more noticeably. Fi-
nally, it is worth noting that the cost scale is logarithmic:
even though the spreads are visible in the plots, in reality
the costs are extremely close. Table I gives the input per-
formance constraints, simulation environment, and runtime
statistics for each synthesized circuit. For our experiments,
the performance constraints were set by running nominal
simulations on the original hand designs. Each design was
synthesized using a pool of 16 300-MHz Ultra 10’s and four
300-MHz dual-processor Ultra 2’s. Note that although we
only update ten circuits in the population in parallel, each
circuit required between five and seven simulations to eval-
uate. Thus, we can make use of the entire pool of 24 CPU’s.
Because runtime is highly dependent on the size of the cir-
cuit and the type of simulation being performed, there was
significant variation among the circuits. For example, for the
power amp, each total harmonic distortion (THD) analysis
took a few CPU seconds and, consequently, that circuit had
significantly longer synthesis times. Overall, each synthesis
task required between a few hours and overnight on a pool
of (typically) 20 available workstations.

Fig. 11 shows the results of five consecutive synthesis runs
for each circuit. Given the large number of performance speci-
fications for each circuit, we summarize these results as power-
versus-area scatter plots. For each design, the objectives were to
minimize area and static power dissipation. In all but one case,
the synthesized circuits metall of the performance constraints
specified in Table I. Several of these designs are in fact supe-
rior to their manual counterparts. And, it is worth noting again

712 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 6, JUNE 2000

Fig. 11. Static power versus area scatter plots for five consecutive synthesis runs for each test circuit. Each scatter includes a manual circuit design represented
by a square point. Designs such as “1” in result (a) that have significantly higher static power dissipation typically are over-designed for some specification; for
result “1” the settling time was slightly smaller than necessary. Design “2” in (b) had a UGF of 159 MHz, and this was slightly less than the 162 MHz required.
Designs such as “3” in (c) that have significantly larger area again represent over-design in a performance constraint; for result “3,” the THD was 15%smaller
than necessary.

Fig. 12. Evolution of the population’s mean cost over five consecutive synthesis runs, for the synthesis results shown in Fig. 11. Thex axis is the total number
of design points that have been evaluated.

Fig. 13. A sample synthesis run for each test circuit from Fig. 10, illustrating how the minimum, mean and maximum cost of candidates in the population evolve
over time. Thex axis is the total number of evaluated design points.

that the quality metrics—meeting specifications under detailed
circuit simulation—areidentical to those used during manual
design.

Our results so far suggest that ANACONDA is effective for
nominal cell-level analog synthesis. But we must also make
some efforts to address manufacturing process variations and
environmental operating range constraints. We know from ex-
perience that we cannot ignore these issues, since a well-per-

forming synthesis algorithm can push a final design very close
to the edge of the feasible region where all constraints are met.
Even modest changes in process or operating conditions can
then render the circuit nonfunctional [43]. We have two broad
classes of solutions: add first-order constraints to the synthesis
task, mimicking the “conservative” design practices of skilled
designers, or fold a numerical manufacturability optimization
into the synthesis process itself [44]. We choose the former

PHELPSet al.: ANACONDA: SIMULATION-BASED SYNTHESIS OF ANALOG CIRCUITS 713

Fig. 14. A sample of the monte-carlo results for the simple two-stage opamp. Histograms for the performance specs are shown first for the hand design and
second for the synthesized design.

option here, and focus on how to properly constrain a circuit
so that synthesis yields a result with design centering compa-
rable to an expert manual design. In ANACONDA, the two types
of constraints supported for this purpose areoperating region
constraintsandcomponent constraints. These adapt ideas from
ASTRX/OBLX.

Operating region constraints simply specify that individual
devices should be “far enough” into the desired region that
process or environmental variations cannot force the device
out of this region. If operating region constraints are not used,
the optimizer may choose to bias a transistor on the edge of
the active region for nominal performance gains. To avoid
such a situation, we can designate how large we would like
the effective voltage, i.e., how far above we require
to be for a MOSFET, for individual devices in the design. For
example, a typical number when designing CMOS opamps in
micron-scale processes is simply to fix this effective voltage
to 250 mV; we do not expect individual devices each to have
precisely tailored, unique voltage constraints. When designing
by hand the value for the effective voltage is set using first
order equations. Unfortunately, the simulated value may be
significantly different than the hand calculated value. One

advantage of using simulator-in-the-loop synthesis is that when
the constraint is met one can be assured that the effective
voltage will be the value specified.

Designers can eliminate unnecessary or possibly dangerous
DOF by specifyingcomponent constraints. As an example, con-
sider the simple two-stage opamp in Fig. 10(a). Clearly, a rea-
sonable design would have the input differential pair matched.
This could be specified using the simple constraints
and . Such constraints are trivial to accommodate. But
in real designs, many component values are determined para-
metrically, as functions of other designables in the circuit. For
example, it is common practice to set the compensation resistor

in the circuit of Fig. 10(a) to the value

(4)

where is a designer-input constant reflecting the degree of
overdesign desired, and , the transconductance of another
device in the circuit, requires aseparateSPICE simulation to
compute. Indeed, it is not uncommon to require a series of these
“setup” simulations to first create the proper component rela-
tionshipsbeforereal evaluation of the circuit can begin. Sim-

714 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 6, JUNE 2000

Fig. 15. Histograms illustrating how the two-stage opamp’s low-frequency
gain (x axis) varies across process variations. Results from the hand design are
shown first, followed by results for the five consecutive synthesis runs. These
histograms illustrate the consistent quality across consecutive synthesis runs.

ulation-based synthesis algorithms like ANACONDA (and also
MAELSTROM) extend gracefully to handle these sorts of prac-
tical usage scenarios.

The circuits from Fig. 10 and results from Fig. 11 were
obtained using these common-practice, first-order constraints.
To assess the robustness of the approach, each of the syn-
thesized designs was verified by performing Monte Carlo
simulations with process, 10% voltage supply, and 0C to
100 C temperature variations. Selected results are illustrated
in Figs. 14–16. Fig. 14 shows histograms for most of the
simple two-stage opamp’s performance specifications. A single
synthesis result, synthesis run 1, is compared to the hand
design. From the histograms we see that the synthesized design
performs as well as the hand design across process and envi-
ronment variations for each of the performance specifications.
Figs. 15–17 shows sample histograms for the low-frequency
gain of the three test designs. Notice that all five consecutive
synthesis runs are shown. This illustrates how the robustness of
the circuits varies from one synthesis run to the next. For the
simple two-stage and folded cascode opamps there is very little
variation. However, for the power amplifier, Fig. 17, we see
that four of the five synthesized designs actually have tighter

TABLE I
DETAILED PERFORMANCE SPECIFICATIONS,

SIMULATION ENVIRONMENT, AND SYNTHESIS RUNTIME RESULTS FOR THE

THREE TEST CIRCUITS OFFIG. 10

spreads than the hand design. The main reason for these overall
tight spreads is the rigorous enforcement of the operating region
and component constraints. These sorts of constraints are a
standard part of good manual design practice—but not always
enforced with the discipline we can achieve in a numerical
synthesis tool.

These results are noteworthy in several respects. First, these
are production-quality industrial analog cells with difficult
performance specifications. Second, our synthesis approach
is using as its evaluation engine theidentical simulation
environment used by TI’s designers to validate their manual
designs. As a result, we can deal accurately with difficult design
specification such as noise, settling time, and THD, which
require detailed simulations to evaluate complex nonlinear
effects. Finally, nearly all of these synthesized designs compare
favorably with their manually designed counterparts, both
in performance and in robustness across manufacturing and
environmental corners. We believe this is a significant advance
in demonstrating how an analog synthesis tool can attack
realistic industrial circuit designs.

V. CONCLUSION

We have presented a novel synthesis strategy for custom
analog cells. Our central contribution is stochastic pattern
search, a parallelizable global optimization algorithm that

PHELPSet al.: ANACONDA: SIMULATION-BASED SYNTHESIS OF ANALOG CIRCUITS 715

Fig. 16. Histograms illustrating how the folded cascode opamp’s
low-frequency gain (x axis) varies across process variations. Results
from the hand design are shown first, followed by results for the five
consecutive synthesis runs. These histograms illustrate the consistent quality
across consecutive synthesis runs.

combines ideas from evolutionary algorithms and numerical
pattern search. By encapsulating commercial circuit simulators
and distributing the search across a pool of workstations, we
can visit 50 000–100 000 circuit candidates, and fully simulate
each, in a few hours. ANACONDA, an implementation of these
ideas, has successfully synthesized several difficult industrial
cells. We believe analog synthesis is a necessary component of
any strategy for reusing and retargeting analog circuits. We are
currently working to apply ANACONDA to much larger designs,
in particular, system-level designs. Other current work focusses
on comparing the relative merits of the genetic-annealing
approach used in MAELSTROM with the population-pattern
approach used in ANACONDA. In addition, the practical ability
to synthesize analog circuits raises a host of questions about
analog intellectual property—how it should be archived, what
information model is necessary for practical reuse, how much
effort is required to “package” a cell for future use, etc. We
are currently evolving the MAELSTROM framework to address
these issues.

ACKNOWLEDGMENT

The authors would like to thank E. Ochotta (Xilinx) for dis-
cussions about OBLX, B. Bearden (TI) for help with TISpice and

Fig. 17. Histograms illustrating how the power amp’s low-frequency gain
(x axis) varies across process variations. Results from the hand design are
shown first, followed by results for the five consecutive synthesis runs. These
histograms illustrate the consistent quality across consecutive synthesis runs.

G. Richey and F. James (TI) for valuable discussions about this
work.

REFERENCES

[1] E. Ochotta, R. A. Rutenbar, and L. R. Carley, “Synthesis of high-per-
formance analog circuits and ASTRX/OBLX,”IEEE Trans. Computer-
Aided Design, vol. 15, pp. 237–294, Mar. 1996.

[2] M. Krasnicki, R. Phelps, R. A. Rutenbar, and L. R. Carley, “MAEL-
STROM: Efficient simulation-based synthesis for analog cells,” inProc.
ACM/IEEE Design Automation Conf., June 1999, pp. 945–950.

[3] R. Phelps, M. Krasnicki, R. A. Rutenbar, and L. R. Carley, “ANA-
CONDA: Robust synthesis of analog circuits via stochastic pattern
search,” inProc. IEEE Custom Integrated Circuits Conf., May 1999,
pp. 567–570.

[4] E. Ochotta, T. Mukherjee, R. A. Rutenbar, and L. R. Carley,Practical
Synthesis of High-Performance Analog Circuits. Norwell, MA:
Kluwer Academic, 1998.

[5] M. Degrauweet al., “Toward an analog system design environment,”
IEEE J. Solid-State Circuits, no. 3, p. 24, June 1989.

[6] H. Y. Koh, C. H. Sequin, and P. R. Gray, “OPASYN: A compiler for MOS
operational amplifiers,”IEEE Trans. Computer-Aided Design, vol. 9, pp.
113–125, Feb. 1990.

[7] G. Gielenet al., “Analog circuit design optimization based on symbolic
simulation and simulated annealing,”IEEE J. Solid-State Circuits, vol.
25, pp. 707–713, June 1990.

[8] F. Leyn, W. Daems, G. Gielen, and W. Sansen, “A behavioral signal path
modeling methodology for qualitative insight in and efficient sizing of
CMOS opamps,” inProc. ACM/IEEE ICCAD, 1997, pp. 374–381.

716 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 6, JUNE 2000

[9] P. C. Maulik, L. R. Carley, and R. A. Rutenbar, “Integer programming
based topology selection of cell level analog circuits,”IEEE Trans. Com-
puter-Aided Design, vol. 14, pp. 401–412, Apr. 1995.

[10] W. Kruiskamp and D. Leenaerts, “DARWIN: CMOS Opamp synthesis
by means of a genetic algorithm,” inProc. 32nd ACM/IEEE DAC, 1995,
pp. 433–438.

[11] M. Hershenson, S. Boyd, and T. Lee, “GPCAD: A tool for CMOS
Op-Amp synthesis,” inProc. ACM/IEEE ICCAD, Nov. 1998, pp.
296–303.

[12] R. Harjani, R. A. Rutenbar, and L. R. Carley, “OASYS: A framework
for analog circuit synthesis,”IEEE Trans. Computer-Aided Design, vol.
8, pp. 1247–1266, Dec. 1989.

[13] B. J. Sheuet al., “A knowledge-based approach to analog IC design,”
IEEE Trans. Circuits and Systems, vol. 35, no. 2, pp. 256–258, 1988.

[14] E. Berkcanet al., “Analog compilation based on successive decomposi-
tions,” in Proc. 25th IEEE DAC, 1988, pp. 369–375.

[15] J. P. Harveyet al., “STAIC: An interactive framework for synthesizing
CMOS and BiCMOS analog circuits,”IEEE Trans. Computer-Aided
Design, pp. 1402–1417, Nov. 1992.

[16] C. Makris and C. Toumazou, “Analog IC design automation part II—Au-
tomated circuit correction by qualitative reasoning,”IEEE Trans. Com-
puter-Aided Design, vol. 14, pp. 239–254, Feb. 1995.

[17] A. Torralba, J. Chavez, and L. Franquelo, “FASY: A fuzzy-logic based
tool for analog synthesis,”IEEE Trans. Computer-Aided Design, vol.
15, pp. 705–715, July 1996.

[18] G. Gielen, P. Wambacq, and W. Sansen, “Symbolic analysis methods
and applications for analog circuits: A tutorial overview,”Proc. IEEE,
vol. 82, pp. 287–304, Feb. 1990.

[19] C. J. Shi and X. Tan, “Symbolic analysis of large analog circuits with
determinant decision diagrams,” inProc. ACM/IEEE ICCAD, 1997, pp.
366–373.

[20] Q. Yu and C. Sechen, “A unified approach to the approximate symbolic
analysis of large analog integrated circuits,”IEEE Trans. Circuits and
Sys., vol. 43, pp. 656–669, Aug. 1996.

[21] W. Daems, G. Gielen, and W. Sansen, “Circuit complexity reduction
for symbolic analysis of analog integrated circuits,” inProc. ACM/IEEE
Design Automation Conf., June 1999, pp. 958–963.

[22] P. Wambacq, J. Vanthienen, G. Gielen, and W. Sansen, “A design tool
for weakly nonlinear analog integrated circuits with multiple inputs
(mixers, multipliers),” inProc. IEEE CICC, San Diego, CA, May 1991,
pp. 5.1.1–5.1.4.

[23] F. Medeiro, F. V. Fernandez, R. Dominguez-Castro, and A. Ro-
driguez-Vasquez, “A statistical optimization based approach for
automated sizing of analog cells,” inProc. ACM/IEEE ICCAD, 1994,
pp. 594–597.

[24] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simu-
lated annealing,”Science, vol. 220, no. 4598, pp. 45–54, May 1983 .

[25] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for
timing analysis,” IEEE Trans. Computer-Aided Design, vol. 9, pp.
352–356, Apr. 1990.

[26] W. Nyeet al., “DELIGHT.SPICE: An optimization-based system for the
design of integrated circuits,”IEEE Trans. Computer-Aided Design, vol.
7, Apr. 1988.

[27] K. Saab, D. Marche, N. N. Hamida, and B. Kaminska, “LIMSoft: Au-
tomated tool for sensitivity analysis and tesst vector generation,”Inst.
Elect. Eng Proc. Circuits Devices Systems, vol. 143, no. 6, pp. 386–392,
Dec. 1996.

[28] A. R. Conn, R. A. Haud, C. Viswesvariah, and C. W. Wu, “Circuit op-
timization via adjoint lagrangians,” inProc. ACM/IEEE ICCAD, Nov.
1997, pp. 281–288.

[29] M. Krasnicki, “Generalized analog circuit synthesis,” masters thesis,
Dept. of ECE, Carnegie Mellon, Pittsburgh, PA, Dec. 1997.

[30] K. S. Kundert,The Designer’s Guide to SPICE & SPECTRE. Norwell,
MA: Kluwer Academic, 1995.

[31] K. Nakamura and L. R. Carley, “A current-based positive-feedback tech-
nique for efficient cascode bootstrapping,” inProc. VLSI Circuits Symp.,
June 1991, pp. 107–108.

[32] J. H. Holland,Adaptation in Nature and Artificial Systems. Ann Arbor:
Univ. Michigan Press, 1975.

[33] D. B. Fogel, “An introduction to simulated evolutionary optimization,”
IEEE Trans. Neural Networks, vol. 5, pp. 3–14, Jan. 1994.

[34] , Evolutionary Computation: The Fossil Record, D. B. Fogel,
Ed. Piscataway, NJ: IEEE Press, 1998.

[35] S. W. Mahfoud and D. E. Goldberg, “Parallel recombinative simulated
annealing: A genetic algorithm,”Parallel Computing, vol. 21, pp. 1–28,
1995.

[36] G. E. P. Box, “Evolutionary operation: A method for increasing indus-
trial productivity,” Appl. Statist., vol. 6, pp. 81–101, 1957.

[37] R. Hooke and T. A. Jeeves, “‘Direct search’ solution of numerical and
statistical problems,”ACM JACM, vol. 8, pp. 219–229, 1961.

[38] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Comput. J., vol. 7, pp. 308–313, 1965.

[39] V. Torczon, “On the convergence of the multidirectional search algo-
rithm,” SIAM J. Optimization, vol. 1, no. 1, Feb. 1991.

[40] , “On the convergence of pattern search algorithms,”SIAM J. Op-
timization, vol. 7, no. 1, Feb. 1997.

[41] , “PDS: Direct search methods for unconstrained optimization on
either sequential or parallel machines,” Dept. of Mathematical Sciences,
Rice Univ., Houston, TX, Tech. Report 92-9, 1992.

[42] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram,PVM: Parallel Virtual Machine A User’s Guide and Tutorial for
Network Parallel Computing. Cambridge, MA: MIT Press, 1994.

[43] T. Mukherjee, L. R. Carley, and R. A. Rutenbar, “Synthesis of man-
ufacturable analog circuits,” inProc. ACM/IEEE ICCAD, 1994, pp.
586–593.

[44] G. Debyser and G. Gielen, “Efficient analog circuit synthesis with si-
multaneous yield and robustness optimization,” inProc. ACM/IEEE Int.
Conf. Computer-Aided Design (ICCAD), Nov. 1998, pp. 308–311.

Rodney Phelps(S’96) received the B.S.E.E degree
with university honors from Carnegie Mellon Uni-
versity, Pittsburgh, PA, in 1994. In 1996, he returned
to Carnegie Mellon University where he is currently
completing the Ph.D. degree.

From 1994–1996, he worked at Cirrus Logic, Fre-
mont, CA, in the corporate EDA group. He worked
at Texas Instruments, Dallas, TX, from June 1998 to
August 1999, in the Mixed-Signal EDA group where
he focused on synthesis algorithms for analog circuits
and systems. In January 2000, he joined Neo Linear,

Pittsburgh, PA.
Mr. Phelps is a member of Eta Kappa Nu and Tau Beta Pi.

Michael Krasnicki received the B. S. degree with
highest distinction from the University of Virginia,
Charlottesville, in 1995. He received the M. S. degree
in electrical and computer engineering from Carnegie
Mellon University, Pittsburgh, PA, in 1995. He is cur-
rently working toward the Ph. D. degree at Carnegie
Mellon University.

He is a Semiconductor Research Corporation
(SRC) Fellow. He currently works at Texas
Instruments, Dallas, TX. His research focus is
performance-driven synthesis of analog cells with

the use of industrial quality simulation.
As an undergraduate, Mr. Krasnicki received the William L. Everett Student

Award for Excellence from the Department of Electrical Engineering.

PHELPSet al.: ANACONDA: SIMULATION-BASED SYNTHESIS OF ANALOG CIRCUITS 717

Rob A. Rutenbar (S’77–M’84–SM’90–F’98)
received the Ph.D. degree from the University of
Michigan, Ann Arbor, in 1984.

He joined the faculty of Carnegie Mellon Univer-
sity (CMU), Pittsburgh, PA, where he is currently
Professor of Electrical and Computer Engineering,
and (by courtesy) of Computer Science. From 1993
to 1998, he was Director of the CMU Center for
Electronic Design Automation. He is a cofounder of
NeoLinear, Inc., and served as its Chief Technologist
on a 1998 leave from CMU. His research interests

focus on circuit and layout synthesis algorithms for mixed-signal ASIC’s, for
high-speed digital systems, and for FPGA’s.

In 1987, Dr. Rutenbar received a Presidential Young Investigator Award from
the National Science Foundation. He has won Best/Distinguished paper awards
from the Design Automation Conference (1987) and the International Confer-
ence on CAD (1991). He has been on the program committees for the IEEE
International Conference on CAD, the ACM/IEEE Design Automation Confer-
ence, the ACM International Symposium on FPGA’s, and the ACM Interna-
tional Symposium on Physical Design. He also served on the Editorial Board
of IEEE SPECTRUM. He was General Chair of the 1996 ICCAD. He chaired
the Analog Technical Advisory Board for Cadence Design Systems from 1992
through 1996. He is a member of the ACM and Eta Kappa Nu.

L. Richard Carley received the S.B. degree in
1976, the M.S. degree in 1978, and the Ph.D. degree
in 1984, all from the Massachusetts Institute of
Technology (MIT), Cambridge.

He joined Carnegie Mellon University, Pittsburgh,
PA, in 1984. In 1992, he was promoted to Full Pro-
fessor of Electrical and Computer Engineering. He
was the Associate Director for Electronic Subsystems
for the Data Storage Systems Center [a National Sci-
ence Foundation (NSF) Engineering Research Center
at CMU] from 1990–1999. He has worked for MIT’s

Lincoln Laboratories and has acted as a Consultant in the areas of analog and
mixed analog/digital circuit design, analog circuit design automation, and signal
processing for data storage for numerous companies; e.g., Hughes, Analog De-
vices, Texas Instruments, Northrop Grumman, Cadence, Sony, Fairchild, Tera-
dyne, Ampex, Quantum, Seagate, and Maxtor. He was the principal Circuit De-
sign Methodology Architect of the CMU ACA-CIA analog CAD tool suite, one
of the first top-to-bottom tool flows aimed specifically at design of analog and
mixed-signal IC’s. He was a co-founder of NeoLinear, a Pittsburgh, PA-based
analog design automation tool provider; and, he is currently their Chief Analog
Designer. He holds ten patents. He has authored or co-authored over 120 tech-
nical papers, and authored or co-authored over 20 books and/or book chapters.

Dr. Carley was awarded the Guillemin Prize for best Undergraduate Thesis
from the Electrical Engineering Department, MIT. He has won several awards,
the most noteworthy of which is the Presidential Young Investigator Award from
the NSF in 1985 He won a Best Technical Paper Award at the 1987 Design
Automation Conference (DAC). This DAC paper on automating analog circuit
design was also selected for inclusion in 25 years of Electronic Design Au-
tomation: A Compendium of Papers from the Design Automation Conference,
a special volume, published in June of 1988, including the 77 papers (out of over
1600) deemed most influential over the first 25 years of the Design Automation
Conference.

James R. Hellums (S’75–M’77–SM’96) received
the B.S.E.E. (highest honors) and M.S.E.E. degrees
from the University of Texas at Arlington in 1976
and 1983, respectively. He is working toward the
Ph.D. degree at University of Texas at Dallas with a
research topic on quantum transport theory.

In January 1978, he joined MOSTEK as an Inte-
grated Circuit Design Engineer where he worked on
five MOS analog IC’s for telecommunications. He
left in August 1981 to co-found Nova Monolithics
where he was involved in consulting and custom IC

designs which included mixed-signal chips with analog filtering and A/D con-
version. He joined Texas Instruments, Dallas, TX, in May 1984 as a Senior IC
Design Engineer. Since joining TI he has worked on the design of 24 analog
and mixed-signal IC’s of which 17 required analog-to-digital conversion. Jim
has authored or coauthored 21 papers, given five conference talks, holds ten US
patents, seven foreign patents with 12 patents pending.

Mr. Hellums was elected an MGTS in 1987, an SMTS in 1989, a DMTS in
1996 and a TI Fellow in 1997. He is a member of the American Physical Society,
Eta Kappa Nu, Tau Beta Pi, and Alpha Chi.

