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Abstract.We describe a means of sharing the DSA sig-
nature function, so that two parties can efficiently gener-
ate a DSA signature with respect to a given public key
but neither can alone. We focus on a certain instantiation
that allows a proof of security for concurrent execution in
the random oracle model and that is very practical. We
also briefly outline a variation that requires more rounds
of communication but that allows a proof of security for
sequential execution without random oracles.

Keywords: Cryptography – Digital signature – Multi-
party computation

1 Introduction

In this paper we present an efficient and provably secure
protocol by which alice and bob, each holding a share of
a DSA [34] private key, can (and must) interact to gen-
erate a DSA signature on a given message with respect
to the corresponding public key. As noted in previous
work on multiparty DSA signature generation (e.g., [10,
22, 35]), a shared generation of DSA signatures tends to
be more complicated than a shared generation of many
other types of ElGamal-based signatures [15] because (i)
a shared secret must be inverted, and (ii) a multiplica-
tion must be performed on two shared secrets. One can
see this difference by comparing a Harn signature [29]
with a DSA signature, say, over parameters <g, p, q>, with
public/secret key pair <y(= gx mod p), x> and ephemeral
public/secret key pair <r(= gk mod p), k>. In a Harn sig-
nature, one computes

s←x(h(m))−kr mod q

Extended abstract appears in Advances in Cryptology –
CRYPTO 2001, August 2001.

and returns a signature <r, s>, while for a DSA signature,
one computes

s←k−1(h(m)+xr) mod q

and returns a signature <r mod q, s>. Obviously, to com-
pute the DSA signature the ephemeral secret key must
be inverted, and the resulting secret value must be mul-
tiplied by the secret key. For security, all of these secret
values must be shared, and thus inversion and multipli-
cation on shared secrets must be performed. Protocols to
perform these operations have tended to be much more
complicated than protocols for adding shared secrets.
Of course, protocols for generic secure two-party com-

putation (e.g., [49]) could be used to perform two-party
DSA signature generation, but here we explore a more ef-
ficient protocol to solve this particular problem. To our
knowledge, the protocol we present here is the first prac-
tical and provably secure protocol for two-party DSA
signature generation. As building blocks it uses a pub-
lic key encryption scheme with certain useful properties
(for which several examples exist) and efficient special-
purpose zero-knowledge proofs. The assumptions under
which these building blocks are secure are the assump-
tions required for security of our protocol. For example,
by instantiating our protocol with particular construc-
tions, we can achieve a protocol that is provably se-
cure under the decision composite residuosity assumption
(DCRA) [41] and the strong RSA assumption [2] when
executed sequentially, or one that is provably secure in
the random oracle model [7] under the DCRA and strong
RSA assumption, even when arbitrarily many instances
of the protocol are run concurrently. The former pro-
tocol requires eight messages, while the latter protocol
requires only four messages (counting initialization in nei-
ther case).
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Our interest in two-party DSA signature generation
stems from our broader research into techniques by which
a device that performs private key operations (signatures
or decryptions) in networked applications, and whose
local private key is activated with a password or PIN,
can be immunized against offline dictionary attacks in
case the device is captured [36, 37]. Briefly, we achieve
this by involving a remote server in the device’s pri-
vate key computations, essentially sharing the crypto-
graphic computation between the device and the server.
Our original work showed how to accomplish this for the
case of RSA functions or certain discrete-log-based func-
tions other than DSA, using known techniques for sharing
those functions between two parties. The important case
of DSA signatures is enabled by the techniques of this pa-
per. Given our practical goals, in this paper we focus on
the most efficient (four message, random oracle) version
of our protocol, which is quite suitable for use in the con-
text of our system.

2 Related work

Two-party generation of DSA signatures falls into the
category of threshold signatures or, more broadly, thresh-
old cryptography. Early work in the field is due to
Boyd [6], Desmedt [12], Croft and Harris [8], Frankel [18],
and Desmedt and Frankel [14]. Work in threshold cryp-
tography for discrete-log based cryptosystems other than
DSA is due to Desmedt and Frankel [14], Hwang [31],
Pedersen [43], Harn [29], Park and Kurosawa [42], Herz-
berg et al. [30], Frankel et al. [19], and Jarecki and
Lysyanskaya [32].
Several works have developed techniques directly

for shared generation of DSA signatures. Langford [35]
presents threshold DSA schemes ensuring unforgeabil-
ity against one corrupt player out of n≥ 3, of t corrupt
players out of n for arbitrary t < n under certain re-
strictions (see below), and of t corrupt players out of
n≥ t2+ t+1. Cerecedo et al. [10] and Gennaro et al. [22]
present threshold schemes that prevent t corrupt players
out of n≥ 2t+1 from forging, and thus require a major-
ity of correct players. Both of these works further develop
robust solutions, in which the t corrupted players cannot
interfere with the other n− t signing a message, provided
that stronger conditions on n and t are met (at least
n≥ 3t+1). However, since we consider the two-party case
only, robustness is not a goal here.
The only previous proposal that can implement two-

party generation of DSA signatures is due to Lang-
ford [35, Sect. 5.1], which ensures unforgeability against
t corrupt players out of n for an arbitrary t < n. This is
achieved, however, by using a trusted center to precom-
pute the ephemeral secret key k for each signature and to
share k−1 mod q and k−1x mod q among the n parties.
That is, this solution circumvents the primary difficul-
ties of sharing DSA signatures – inverting a shared secret

and multiplying shared secrets, as discussed in Sect. 1
– by using a trusted center. Recognizing the significant
drawbacks of a trusted center, Langford extends this so-
lution by replacing the trusted center with three centers
(that protect k−1 and k−1x from any one) [35, Sect. 5.2],
thereby precluding this solution from being used in the
two-party case.
Though our motivating application naturally admits

a trusted party for initializing the system (see [36]),
our presentation here includes a distributed initializa-
tion protocol involving only alice and bob, and no trusted
center. Since we are using random oracles in the signa-
ture protocol, we will describe an initialization protocol
instantiated using random oracles. To achieve provable
security, this initialization must be executed in a sequen-
tial manner before any signature protocols are executed,
even though the signature protocols themselves may be
executed concurrently with respect to each other.

3 Preliminaries

Security parameters. Let κ be the main cryptographic
security parameter used for, e.g., hash functions and dis-
crete log group orders; a reasonable value today may be
κ = 160. We will also use κ′ > κ as a secondary security
parameter for public key modulus size; reasonable values
today may be κ′ = 1024 or κ′ = 2048. The value κ′ is de-
pendent on κ and is set so that known attacks on public
key systems with modulus size κ′ are at least as hard as
known attacks on hash functions and other brute-force
attacks on systems with main security parameter κ. We
assume that an appropriate κ′ can be computed from κ
efficiently.

Signature schemes. A digital signature scheme is a triple
(GS , S, V ) of algorithms, the first two being probabilis-
tic, and all running in expected polynomial time. GS
takes as input 1κ and outputs a public key pair (pk, sk),
i.e., (pk, sk)←GS(1κ). S takes a message m and a se-
cret key sk as input and outputs a signature σ form, i.e.,
σ←Ssk(m). V takes a message m, a public key pk, and
a candidate signature σ′ form and returns the bit b= 1 if
σ′ is a valid signature form, and otherwise returns the bit
b = 0. That is, b←Vpk(m,σ′). Naturally, if σ←Ssk(m),
then Vpk(m,σ) = 1.

DSA. The Digital Signature Algorithm [34] was pro-
posed by NIST in April 1991 and in May 1994 was
adopted as a standard digital signature scheme in the
U.S. [17]. It is a variant of the ElGamal signature
scheme [15] and is defined as follows, with κ = 160,
κ′ set to a multiple of 64 between 512 and 1024, inclu-
sive, and hash function h defined as SHA-1 [16].1 Let

“z
R
←S” denote the assignment to z of an element of S

1 Although κ is fixed for the DSA standard, we will still use it as
if it were a varying security parameter.
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selected uniformly at random. Let ≡q denote equivalence
modulo q.

Gdsa(1
κ): Generate a κ-bit prime q and κ′-bit prime

p such that q divides p−1. Then generate
an element g of order q in Z∗p . The triple

<g, p, q> is public. Finally, generate x
R
←Zq

and y←gx mod p, and let <g, p, q, x> and
<g, p, q, y> be the secret and public keys,
respectively.

S<g,p,q,x>(m): Generate an ephemeral secret key k
R
←Zq

and ephemeral public key r←gk mod p.
Compute s←k−1(h(m)+xr) mod q. Re-
turn <r mod q, s> as the signature ofm.

V<g,p,q,y>(m, <r
′, s>):
Return 1 if 0 < r′ < q, 0 < s < q, and
r′ ≡q (gh(m)s

−1
yr
′s−1 mod p), where s−1

is computed modulo q. Otherwise, return
0.

Zero-knowledge proofs. Our protocols employ a variety
of noninteractive zero-knowledge (NIZK) proofs [4]. Here
we define their security under the random oracle as-
sumption. Our definitions for NIZK proofs are based on
definitions from [3] and [13]. Notice, however, that we
only require standard soundness, rather than simulation
soundness [13].
For a relation R, let LR = {w : (w, v) ∈R} be the lan-

guage defined by the relation, and for all w ∈ LR, let
WR(w) = {v : (w, v) ∈ R} be the witness set for w. For
any NP language L, note that there is a natural witness
relation R containing pairs (w, v), where v is the witness
for the membership of w in L, and that LR = L. Recall
that κ is a security parameter. LetH be the set of all hash
functions with κ-bit outputs.
Let X = {Xκ}κ≥1 and Y = {Yκ}κ≥1 be two proba-

bility distribution ensembles. We define the distinguish-
ing probability of X and Y as ε(κ) =

∑
α |Pr(Xκ = α)−

Pr(Yκ = α)|.
We denote by H the set of all functions hash from

{0, 1}∗ to {0, 1}∞.

– Zero-knowledge proofs: A noninteractive zero-
knowledge proof system with initialization (NIZKPI
system) Ψ for an NP language L, with witness re-
lation R, is a tuple (I,P ,V,Sim), where I and P
are probabilistic polynomial-time algorithms, V is
a deterministic polynomial-time algorithm, and Sim
is a probabilistic polynomial-time protocol for per-
forming initialization, answering hash queries and
answeringP queries, denoted by Siminit, Simhash, and
Simprove,2 respectively, satisfying:

1. Completeness: For all (w, v) ∈ R, for all hash ∈ H,
for all I←I(1κ), Vhash(I, w,Phash(I, w, v)) returns
true.

2 We may assume that Simhash is given a polynomial-size input
and a polynomial-size output length, since it obviously could not
output an infinite number of bits in polynomial time.

2. Soundness: There is a function Serr(κ, t, nro)
(soundness error) such that for all probabilistic
adversariesA that run in time t, and make at most
nro hash queries, Pr[ExptA,Ψ(κ)]≤ Serr(κ, t, nro),
where experiment ExptA,Ψ(κ) is defined as follows:

ExptA,Ψ(κ) :

hash
R
←H

I
R
←I(1κ)
(w, σ)←Ahash(I)
Return true iff (w �∈ L ∧ Vhash(I, w, σ) = true)

If this experiment returns true for a certain σ, we
call σ a fraudulent proof.

3. Unbounded statistical zero-knowledge: There is
a function Simerr(κ, nro, npr) (simulation error)
such that

max
A
|Pr[Expt′A,Ψ(κ) = 1]−Pr[Expt

′′
A,Ψ(κ) = 1]|

≤ Simerr(κ, nro, npr),

where the maximum is over all (unbounded time)
adversaries A that make at most nro hash queries
and npr P queries, and where experiments
Expt′A,Ψ(κ) and Expt

′′
A,Ψ(κ) are defined as follows:

Expt′A,Ψ(κ) : Expt′′A,Ψ(κ) :

hash
R
←H I

R
←Siminit(1κ)

I
R
←I(1κ) Return ASimhash,Sim

′(I,·,·)(I)

Return Ahash,P
hash(I,·,·)(I)

where Sim′(I, w, v)
def
= Simprove(I, w) for (w, v)

∈ R. [If (w, v) �∈ R, we may assume that both
Phash(I, w, v) and Sim′(I, w, v) abort, though we
do require that they halt in polynomial time irre-
spective of whether (w, v) ∈R.]

In our protocols, we denote a zero-knowledge proof
that a predicate P holds on a given input w (i.e.,
that w is in the language of elements satisfying P ) by
zkp [P ].3

Encryption schemes. An encryption scheme E is a triple
(GE , E,D) of algorithms, the first two being probabilistic,
and all running in expected polynomial time. GE takes
as input 1κ and outputs a public key pair (pk, sk), i.e.,
(pk, sk)←GE(1κ). E takes a public key pk and a message
m as input and outputs an encryption c for m; we denote
this c←Epk(m). D takes a ciphertext c and a secret key
sk as input and returns either a message m such that c
is a valid encryption ofm under the corresponding public
key, if such an m exists, and otherwise returns an arbi-
trary value.
We require the encryption scheme we use to bematch-

able in the following sense: There exists an efficiently

3 The input w will be implicit in the definition of P and thus is
not included separately in this notation.
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computable predicate M(pk, sk) that returns 1 if and
only if (pk, sk) could possibly be output from GE(1

κ).
M(pk, sk) implies not only that sk is the matching pri-
vate key for pk, but also that both are well formed ac-
cording to the key generation algorithm. For the example
cryptosystem we adopt here (described in Sect. 6.1), we
describe how to implement a zero-knowledge proof of
knowledge of sk such thatM(pk, sk) holds for a public pk.
This proof is required in the initialization protocol for our
system (Sect. 4.1).
Our protocol additionally requires that encryption be

semantically secure and have a certain additive homo-
morphic property. For any public key pk output from the
GE function, let Mpk be the space of possible inputs to
Epk and Cpk the space of possible outputs of Epk. Then
we require that there exist an efficient implementation of
an additional function +pk : Cpk×Cpk → Cpk such that
(written as an infix operator)

m1,m2,m1+m2 ∈Mpk⇒

Dsk(Epk(m1) +pk Epk(m2)) =m1+m2 . (1)

Examples of cryptosystems for which the function +pk ex-
ists (with Mpk = [−v, v] for a certain value v) are due to
Naccache and Stern [38], Okamoto and Uchiyama [40],
and Paillier [41].4 Note that Eq. (1) further implies the
existence of an efficient function ×pk : Cpk×Mpk → Cpk
such that

m1,m2,m1m2 ∈Mpk⇒Dsk(Epk(m1) ×pk m2) =m1m2 .
(2)

In addition, in our protocol, a party may be required
to generate a noninteractive zero-knowledge proof of
a certain predicate P involving decryptions of elements of
Cpk, among other things. In Sect. 6.1, we show how these
proofs can be accomplished if the Paillier cryptosystem is
in use. We emphasize, however, that our use of the Paillier
cryptosystem is only exemplary; the other cryptosystems
cited above could equally well be used with our protocol.

System model. Our system includes two parties, alice and
bob. Each must execute an initialization protocol (in a se-
quential manner) before any signature protocols are exe-
cuted. After initialization, communication between alice
and bob occurs in sessions (or signature protocol runs),
one per message that they sign together. alice plays the
role of session initiator in our signature protocol. We pre-
sume that eachmessage is implicitly labeled with an iden-
tifier for the session to which it belongs. Multiple signing
sessions can be executed concurrently.
The adversary in our protocol controls the net-

work, inserting and manipulating communication as it
chooses. In addition, it takes one of two forms: an al-
ice-compromising adversary that has read access to the

4 The cryptosystem of Benaloh [1] also has this additive homo-
morphic property and thus could also be used in our protocol.
However, it would be less efficient for our purposes.

private storage of alice and a bob-compromising adver-
sary that has read access to the private storage of bob.
Without loss of generality, we assume that an alice-
compromising adversary takes the place of alice in inter-
actions with bob, and does so starting from the beginning
of system execution. We make the analogous assumption
for a bob-compromising adversary.
Informally, the goal of an alice-compromising adver-

sary is to generate a signature on a message that bob did
not cooperate to sign, either because he was not asked or
because he refused. The goal of a bob-compromising ad-
versary is analagous. Our protocol is secure if it ensures
that any correctly signed message was generated with the
cooperation of both alice and bob for that message. Our
security goals do not include fairness (e.g., if one obtains
a signature, then the other must as well) or robustness
(e.g., if one misbehaves, then the other can prove this is
the case to others).
We note that a proof of security in this two-party sys-

tem extends to a proof of security in an n-party system
in a natural way, assuming the adversary decides which
parties to compromise before any session begins. The ba-
sic idea is to guess for which pair of parties the adversary
forges a signature and focus the simulation proof on those
two parties, running all other parties as in the real proto-
col. The only consequence is a factor of roughly n2 lost in
the reduction argument from the security of the signature
scheme.

4 S-DSA system

In this section we present a new system called S-DSA by
which alice and bob can jointly create DSA signatures on
messages.

4.1 Initialization

Our signature protocol of Sect. 4.2 requires an initializa-
tion in which the following properties are achieved:

I1. A DSA public key pair is generated (<g, p, q, y>,
<g, p, q, x>).

I2. The private key x is multiplicatively shared between
alice and bob, so that alice holds a random pri-
vate value x1 ∈ Zq and bob holds a random private
value x2 ∈ Zq such that x ≡q x1x2. Along with y,
y1 = g

x1 mod p and y2 = g
x2 mod p are public.

I3. alice holds the private key sk corresponding to a public
encryption key pk, and there is another public encryp-
tion key pk′ for which alice does not know the corres-
ponding sk′.

Here we assume this initialization is performed by a trust-
ed third party. However, since avoiding a trusted third
party is preferable, in Appendix A we describe an initial-
ization protocol for achieving the properties above.
Two comments about properties I2 and I3 are in

order. Regarding I2, we use a multiplicative sharing of x
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to achieve greater efficiency than can be achieved by using
either polynomial sharing or additive sharing. With mul-
tiplicative sharing of keys, inversion and multiplication of
shared keys becomes trivial, but addition of shared keys

alice bob

k1
R
←Zq

z1
R
← (k1)−1 mod q

α←Epk(z1)
ζ←Epk(x1z1 mod q)

<m,α, ζ>
�

abort if (α �∈ Cpk ∨ ζ �∈ Cpk)

k2
R
←Zq

r2←gk2 mod p

r2
�

abort if ((r2)
q �≡p 1)

r← (r2)k1 mod p

Π← zkp



∃η1, η2 : η1, η2 ∈ [−q3, q3]
∧ rη1 ≡p r2
∧ gη2/η1 ≡p y1
∧ Dsk(α) ≡q η1
∧ Dsk(ζ) ≡q η2




<r,Π>
�

abort if (rq �≡p 1)
abort if (Verifier(Π) = 0)
m′←h(m)
r′← (r mod p) mod q
z2← (k2)−1 mod q

c
R
←Zq5
µ← (α ×pk m′z2) +pk

(ζ ×pk r′x2z2) +pk Epk(cq)
µ′←Epk′(z2)

Π′←zkp




∃η1, η2 : η1, η2 ∈ [−q3, q3]
∧ (r2)

η1 ≡p g
∧ gη2/η1 ≡p y2
∧ Dsk′(µ

′)≡q η1
∧ Dsk(µ)≡q Dsk((α ×pk m′η1)

+pk (ζ ×pk r′η2))




<µ, µ′,Π′>
�

abort if (µ �∈ Cpk ∨ µ′ �∈ Cpk′)
abort if (Verifier(Π′) = 0)
s←Dsk(µ) mod q
publish <r mod q, s>

Fig. 1. S-DSA shared signature protocol

becomes more complicated. For DSA, however, this ap-
proach seems to allow a much more efficient two-party
protocol. Regarding I3, it is necessary for our particular
zero-knowledge proof constructions described in Sect. 6
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that the range ofMpk be at least [−q8, q8] and the range
ofMpk′ be at least [−q

6, q6], although we believe a slightly
tighter analysis would allow both to have a range of
[−q6, q6].

4.2 Signing protocol

The protocol by which alice and bob cooperate to gener-
ate signatures with respect to the public key <g, p, q, y>
is shown in Fig. 1. As input to this protocol alice receives
the message m to be signed. bob receives no input (but
receivesm from alice in the first message).
At a high level, the protocol is broken into two “phas-

es”, each consisting of one message in each direction. The
goal of the first phase is to establish an ephemeral private
key k ∈Zq and public key r= gk mod p, where k is shared
as k = k1k2 mod q, with k1 a secret known by alice and
k2 a secret known to bob. In addition, alice commits to
(k1)

−1 mod q by sending its encryption α under pk and to
(k1)

−1x1 mod q by sending its encryption ζ under pk. In
the second phase, bob uses these commitments together
with +pk and×pk to form the encryption of the s compon-
ent of the signature under pk (without ever decrypting α
or ζ, which it cannot do).
More specifically, the protocol works as follows. Upon

receiving m to sign, alice first computes its share k1 of
the ephemeral private key for this signature, computes
z1 = (k1)

−1 mod q, and encrypts both z1 and x1z1 mod q
under pk. alice’s first message to bob consists of m and
these ciphertexts, α and ζ. bob performs some simple con-
sistency checks on α and ζ (though he cannot decrypt
them, since he does not have sk), generates his share
k2 of the ephemeral private key, and returns his share
r2 = g

k2 mod p of the ephemeral public key.
Once alice has received r2 from bob and performed

simple consistency checks on it (e.g., to determine it has
order q in Z∗p), she is able to compute the ephemeral pub-
lic key r = (r2)

k1 mod p, which she sends to bob in the
third message of the protocol. alice also sends a nonin-
teractive zero-knowledge proof Π that there are values η1
(= z1) and η2 (= x1z1 mod q) that are consistent with r,
r2, y1, α, and ζ and that are in the range [−q3, q3]. This
last fact is necessary so that bob’s subsequent formation
of (a ciphertext of) s does not leak information about his
private values.
Upon receiving <r,Π>, bob verifies Π and performs

additional consistency checks on r. If these pass, then
he proceeds to compute a ciphertext µ of the value s
(modulo q) for the signature, using the ciphertexts α
and ζ received in the first message from alice; the values
h(m), z2 = (k2)−1 mod q, r mod q, and x2; and the spe-
cial ×pk and +pk operators of the encryption scheme.
In addition, bob uses +pk to “blind” the plaintext value
with a random, large multiple of q. So when alice later
decrypts µ, she statistically gains no information about
bob’s private values. In addition to returning µ, bob
computes and returns µ′←Epk′(z2) and a noninteractive

zero-knowledge proof Π′ that there are values η1 (= z2)
and η2 (= x2z2 mod p) consistent with r2, y2, µ, and µ

′

and that are in the range [−q3, q3]. After receiving and
checking these values, alice recovers s from µ to complete
the signature.
The noninteractive zero-knowledge proofs Π and Π′

are assumed to satisfy the completeness, soundness, and
zero-knowledge properties as defined in Sect. 3. The im-
plementations of Π and Π′ in Sect. 6 enforce these prop-
erties under reasonable assumptions. To instantiate this
protocol without random oracles, Π and Π′ would need
to become interactive zero-knowledge protocols. It is not
too difficult to construct four-move protocols for Π and
Π′, and by overlapping somemessages, one can reduce the
total number of moves in this instantiation of the S-DSA
signature protocol to eight. For brevity, we omit the full
description of this instantiation.
When the zero-knowledge proofs are implemented

using random oracles, we can show that our protocol is
secure even when multiple signing instances are executed
concurrently. Perhaps the key technical aspect is that we
only require proofs of language membership, which can
be implemented using random oracles without requir-
ing rewinding in the simulation proof. In particular, we
avoid the need for any proofs of knowledge that would
require rewinding in knowledge extractors for the simu-
lation proof, even if random oracles are used. The need
for rewinding (and, particularly, nested rewinding) causes
many proofs of security to fail in the concurrent setting
(e.g., [33]).

5 Security for S-DSA

In this section we provide a formal proof of security for
the S-DSA system. We begin by defining security for
signatures and encryption in Sect. 5.1 and for S-DSA
in Sect. 5.2. We then state our theorems and proofs in
Sect. 5.3.

5.1 Security for DSA and encryption

Security for signature schemes. We specify existential
unforgeability versus chosen message attacks [28] for
a signature scheme S = (GS , S, V ). A forger F is given
pk, where (pk, sk)←GS(1κ), and tries to forge signatures
with respect to pk. It is allowed to query a signature
oracle (with respect to sk) on messages of its choice.
It succeeds if after this it can output a valid forgery
(m,σ) such that Vpk(m,σ) = 1, where m was not one
of the messages signed by the signature oracle. We say
Succeu-cmaS,κ (F) = Pr(F succeeds), and Succeu-cmaS,κ (t, u) =
maxF

{
Succeu-cmaS,κ (F)

}
, where the maximum is taken

over all forgers of time complexity t that make u queries
to the signature oracle.

Security for encryption schemes. We specify seman-
tic security [27]. An attacker A is given pk, where
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(pk, sk)←GE(1κ). A generates two equal-length strings
X0 and X1 and sends these to a test oracle, which

chooses b
R
←{0, 1}, and returns Y = Epk(Xb). Finally, A

outputs b′ and succeeds if b′ = b. Let AdvssE,κ(A) = 2 ·
Pr(A succeeds)−1. Note that this implies AdvssE,κ(A) =
Pr(A guesses 1|b = 1) − Pr(A guesses 1|b = 0). Let
AdvssE,κ(t) = maxA

{
AdvssE,κ(A)

}
, where the maximum is

taken over all adversaries of time complexity t.

5.2 Security for S-DSA

Our security definition for S-DSA is similar to our secu-
rity definition for signature schemes above, except that
the signature oracle is replaced by an alice or bob oracle,
as described below.
A forger F begins with DSA parameters <g, p, q>, the

ability to invoke queries on alice or bob “oracles”, and, as
described in Sect. 3, entire control of the network between
alice and bob. F also receives the public key y, the public
shares y1 of alice and the public share y2 of bob, and the
public keys pk and pk′ belonging to alice and bob, respec-
tively. An alice-compromising forger also receives x1 and
sk and thus has the ability to faithfully execute the proto-
col of alice, while a bob-compromising forger also receives
x2 and sk

′ and thus has the ability to faithfully execute
the protocol of bob. The goal of F is to forge a signature
with respect to <g, p, q, y>. Instead of a signature oracle,
there is an alice oracle or a bob oracle.
A bob-compromising F may query alice by invok-

ing aInv1(m), aInv2(r2), or aInv3(<µ, µ
′,Π′>) for in-

put parameters of F ’s choosing. The queries aInv1(m),
aInv2(r2), and aInv3(<µ, µ

′,Π′>) correspond to a request
to initiate the protocol of Fig. 1 for message m and the
first and second messages received ostensibly from bob in
this protocol, respectively. (We assume that these invoca-
tions are also accompanied by a session identifier, which is
left implicit.) These return outputs of the form <m,α, ζ>,
<r,Π> or a signature for the message m from the pre-
vious aInv1 query in the same session, respectively, or
abort.
The queries bInv1(<m,α, ζ>) and bInv2(<r,Π>) are

defined analogously for the bob oracle and can be invoked
by an alice-compromising forger.
An alice-compromising forger F succeeds if after in-

voking the bob oracle as it chooses it can output (m,σ),
where V<g,p,q,y>(m,σ) = 1 and m is not one of the mes-
sages sent to bob in a bInv1 query. Similarly, a bob-
compromising forger F succeeds if after invoking the
alice oracle as it chooses it can output (m,σ), where
V<g,p,q,y>(m,σ) = 1 andm is not one of the messages sent
to alice in an aInv1 query.
Let qalice be the number of aInv1 queries to alice, which

we take to be zero for an alice-compromising forger. Let
qbob be the number of bInv1 queries; similarly, this is
zero for a bob-compromising forger. Let qhashΠ denote the
number of queries to the random oracle associated with
Π, and let qhashΠ′ denote the number of queries to the ran-

dom oracle associated with Π′. We say Succeu-cma
s-dsa,κ(F) =

Pr(F succeeds).

5.3 Theorems

Here we state theorems and provide proofs that relate
the probability with which a forger can break the S-DSA
system to the probability that either DSA, the underly-
ing encryption scheme, or the zero-knowledge proofs used
in S-DSA can be broken. This implies that if DSA, the
underlying encryption scheme, and the zero-knowledge
proofs are secure, our system will be secure.
The idea behind each proof is to construct a series

of systems s-dsa0, s-dsa1, . . . , related to s-dsa, with
s-dsa0 = s-dsa, and such that we eventually come to
a system s-dsai such that breaking s-dsai implies break-
ing the original DSA signature scheme. We then show
that for any attacker, the difference in the advantage of
the attacker in breaking s-dsai−1 and s-dsai is related
to the probability of breaking the underlying encryption
scheme or breaking the soundness of the zero-knowledge
proof.
In the theorem statement below, let texp denote the

time required for a modular exponentiation with an expo-
nent and modulus of κ′ bits.

Theorem 1. Fix an alice-compromising forger F that
runs in time t. Then for t′ =O(t+ qbobtexp)

Succeu-cmas-dsa,κ(F)

≤ Succeu-cmadsa,κ (t
′, qbob)+SerrΠ(κ, t

′, qhashΠ)+

SimerrΠ′(κ, qhashΠ′ , qbob)+ qbobAdv
ss
E,κ(t

′)+8(2−κ).

Proof. Let s-dsa1 be the s-dsa0 system, except that in
response to a bInv2(<r,Π>) query, run Sim to produce
a simulated Π′. Then

Succeu-cmas-dsa0,κ
(F)

≤ Succeu-cmas-dsa1,κ
(F)+SimerrΠ′(κ, qhashΠ′ , qbob).

Let s-dsa2 be the s-dsa1 system, except that in re-
sponse to a query bInv2(<r,Π>), set µ′←Epk′(0). Note
that we still run Sim to produce a simulated Π′. Then

Succeu-cmas-dsa1,κ
(F)≤ Succeu-cmas-dsa2,κ

(F)+ qbobAdv
ss
E,κ(t

′).

To see this, let D be an algorithm that takes a public key
pk′ and a test oracle as input, chooses j

R
←{1, . . . , qbob},

and runs s-dsa1 using pk
′ as the public encryption key

of bob, with the following modifications. D computes the
first j−1 ciphertexts by bob under the key pk′ as nor-
mal, i.e., as Epk′(z2). D computes the j-th ciphertext
using the response from the test oracle with inputsX0 = 0
and X1 = z2. D computes the remaining ciphertexts as
Epk′(0). When the simulation completes, D outputs 1 if
F produces a forgery and 0 otherwise. Note that the case
j = 1 with the test oracle bit equal to 0 corresponds to
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s-dsa2 and the case j = qbob with the test oracle bit equal
to 1 corresponds to s-dsa1. Let Dj denote D conditioned
on the choice of j and Dj,b denote Dj conditioned on the
bit choice b of the test oracle. Let Dj,b denote the simu-
lation run by Dj,b. Then, noting that for 1≤ j ≤ qbob−1,
Dj,1 is perfectly indistinguishable from Dj+1,0, we have

AdvssE,κ(t
′)≥ AdvssE,κ(D)

=
1

qbob

qbob∑
j=1

AdvssE,κ(Dj)

=
1

qbob

qbob∑
j=1

(Pr(Dj outputs 1|b= 1)

−Pr(Dj outputs 1|b= 0))

=
1

qbob

qbob∑
j=1

(
Succeu-cma

Dj,1,κ
(F)−Succeu-cma

Dj,0,κ
(F)
)

=
1

qbob

(
Succeu-cmas-dsa1,κ

(F)−Succeu-cmas-dsa2,κ
(F)
)
.

Let s-dsa3 be the s-dsa2 system, except that in the
initialization, the secret key sk corresponding to public
key pk is recorded, and in response to a bInv2(<r,Π>)
query, if Π is a fraudulent proof (i.e., a valid proof for
a string not satisfying the predicate), s-dsa3 aborts.
(Note that we assume simulating Π′ has no effect on the
soundness of Π. In our instantiations of these protocols,
this will be true due to the fact that Π and Π′ use different
random oracles.) Then

Succeu-cmas-dsa2,κ
(F)

≤ Succeu-cmas-dsa3,κ
(F)+SerrΠ(κ, t

′, qhashΠ).

Now we show that

Succeu-cmas-dsa3,κ
(F)≤ Succeu-cmadsa,κ (t

′, qbob)+8(2
−κ).

To see this, letD be an algorithm that takes a DSA public
key <g, p, q, y> generated by Gdsa(1

κ) and its corres-
ponding signature oracle and runs s-dsa3 with the follow-

ing modifications. In the initialization,D chooses x1
R
←Zq

and computes y1←gx1 mod p and y2←y1/x1 mod p.
In response to a bInv1(<m,α, ζ>) query, D computes
z1←Dsk(α). (Recall that D has stored the secret key sk
from initialization in s-dsa3.) Then D queries the DSA
signature oracle with m to get a signature <r̂, ŝ>, and
computes r←gh(m)ŝ

−1
yr̂ŝ

−1
mod p, where ŝ−1 is com-

puted modulo q. Finally, D computes r2←rz1 mod p
and returns r2. In response to a bInv2(<r,Π>) query,

D computes µ by choosing c
R
←Zq5 and then setting

µ←Epk(ŝ+ qc). Note that the distinguishing probabil-
ity of D and s-dsa3 is bounded by

4
q
due to the different

way µ is computed. While the plaintext would be equiva-
lent modulo q in either case, the multiple of q comes
from a slightly different range. In s-dsa3, µ would be an
encryption of ŝ+ qc′+ qc for some c′ ∈ [−2q4, 2q4] and

random c ∈ Zq5 . Thus the distinguishing probability is

bounded by 2(2q
4)

q5
= 4
q
≤ 8(2−κ).

Theorem 2. Fix a bob-compromising forgerF that runs
in time t. Then for t′ =O(t+ qalicetexp)

Succeu-cmas-dsa,κ(F)

≤ Succeu-cmadsa,κ (t
′, qalice)+SerrΠ′(κ, t

′, qhashΠ′ )+

SimerrΠ(κ, qhashΠ , qalice)+2qaliceAdv
ss
E,κ(t

′).

Proof. Let s-dsa1 be the s-dsa0 system, except that in
response to a aInv2(r2) query, run Sim to produce a simu-
lated Π. Then

Succeu-cmas-dsa0,κ
(F)

≤ Succeu-cmas-dsa1,κ
(F)+SimerrΠ(κ, qhashΠ , qalice).

Let s-dsa2 be the s-dsa1 system, except that in
the initialization, the secret key sk′ (corresponding to
public key pk′) and the DSA secret key <g, p, q, x> are
recorded. In response to an aInv3(µ, µ′,Π′) query corres-
ponding to an aInv1(m) query, compute z2←Dsk′(µ

′),
k2← (z2)−1 mod q, and k←k1k2 mod q. Then return
<r mod q, s>, where s = k−1(h(m)+xr) mod q. As long
as Π′ is not a fraudulent proof (i.e., a valid proof for
a string not satisfying the predicate), this response in
s-dsa2 is exactly the same as the response would be in
s-dsa1. (Note that we assume simulating Π has no effect
on the soundness of Π′. In our instantiations of these pro-
tocols, this will be true due to the fact that Π and Π′ use
different random oracles.) Then

Succeu-cmas-dsa2,κ
(F)

≤ Succeu-cmas-dsa3,κ
(F)+SerrΠ′(κ, t

′, qhashΠ′ ).

Let s-dsa3 be the s-dsa2 system, except that, in
response to an aInv1(m) query, set α←Epk(0) and
ζ←Epk(0). Note that we still run Sim to produce a simu-
lated Π. Then

Succeu-cmas-dsa2,κ
(F)≤ Succeu-cmas-dsa3,κ

(F)+2qaliceAdv
ss
E,κ(t

′).

To see this, let D be an algorithm that takes a public key
pk and a test oracle as input, chooses j

R
←{1, . . . , 2qalice},

and runs s-dsa2 using pk as the public encryption key of
alice, with the following modifications. D computes the
first j−1 ciphertexts by alice under the key pk as nor-
mal, i.e., as Epk(z1) and Epk(x1z1 mod q). D computes
the j-th ciphertext using the response from the test ora-
cle with inputs X0 = 0 and either X1 = z1 if j is odd or
X1 = x1z1 mod q if j is even. D computes the remaining
ciphertexts as Epk(0). When the simulation completes, D
outputs 1 if F produces a forgery and 0 otherwise. Note
that the case j = 1 with the test oracle bit equal to 0 cor-
responds to s-dsa3 and the case j = 2qalice with the test
oracle bit equal to 1 corresponds to s-dsa2. Let Dj de-
note D conditioned on the choice of j and Dj,b denote Dj
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conditioned on the bit choice b of the test oracle. Let Dj,b
denote the simulation run by Dj,b. Then noting that, for
1≤ j ≤ 2qalice−1, Dj,1 is perfectly indistinguishable from
Dj+1,0, we have

AdvssE,κ(t
′)

≥ AdvssE,κ(D)

=
1

2qalice

2qalice∑
j=1

AdvssE,κ(Dj)

=
1

2qalice

2qalice∑
j=1

(Pr(Dj outputs 1|b= 1)

−Pr(Dj outputs 1|b= 0))

=
1

2qalice

2qalice∑
j=1

(
Succeu-cma

Dj,1,κ
(F)−Succeu-cma

Dj,0,κ
(F)
)

=
1

2qalice

(
Succeu-cmas-dsa2,κ

(F)−Succeu-cmas-dsa3,κ
(F)
)
.

Now we show that

Succeu-cmas-dsa3,κ
(F)≤ Succeu-cmadsa,κ (t

′, qalice).

To see this, letD be an algorithm that takes a DSA public
key <g, p, q, y> generated by Gdsa(1

κ) and its corres-
ponding signature oracle and runs s-dsa3 with the follow-

ing modifications. In the initialization,D chooses x2
R
←Zq

and computes y2←gx2 mod p and y1←y1/x2 mod p.
In response to an aInv2(r2) query (after an aInv1(m)
query), D queries the DSA signature oracle withm to get
a signature <r̂, ŝ> and computes r←gh(m)ŝ

−1
yr̂ŝ

−1
mod

p, where ŝ−1 is computed modulo q. Then in response
to an aInv3(<µ, µ′,Π′>) query, D returns <r̂, ŝ> (as-
suming alice would not abort). Note that D produces
a view that is perfectly indistinguishable from s-dsa3 as
long as no Π′ is fraudulent, and we have already added
the probability of this to the success probability of the
adversary.

6 Proofs Π and Π′

In this section we provide an example of how alice and
bob can efficiently construct and verify the noninter-
active zero-knowledge proofs Π and Π′ of Fig. 1. The
form of these proofs naturally depends on the encryption
scheme (GE , E,D), and the particular encryption scheme
for which we detail Π and Π′ here is that due to Pail-
lier [41]. We reiterate, however, that our use of Paillier
is merely exemplary, and similar proofs Π and Π′ can be
constructed with other cryptosystems satisfying the re-
quired properties (Sect. 3).
We caution the reader that from this point forward,

our use of variables is not necessarily consistent with their
prior use in the paper; rather, it is necessary to replace
certain variables or reuse them for different purposes.

6.1 The Paillier cryptosystem

A specific example of a cryptosystem that has the ho-
momorphic properties required for our protocol is the
first cryptosystem presented in [41]. It uses the facts that
wλ(N) ≡N 1 and wNλ(N) ≡N2 1 for any w ∈ Z

∗
N2
, where

λ(N) is the Carmichael function of N . Let L be a func-
tion that takes input elements from the set {u < N2|u≡
1 mod N} and returns L(u) = u−1

N . We then define the
Paillier encryption scheme (GPai, E,D) as follows. This
definition differs from that in [41] only in that we de-
fine the message spaceMpk for public key pk = <N, g> as
M<N,g> = [−(N −1)/2, (N−1)/2] (versus ZN in [41]).

GPai(1
κ): Compute κ′, choose random κ′/2-bit

primes P,Q, set N = PQ, and choose an
element g ∈ Z∗

N2
such that the order of

g is a multiple of N ([41]). Return the
public key <N, g> and the private key
<N, g, λ(N)>.

E<N,g>(m): Select a random x ∈ Z∗N and return c=
gmxN mod N2.

D<N,g,λ(N)>(c): Compute m =
L(cλ(N)modN2)

L(gλ(N)modN2)
mod N .

Return m if m ≤ (N − 1)/2, otherwise
returnm−N .

c1 +<N,g> c2: Return c1c2 mod N
2.

c ×<N,g> m: Return cm mod N2.

Paillier [41] shows that both cλ(N)modN2 and gλ(N) mod
N2 are elements of the form (1+N)d ≡N2 1+dN , and
thus the L function can be easily computed for decryp-
tion. The security of this cryptosystem relies on the De-
cision Composite Residuosity Assumption, DCRA.
Note that we must include the initialization of the

Paillier keys in the initialization of S-DSA. However, for
the purposes of this section, these keys, along with the
other parameters p, q in our system, are assumed to be
public and fixed, and thus the language L is fixed. That
is, the initialization of these parameters is not considered
part of the initialization of Π and Π′, but simply part of
the definition of Π and Π′.

6.2 Strong RSA

Both Π and Π′ rely on the Strong RSA problem, de-
fined here. Let Grsa be an RSA modulus generator, i.e.,
a probabilistic polynomial-time algorithm that takes as
input 1κ, computes κ′, and produces a value N = PQ,
where P = 2P ′+1 and Q = 2Q′+1 are safe primes of
length κ′/2. Let

Succm-rsa,κ(A)
= Pr[(e≥ 2)∧ (y ≡N xe) : N←Grsa(1

κ);

y
R
←Z∗N ;
(x, e)←A(N, y)]

and let

Succm-rsa,κ(t) = max
A

{
Succm-rsa,κ(A)

}
,



P. MacKenzie, M.K. Reiter: Two-party generation of DSA signatures

where the maximum is taken over all adversaries of time
complexity at most t.
The initialization I(1κ) in each NIZKPI system con-

sists of generating Ñ = P̃ Q̃, where P̃ = 2P̃ ′+1 and Q̃=

Q̃′+1 are safe primes of length κ′/2, a random h2
R
←Z∗

Ñ

of order P̃ ′Q̃′, a random χ
R
←ZP̃ ′Q̃′ , and h1← (h2)

χ

mod Ñ . Note that we must include the initialization of
these values in the initialization of S-DSA.

6.3 Proof Π

In this section we show how to efficiently implement the
proof Π in our protocol when the Paillier cryptosystem is
used. Π′ is detailed in Sect. 6.4.
Note that Π uses random oracle hash and Π′ uses a dif-

ferent random oracle hash′. By doing this, it is easy to see
that simulations of Π proofs, even on strings not satisfy-
ing the predicate, could not be used to construct fraudu-
lent Π′ proofs. Both hash and hash′ output elements in Zq.

α
R
←Zq3 δ

R
←Zq3

β
R
←Z∗N µ

R
←Z∗N

γ
R
←Zq3Ñ ν

R
←Zq3Ñ

ρ1
R
←ZqÑ ρ2

R
←ZqÑ

ρ3
R
←Zq

ε
R
←Zq

z1← (h1)x1(h2)ρ1 mod Ñ z2← (h1)x2(h2)ρ2 mod Ñ
u1← cα mod p y←dx2+ρ3 mod p
u2←gαβN mod N2 v1←dδ+ε mod p
u3← (h1)α(h2)γ mod Ñ v2← (w2)αdε mod p

v3←gδµN mod N2

v4← (h1)δ(h2)ν mod Ñ

e←hash(c, w1, d, w2,m1,m2, z1, u1, u2, u3, z2, y, v1, v2, v3, v4)

s1← ex1+α t1← ex2+ δ
s2← (r1)eβ mod N t2← eρ3+ ε mod q
s3← eρ1+γ t3← (r2)eµ mod N2

t4← eρ2+ν

Π←<z1, z2, y, e, s1, s2, s3, t1, t2, t3, t4>

Fig. 2. Construction of Π

<z1, z2, y, e, s1, s2, s3, t1, t2, t3, t4>←Π

Verify s1, t1 ∈ Zq3 v1←dt1+t2y−e mod p
u1← cs1(w1)−e mod p v2← (w2)s1dt2y−e mod p
u2←gs1(s2)N (m1)−e mod N2 v3←gt1(t3)N (m2)−e mod N2

u3← (h1)s1(h2)s3(z1)−e mod Ñ v4← (h1)t1(h2)t4(z2)−e mod Ñ

Verify e= hash(c, w1, d, w2,m1,m2, z1, u1, u2, u3, z2, y, v1, v2, v3, v4)

Fig. 3. Verification of Π

Now consider the proof Π. Let p and q be as in
a DSA public key, pk = <N, g> a Paillier public key, and
sk = <N, g, λ(N)> the corresponding private key, where
N > q6. For public values c, d, w1, w2, m1, m2, we con-
struct a zero-knowledge proof Π of:

∃x1, x2 :x1, x2 ∈ [−q3, q3]
∧ cx1 ≡p w1
∧ dx2/x1 ≡p w2
∧ Dsk(m1) = x1
∧ Dsk(m2) = x2


 . (3)

The proof is constructed in Fig. 2, and its verification pro-
cedure is given in Fig. 3. We assume that c, d, w1, w2 ∈ Z∗p
and are of order q, and that m1,m2 ∈ Z∗N2 . (The prover
should verify this if necessary and abort if not true.)
We assume the prover knows x1, x2 ∈ Zq and r1, r2 ∈ Z∗N
such that cx1 ≡p w1, dx2/x1 ≡p w2,m1 ≡N2 g

x1(r1)
N and

m2 ≡N2 g
x2(r2)

N . The prover need not know sk, though
a malicious prover might.
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Intuitively, the proof works as follows. Commitments
z1 and z2 are made to x1 and x2, respectively, over the
RSA modulus Ñ , and (using values u3 and v4, respec-
tively) these are proven to fall in the desired range using
range proofs as in [20]. Simultaneously, it is shown (using
values u1 and u2) that the commitment z1 corresponds
to the decryption of m1 and the discrete log of w1. Also,
simultaneously it is shown (using values y, v1, v2, and
v3) that the commitment z2 corresponds to the decryp-
tion of m2 and that the discrete log of w2 is the quotient
of the two commitments. The full proof is shown in two
columns, the left column used to prove the desired proper-
ties of x1, w1, andm1 and the right column used to prove
the desired properties of x2, w2, andm2.

Lemma 1. Π is an NIZKPI for predicate (3), with
SimerrΠ(κ, nro, npr)≤ npr(nro+8)2−κ+1 and SerrΠ(κ,
t, nro) ≤ max{4

√
82nroSuccm-rsa,κ(t′), 36nro2

−κ+1},
where t′ =O(t).

Proof. To be completely specific, we will show that the
proof Π is a proof of membership for the language

L= {<c, w1, d, w2,m1,m2> :

∃x1, x2 ∈ [−q
3, q3] : cx1 ≡p w1∧d

x2/x1 ≡p w2∧

Dsk(m1) = x1∧Dsk(m2) = x2} .

Recall that p, q,N, g, Ñ, h1, h2 are determined in the ini-
tialization, which we assume for now uses a trusted party.
Completeness: Follows from inspection.
Soundness: Let ε = SerrΠ(κ, t, nro), ε

′ = ε/4, and as-
sume ε′ ≥ 9nro2−κ+1. Say we are given a Strong RSA
instance (Ñ , C) generated by Ñ←Grsa(1

κ) and C
R
←

Z
∗
Ñ
. Let Siminit(1κ) compute h2←C and h1←Cχ for

χ
R
←Z2κÑ , and output (Ñ , h1, h2). Note that Siminit(1

κ)
produces a distribution statistically indistinguishable
from I(1κ) as long as C is a quadratic residue, which hap-
pens with probability 14 , and thus ExptA,Π(κ) with this
simulated initialization will return true with probability
at least ε′.
Now consider the following experiment, except with

ExptA,Π(κ) using the simulated initialization. Run
ExptA,Π(κ) once. Say ω consists of (1) the values deter-
mined in initialization and (2) the random tape of A,
and hash is the random oracle in this experiment. If the
experiment returns true, then let Ind(ω, hash) be the in-
dex of the hash query corresponding to the string/proof
pair (w,Π) returned byA (or Ind(ω, hash) =∞ if the pair
(w,Π) does not correspond to any hash query made by
the A).5 Let �← Ind(ω, hash). Then we run the experi-
ment again with the same ω and a new random oracle
hash∗ that returns the same answers to all hash queries
prior to hash query � and random answers to hash query �
and all subsequent hash queries. If the experiment returns

5 Without loss of generality we may assume that all hash queries
are distinct.

true andA returns a pair (w, Π̂), with Ind(ω, hash∗) = �,
where the hash � returns a different value, then we output
a root of C with probability at least 12 −2

−κ according to
the algorithm below, and otherwise we abort.
Let break be the probability that the algorithm does

not abort. Here we show that Pr(break)≥ 2(ε′)2/81nro,
which implies we can break Strong RSA in time O(t) and
probability at least (ε′)2/82nro, assuming κ ≥ 8. Simi-
larly to [45], letAhashω denoteA running with initialization
values and random tape determined by ω and using ran-
dom oracle hash. Then let

S = {(ω, hash) :Ahashω succeeds and Ind(ω, hash) �=∞}

and

Si = {(ω, hash) :A
hash
ω succeeds and Ind(ω, hash) = i},

for i ∈ {1, . . . , nro}.

Let δ = Pr[S] ≥ ε′−2−κ+1 ≥ 8ε′

9 . Let I = {i : Pr(Si|S) ≥
1/2nro}. Then as in [45, Lemma 9], Pr(Ind ∈ I|S) ≥

1
2 .

Obviously, for any Ind ∈ I, Pr(Si)≥ δ/2nro, and then by
the splitting lemma [45, Lemma 7], there exists a sub-
set of executions Ωi such that Pr(Ωi|Si)≥

1
2 and for any

(ω, hash) ∈ Ωi,

Pr((ω, hash∗) ∈ Si|hash
∗
<i = hash<i)≥ δ/4nro ,

where hash<i denotes the restriction of hash to its first
i−1 queries.
Since all Si are disjoint,

Pr
ω,hash

((∃i ∈ I)(ω, hash) ∈ Ωi∩Si|S)

= Pr

(⋃
i∈I

(Ωi∩Si)|S

)

=
∑
i∈I

Pr(Ωi∩Si|S)

=
∑
i∈I

Pr(Ωi|Si) Pr(Si|S)

≥
1

2

∑
i∈I

Pr(Si|S)

≥
1

4
.

Recall that � = Ind(ω, hash). Then with probability at
least 14 , � ∈ I and (ω, hash) ∈ Ω� ∩S�. Thus with proba-
bility at least δ/4, the first execution is a success, and
the adversary will succeed with probability δ/4nro on the
second execution. Let ρ� denote the response of hash on
query � and ρ∗� the response of hash

∗ on query �. The
probability that the adversary succeeds on the second ex-
ecution with ρ� �= ρ∗� is

Pr((ω, hash∗) ∈ S�∧ρ� �= ρ
∗
� |hash

∗
<� = hash<�)

≥ Pr((ω, hash) ∈ S�|hash
∗
<� = hash<�)

−Pr(ρ� = ρ
∗
� |hash

∗
<� = hash<�)

≥ δ/4nro−2
−κ+1.
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Thus the probability desired above is at least δ4 (
δ
4nro
−

2−κ+1)≥ 2ε
′

9 (
ε′

9nro
)≥ 2(ε′)2/81nro.

Now we show how to break Strong RSA with prob-
ability at least 1

2 − 2
−κ using two pairs (w,Π) and

(w, Π̂) output by Ahashω and Ahash
∗

ω , respectively, where
Ind(ω, hash) = Ind(ω, hash∗).
Say w = <c, w1, d, w2,m1,m2>, where w �∈ L. Note

that the inputs to the hash function for Π and Π̂ are
the same, including u1, u2, u3, v1, v2, v3, v4 as computed
in the verification procedure, but the output of the hash
function is different, say, e for Π and ê for Π̂. That is, we
get

Π = <z1, z2, y, e, s1, s2, s3, t1, t2, t3, t4>

Π̂ = <z1, z2, y, ê, ŝ1, ŝ2, ŝ3, t̂1, t̂2, t̂3, t̂4> ,

where e �= ê and

cs1 ≡p (w1)eu1 cŝ1 ≡p (w1)êu1
gs1(s2)

N ≡N2 (m1)
eu2 gŝ1(ŝ2)

N ≡N2 (m1)
êu2

(h1)
s1(h2)

s3 ≡Ñ (z1)
eu3 (h1)

ŝ1(h2)
ŝ3 ≡Ñ (z1)

êu3
dt1+t2 ≡p yev1 dt̂1+t̂2 ≡p yêv1
(w2)

s1dt2 ≡p yev2 (w2)
ŝ1dt̂2 ≡p yêv2

gt1(t3)
N ≡N2 (m2)

ev3 gt̂1(t̂3)
N ≡N2 (m2)

êv3
(h1)

t1(h2)
t4 ≡Ñ (z2)

ev4 (h1)t̂1(h2)t̂4 ≡Ñ (z2)
êv4 .

Let ∆E = e− ê, ∆S1 = s1− ŝ1, ∆S3 = s3− ŝ3, ∆T1 =
t1− t̂1, and ∆T4 = t4− t̂4. Let ζ = gcd(∆S3+χ(∆S1),
∆E), and ζ′ = gcd(∆T4+χ(∆T1),∆E). If ζ �=∆E, then
we can use the extended Euclidean algorithm to compute
Y andZ such that ((∆S3+χ(∆S1))/ζ)Y +((∆E)/ζ)Z =
1, and output ((z1)

Y CZ mod Ñ , (∆E)/ζ), since
C = C((∆S3+χ(∆S1))/ζ)Y+((∆E)/ζ)Z = ((z1)

(∆E)/ζ)Y

C((∆E)/ζ)Z = ((z1)
Y CZ)(∆E)/ζ . Similarly, if ζ′ �= ∆E,

then we can use the extended Euclidean algorithm to
compute Y and Z such that ((∆T4+χ(∆T1))/ζ

′)Y +
((∆E)/ζ′)Z = 1, and output ((z2)

YCZ mod Ñ , (∆E)/
ζ′). In either case, we would solve the Strong RSA prob-
lem. On the other hand, we will show that ζ = ζ′ =∆E
could occur with probability at most 12 +2

−κ.
Consider the case ζ = ζ′ =∆E, but ∆E � |∆S1. Note

that we can write χ = χ0+χ1P̃
′Q̃′, and thus ∆S3+

∆S1χ = ∆S3+∆S1χ0+∆S1χ1P̃
′Q̃′, with χ1 randomly

chosen uniformly from a set6 of size K ≥ 2κ, and un-
known to A (even if A had infinite power). Then there is
a prime power ab (a≥ 2) such that ab|∆E and ab−1|∆S1,
but ab � |∆S1. Note that this implies ab−1|∆S3. Now with
c0 = (∆S3+∆S1χ0)/a

b−1 and c1 = ∆S1P̃
′Q̃′/ab−1, we

have that 0≡a c0+ c1χ1, where c1 �≡a 0. The number of
elements χ1 ∈ ZK in which this equivalence holds is at
most �K/a�+1, and thus the probability that this holds
for a random choice of χ1 is at most

1
a
+ 1
K
. Since a ≥ 2

and K ≥ 2κ, there is at most a probability of 12 +2
−κ of

this equivalence holding, and otherwise we are in the case
above with ζ �=∆E.

6 The size of this set depends on χ0.

The case where ζ = ζ′ =∆E, but ∆E � |∆T1, is similar.
We now show that the case where ζ = ζ′ = ∆E,

∆E|∆S1, and ∆E|∆T1 could not occur. Note that the
assumptions in this case further imply ∆E|∆S3, and
∆E|∆T4. Then we can extract

x′′1←∆S1/∆E x′′2←∆T1/∆E
ρ1←∆S3/∆E ρ2←∆T4/∆E
α′′← (eŝ1− ês1)/∆E δ′′← (et̂1− êt1)/∆E
γ← (eŝ3− ês3)/∆E ν← (et̂4− êt4)/∆E.

These ensure z1 ≡Ñ (h1)
x′′1 (h2)

ρ1 , z2 ≡Ñ (h1)
x′′2 (h2)

ρ2 ,

u3 ≡Ñ (h1)
α′′(h2)

γ , v4 ≡Ñ (h1)
δ′′(h2)

ν , s1 = ex
′′
1 +α

′′,
t1 = ex

′′
2 + δ

′′, ŝ1 = êx
′′
1 +α

′′, and t̂1 = êx
′′
2 + δ

′′. Now ex-
tract

x′1←

{
X ′1 ifX1 ≤ (N −1)/2
X ′1−N otherwise

whereX ′1←∆S1(∆E)
−1 mod N

x′2←

{
X ′2 ifX2 ≤ (N −1)/2
X ′2−N otherwise

whereX ′2←∆S2(∆E)
−1 mod N

α′←

{
A′ if A′ ≤ (N −1)/2
A′−N otherwise

where A′← (eŝ1− ês1)(∆E)−1 mod N

δ′←

{
D′ ifD′ ≤ (N −1)/2
D′−N otherwise

whereD′← (et̂1− êt1)(∆E)−1 mod N .

Note that x′1, x
′
2, α

′, δ′ ∈M<N,g>, and there must exist
r1, r2, β, ν ∈ Z∗N such that m1 ≡N2 g

x′1(r1)
N , m2 ≡N2

gx
′
2(r2)

N , u2 ≡N2 g
α′βN , and v3 ≡N2 g

δ′νN . Next extract

x1←∆S1(∆E)−1 mod q α← (eŝ1− ês1)(∆E)−1 mod q

so that s1 ≡q ex1+α and ŝ1 ≡q êx1+α. Finally, to ex-
tract an x2 and δ so that t1 ≡q ex2+ δ and t̂1 ≡q êx2+ δ,
note that there exist values x3, ρ3, ε, η1, η2, η3 ∈ Zq such
that

t1+ t2 ≡q eη3+η1 t̂1+ t̂2 ≡q êη3+η1
x3s1+ t2 ≡q eη3+η2 x3ŝ1+ t̂2 ≡q êη3+η2 .

From the second row we can extract η3 and η1. From the
third row and the value η3, noting that s1 �= ŝ1, we can
extract x3 and η2. Then we can compute x2←x3x1 mod
q, ρ3←η3−x2 mod q, ε←η2−x3α mod q, and δ←η1−
ε mod q.
Now since w �∈ L, either (x′1 �∈ [−q

3, q3])∨ (x′1 �≡q
x1) or (x

′
2 �∈ [−q

3, q3])∨ (x′2 �≡q x2). First assume (x
′
1 �∈

[−q3, q3])∨ (x′1 �≡q x1). Note that we have the following
equations, with all values known:

s1 ≡q ex1+α ŝ1 ≡q êx1+α
s1 ≡N ex′1+α

′ ŝ1 ≡N êx′1+α
′

s1 = ex
′′
1 +α

′′ ŝ1 = êx
′′
1 +α

′′,

where s1, ŝ1 ∈ Zq3 .
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Using these equations, we can determine the following
facts:

1. x′′1 ≡q x1 and α
′′ ≡q α

Proof: ex′′1 +α
′′ ≡q ex1+α and êx′′1 +α

′′ ≡q êx1+α
implies x′′1 (e− ê) ≡q x1(e− ê), which implies the re-
sult.

2. x′′1 ≡N x
′
1 and α

′′ ≡N α′

Proof: similar to the previous fact.
3. x′′1 ∈ [−q

3, q3] and α′′ ∈ [−q4, q4]
Proof: |x′′1 | ≤ |s1− ŝ1| ≤ q

3, and thus |α′′| = |s1−
ex′′1 | ≤ q

4.
4. x′1 ∈ [−q

3, q3] and α′ ∈ [−q4, q4]
Proof: Since N > q6 and x′′1 ≡N x

′
1.

5. s1 = ex
′
1+α

′ and ŝ1 = êx
′
1+α

′

Proof: Since N > q6, this follows from the previous
fact, and the equations s1 ≡N ex′1+α

′ and ŝ1 ≡N
êx′1+α

′.
6. x′1 ≡q x1
Proof: ex′1+α

′ ≡q ex1+α and êx′1+α
′ ≡q êx1+α im-

plies x′1(e− ê)≡q x1(e− ê), which implies the result.

But this would contradict our assumption that (x′1 �∈
[−q3, q3])∨ (x′1 �≡q x1).
So now assume (x′2 �∈ [−q

3, q3])∨(x′2 �≡q x2). Note that
we have the following equations, with all values known:

t1 ≡q ex2+ δ t̂1 ≡q êx2+ δ
t1 ≡N ex′2+ δ

′ t̂1 ≡N êx′2+ δ
′

t1 = ex
′′
2 + δ

′′ t̂1 = êx
′′
2 + δ

′′,

where t1, t̂1 ∈ Zq3 .
By arguments analogous to those above, we can show

that this would contradict our assumpion that (x′2 �∈
[−q3, q3])∨ (x′2 �≡q x2).

e
R
←Zq

s1
R
←Zq3 t1

R
←Zq3

s2
R
←Z∗N t3

R
←Z∗N

s3
R
←Zq3Ñ t4

R
←Zq3Ñ

ρ1
R
←ZqÑ ρ2

R
←ZqÑ

ρ3
R
←Zq

t2
R
←Zq

z1← (h2)ρ1 mod Ñ z2← (h2)ρ2 mod Ñ
u1← (w1)−ecs1 mod p y←dρ3 mod p
u2← (m1)−egs1(s2)N mod N2 v1←y−edt1+t2 mod p
u3← (z1)−e(h1)s1(h2)s3 mod Ñ v2← (w2)s1dt2 mod p

v3← (m2)−egt1(t3)N mod N2

v4← (z2)−e(h1)t1(h2)t4 mod Ñ

hash(c, w1, d, w2,m1,m2, z1, u1, u2, u3, z2, y, v1, v2, v3, v4)←e

Π←<z1, z2, y, e, s1, s2, s3, t1, t2, t3, t4>

Fig. 4. Simulator for Π

Zero-knowledge: We construct a simulator Sim that
takes a string <c, w1, d, w2,m1,m2>, where c, w1, d, w2 ∈
Z
∗
p are of order q and m1,m2 ∈ Z

∗
N2
, and outputs a valid

proof, using the standard technique of “backpatching”
random oracle queries. The simulator operates as in
Fig. 4. From inspection, the proof Π is valid (i.e., it
verifies).
It is trivial to see that with overwhelming probabil-

ity this backpatching is consistent, i.e., the random oracle
has not been previously queried on the input for which
we are backpatching. If the backpatching is inconsistent,
we abort. If we only consider the random value y, we see
that backpatching can be inconsistent with probability at
most nro/q. Also, the probability of any values s1, t1 ∈
[q2, q3− q2] is the same for the real protocol and simu-
lator, the probability of any values s3, t4 ∈ [q2Ñ , q3Ñ −
q2Ñ ] is the same for the real protocol and simulator, and
the probability of any values s2, t2, t3 is the same for the
real protocol and the simulator. Thus in total the distin-
guishing probability (for each simulated proof) is at most

nro

q
+2 ·

2q2

q3
+2 ·

2q2Ñ

q3Ñ
=
nro

q
+
8

q
≤ (nro+8)2

−κ+1.

The bound in the lemma comes from the fact that this
simulator is called npr times.

6.4 Proof Π′

Now we look at the proof Π′. Let p and q be as in a DSA
public key, pk = <N, g> and sk = <N, g, λ(N)> be a Pail-
lier key pair with N > q9, and pk′ = <N ′, g′> and sk′ =
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<N ′, g′, λ(N ′)> be a Paillier key pair with N ′ > q6. For
values c, d, w1, w2,m1,m2,m3,m4 such that Dsk(m3) ∈
[−q4, q4] and Dsk(m4) ∈ [−q4, q4], we construct a zero-
knowledge proof Π′ of:


∃x1, x2, x3 : x1, x2 ∈ [−q3, q3]
∧ x3 ∈ [−q7, q7]
∧ cx1 ≡p w1
∧ dx2/x1 ≡p w2
∧ Dsk′(m1) = x1
∧ Dsk(m2) = (Dsk(m3))x1+(Dsk(m4))x2+ qx3



(4)

We note that Eq. (4) is stronger than what is needed,
as shown in Fig. 1. The proof is constructed in Fig. 5,
and the verification procedure for it is given in Fig. 6.
We assume that c, d, w1, w2 ∈ Z∗p and are of order q,
and that m1 ∈ Z∗(N ′)2 and m2 ∈ Z

∗
N2
. (The prover should

verify this if necessary.) We assume the prover knows
x1, x2 ∈ Zq, x3 ∈ Zq5 , and r1, r2 ∈ Z

∗
N , such that c

x1 ≡p
w1, d

x2/x1 ≡p w2, m1 ≡(N ′)2 (g
′)x1(r1)

N ′ , and m2 ≡N2
(m3)

x1(m4)
x2gqx3(r2)

N . The prover need not know sk or
sk′, though a malicious prover might know sk′. We as-

α
R
←Zq3 δ

R
←Zq3

β
R
←Z∗N ′ µ

R
←Z∗N

γ
R
←Zq3Ñ ν

R
←Zq3Ñ

ρ1
R
←ZqÑ ρ2

R
←ZqÑ

ρ3
R
←Zq

ρ4
R
←Zq5Ñ

ε
R
←Zq
σ
R
←Zq7

τ
R
←Zq7Ñ

z1← (h1)x1(h2)ρ1 mod Ñ z2← (h1)x2(h2)ρ2 mod Ñ
u1← cα mod p y←dx2+ρ3 mod p

u2← (g′)αβN
′
mod (N ′)2 v1←dδ+ε mod p

u3← (h1)α(h2)γ mod Ñ v2← (w2)αdε mod p
v3← (m3)α(m4)δgqσµN mod N2

v4← (h1)δ(h2)ν mod Ñ
z3← (h1)x3(h2)ρ4 mod Ñ
v5← (h1)σ(h2)τ mod Ñ

e←hash′(c, w1, d, w2,m1,m2, z1, u1, u2, u3, z2, z3, y, v1, v2, v3, v4, v5)

s1←ex1+α t1←ex2+ δ
s2← (r1)eβ mod N ′ t2←eρ3+ ε mod q
s3←eρ1+γ t3← (r2)eµ mod N

t4←eρ2+ν
t5←ex3+σ
t6←eρ4+ τ

Π′←<z1, z2, z3, y, e, s1, s2, s3, t1, t2, t3, t4, t5, t6>

Fig. 5. Construction of Π′

sume the verifier knows Dsk(m3) and Dsk(m4). If neces-
sary, the verifier should verify that c, d, w1, w2 ∈ Z∗p and
are of order q, and thatm1 ∈ Z∗(N ′)2 andm2 ∈ Z

∗
N2
.

Lemma 2. Π′ is an NIZKPI for predicate Eq. (4), with
SimerrΠ′(κ, nro, npr) ≤ npr(nro + 12)2

−κ+1 and
SerrΠ′(κ, t, nro) ≤ max{4

√
82nroSuccm-rsa,κ(t′),

36nro2
−κ+1}, where t′ =O(t).

Proof. To be completely specific, we will show that the
proof Π′ is a proof of membership for the language

L′ = {<c, w1, d, w2,m1,m2,m3,m4> :

∃x1, x2 ∈ [−q
3, q3], x3 ∈ [−q

7, q7] : cx1 ≡p w1∧

dx2/x1 ≡p w2∧Dsk′(m1) = x1 ∧

Dsk(m2) = (Dsk(m3))x1+(Dsk(m4))x2+ qx3} .

Recall that p, q,N, g,N ′, g′, Ñ , h1, h2 are determined in
the initialization, which we assume for now uses a trusted
party, and that Dsk(m3) ∈ [−q4, q4] and Dsk(m4) ∈
[−q4, q4].
Completeness: Follows from inspection.
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<z1, z2, z3, y, e, s1, s2, s3, t1, t2, t3, t4, t5, t6>←Π′

Verify s1, t1 ∈ Zq3 v1←dt1+t2y−e mod p
Verify t5 ∈ Zq7 v2← (w2)s1dt2y−e mod p
u1←cs1(w1)−e mod p v3← (m3)s1(m4)t1gqt5(t3)N (m2)−e

u2← (g′)s1(s2)N
′
(m1)

−e modN2

mod(N ′)2 v4← (h1)t1(h2)t4(z2)−e mod Ñ
u3← (h1)s1(h2)s3(z1)−e mod Ñ v5← (h1)t5(h2)t6(z3)−e mod Ñ

Verify e= hash′(c, w1, d, w2,m1,m2, z1, u1, u2, u3, z2, z3, y, v1, v2, v3, v4, v5)

Fig. 6. Verification of Π′

Soundness: Let ε = SerrΠ′(κ, t, nro), ε
′ = ε/4 and as-

sume ε′ ≥ 9nro2−κ+1. Say we are given a Strong RSA in-
stance (Ñ , C) generated by Ñ←Grsa(1

κ) and C
R
←Z∗

Ñ
.

Let Siminit(1κ) compute h2←C and h1←Cχ for χ
R
←Z2κÑ ,

and output (Ñ , h1, h2). Note that Siminit(1κ) produces
a distribution statistically indistinguishable from I(1κ)
as long as C is a quadratic residue, which happens with
probability 14 , and thus ExptA,Π′(κ) with this simulated
initialization will also return true with probability at
least ε′.
Now as in Lemma 1, consider the following experi-

ment, except with ExptA,Π′(κ) using the simulated ini-
tialization. Run ExptA,Π′(κ) once. Say ω consists of (1)
the values determined in initialization and (2) the ran-
dom tape of A, and hash′ is the random oracle in this
experiment. If the experiment returns true, then let
Ind(ω, hash′) be the index of the hash query correspond-
ing to the string/proof pair (w,Π′) returned by A (or
Ind(ω, hash′) =∞ if the pair (w,Π′) does not correspond
to any hash query made by theA).7 Let �← Ind(ω, hash′).
Then we run the experiment again with the same ω and
a new random oracle hash∗ that returns the same answers
to all hash queries prior to hash query � and random an-
swers to hash query � and all subsequent hash queries.
If the experiment returns true and A returns a pair
(w, Π̂′), with Ind(ω, hash∗) = �, where the hash � returns
a different value, then we output a root of C with proba-
bility at least 12 −2

−κ according to the algorithm below,
and otherwise we abort.
Let break be the probability that the algorithm does

not abort. As in the proof of Lemma 1, we can show that
Pr(break) ≥ 2(ε′)2/81nro, which implies we can break
Strong RSA in time O(t) and with probability at least
(ε′)2/82nro, assuming κ≥ 8.
Now we show how to break Strong RSA with prob-

ability at least 12 − 2
−κ using two pairs (w,Π′) and

(w, Π̂′) output by Ahash
′

ω and Ahash
∗

ω , respectively, where
Ind(ω, hash′) = Ind(ω, hash∗).
Say w = <c, w1, d, w2,m1,m2,m3,m4>, where w �∈ L.

Note that the inputs to the hash function for Π′ and Π̂′

7 Without loss of generality we may assume that all hash queries
are distinct.

are the same, including u1, u2, u3, v1, v2, v3, v4, v5 as com-
puted in the verification procedure, but the output of the
hash function is different, say, e for Π′ and ê for Π̂′. That
is, we get

Π′ = <z1, z2, z3, y, e, s1, s2, s3, t1, t2, t3, t4, t5, t6>

Π̂′ = <z1, z2, z3, y, ê, ŝ1, ŝ2, ŝ3, t̂1, t̂2, t̂3, t̂4, t̂5, t̂6> ,

where e �= ê and

cs1 ≡p (w1)eu1 cŝ1 ≡p (w1)êu1
(g′)s1(s2)

N ′ ≡(N ′)2 (m1)
eu2 (g

′)ŝ1(ŝ2)
N ′ ≡(N ′)2 (m1)

êu2
(h1)

s1(h2)
s3 ≡Ñ (z1)

eu3 (h1)
ŝ1(h2)

ŝ3 ≡Ñ (z1)
êu3

dt1+t2 ≡p yev1 dt̂1+t̂2 ≡p yêv1
(w2)

s1dt2 ≡p yev2 (w2)
ŝ1dt̂2 ≡p yêv2

(m3)
s1(m4)

t1gqt5(t3)
N (m3)

ŝ1(m4)
t̂1gqt̂5(t̂3)

N

≡N2 (m2)
ev3 ≡N2 (m2)

êv3
(h1)

t1(h2)
t4 ≡Ñ (z2)

ev4 (h1)
t̂1(h2)

t̂4 ≡Ñ (z2)
êv4

(h1)
t5(h2)

t6 ≡Ñ (z3)
ev5 (h1)t̂5(h2)t̂6 ≡Ñ (z3)

êv5 .

Let ∆E = e− ê, ∆S1 = s1− ŝ1, ∆S3 = s3− ŝ3, ∆T1 =
t1− t̂1, ∆T4 = t4− t̂4, ∆T5 = t5− t̂5, ∆T6 = t6− t̂6, and
let ζ = gcd(∆S3+χ(∆S1),∆E), ζ

′ = gcd(∆T4+χ(∆T1),
∆E), and ζ′′ = gcd(∆T6+χ(∆T5),∆E). If ζ �=∆E, then
we can use the extended Euclidean algorithm to compute
Y andZ such that ((∆S3+χ(∆S1))/ζ)Y +((∆E)/ζ)Z =
1, and output ((z1)

Y CZ mod Ñ, (∆E)/ζ), since

C = C((∆S3+χ(∆S1))/ζ)Y+((∆E)/ζ)Z

= ((z1)
(∆E)/ζ)Y C((∆E)/ζ)Z

= ((z1)
Y CZ)(∆E)/ζ .

Similarly, if ζ′ �= ∆E, then we can use the extended
Euclidean algorithm to compute Y and Z such that
((∆T4 +χ(∆T1))/ζ

′)Y +((∆E)/ζ′)Z = 1, and output
((z2)

Y CZ mod Ñ , (δE)/ζ′). Similarly, if ζ′′ �= ∆E, then
we can use the extended Euclidean algorithm to
compute Y and Z such that ((∆T6+χ(∆T5))/ζ

′′)Y+
((∆E)/ζ′′)Z = 1, and output ((z3)

YCZ mod Ñ , (δE)/ζ′′).
In any case, we would solve the Strong RSA problem. On
the other hand, we would show that ζ = ζ′ = ζ′′ = ∆E
could occur with probability at most 12 +2

−κ.
Consider the case ζ = ζ′ = ζ′′ =∆E, but ∆E � |∆S1.

Note that we can write χ= χ0+χ1P̃
′Q̃′, and thus ∆S3+
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∆S1χ = ∆S3+∆S1χ0+∆S1χ1P̃
′Q̃′, with χ1 randomly

chosen uniformly from a set8 of size K ≥ 2κ, and un-
known to A (even if A had infinite power). Then there is
a prime power ab (a≥ 2) such that ab|∆E and ab−1|∆S1,
but ab � |∆S1. Note that this implies ab−1|∆S3. Now with
c0 = (∆S3+∆S1χ0)/a

b−1 and c1 = ∆S1P̃
′Q̃′/ab−1, we

have that 0≡a c0+ c1χ1, where c1 �≡a 0. The number of
elements χ1 ∈ ZK in which this equivalence holds is at
most �K/a�+1, and thus the probability that this holds
for a random choice of χ1 is at most

1
a
+ 1
K
. Since a ≥ 2

and K ≥ 2κ, there is at most a probability of 12 +2
−κ of

this equivalence holding, and otherwise we are in the case
above with ζ �=∆E.
The cases where ζ = ζ′ = ζ′′ =∆E, but ∆E � |∆T1 or

∆E � |∆T5 are similar.
We now show that the case where ζ = ζ′ = ζ′′ =

∆E, ∆E|∆S1, ∆E|∆T1, and ∆E|∆T5 could not occur.
Note that the assumptions in this case further imply
∆E|∆S3, ∆E|∆T4, and ∆E|∆T6. Then we can ex-
tract x′′1 , ρ1, α

′′, γ, where z1 ≡Ñ (h1)
x′′1 (h2)

ρ1 and u3 ≡Ñ
(h1)

α′′(h2)
γ , and moreover, s1 = ex

′′
1 +α

′′ and ŝ1 = êx
′′
1 +

α′′. Also, we can extract x′′2 , ρ2, δ
′′, ν, where z2 ≡Ñ

(h1)
x′′2 (h2)

ρ2 and v4 ≡Ñ (h1)
δ′′(h2)

ν , and moreover, t1 =
ex′′2 + δ

′′ and t̂1 = êx
′′
2 + δ

′′. Finally, we can extract

8 The size of this set depends on χ0.

e
R
←Zq

s1
R
←Zq3 t1

R
←Zq3

s2
R
←Z∗N ′ t3

R
←Z∗N

s3
R
←Zq3Ñ t4

R
←Zq3Ñ

ρ1
R
←ZqÑ ρ2

R
←ZqÑ

ρ3
R
←Zq

ρ4
R
←Zq7Ñ

t2
R
←Zq
t5
R
←Zq7

t6
R
←Zq7Ñ

z1← (h2)ρ1 mod Ñ z2← (h2)ρ2 mod Ñ
u1← (w1)−ecs1 mod p y←dρ3 mod p

u2← (m1)−e(g′)s1(s2)N
′
mod (N ′)2 v1←y−edt1+t2 mod p

u3← (z1)−e(h1)s1(h2)s3 mod Ñ v2← (w2)s1dt2 mod p
v3← (m2)−e(m3)s1(m4)t1gqt5(t3)N

modN2

v4← (z2)−e(h1)t1(h2)t4 mod Ñ
z3← (h2)ρ4 mod Ñ
v5← (z3)−e(h1)t5(h2)t6 mod Ñ

hash′(c, w1, d, w2,m1,m2, z1, u1, u2, u3, z2, z3, y, v1, v2, v3, v4, v5)← e

Π′←<z1, z2, z3, y, e, s1, s2, s3, t1, t2, t3, t4, t5, t6>

Fig. 7. Simulator for Π′

x′′3 , ρ4, σ
′′, τ , where z3 ≡Ñ (h1)

x′′3 (h2)
ρ4 and v5 ≡Ñ (h1)

σ′′

(h2)
τ , and moreover, t5 = ex

′′
3 +σ

′′ and t̂5 = êx
′′
3 +σ

′′.
Similar to the soundness proof of Lemma 1, we can ex-

tract x1, x2, α, δ ∈ Zq satisfying the following equations:

s1 ≡q ex1+α ŝ1 ≡q êx1+α
t1 ≡q ex2+ δ t̂1 ≡q êx2+ δ.

Also similar to the soundness proof of Lemma 1, we
can extract x′1, x

′
2, x

′
3, α

′, δ′, σ′ ∈ ZN satisfying

s1 ≡N ex′1+α
′ ŝ1 ≡N êx′1+α

′

t1 ≡N ex′2+ δ
′ t̂1 ≡N êx′2+ δ

′

t5 ≡N ex′3+σ
′ t̂5 ≡N êx′3+σ

′ ,

where s1, ŝ1, t1, t̂1 ∈ Zq3 and t5, t̂5 ∈ Zq7 .
Now, since w �∈ L, either (x′1 �∈ [−q

3, q3])∨ (x′1 �≡q
x1) or (� ∃x′2 ∈ [−q

3, q3], x′3 ∈ [−q
7, q7] : (Dsk(m2) =

(Dsk(m3))x
′
1+(Dsk(m4))x

′
2+ qx

′
3)∧ (x

′
2 ≡q x2)).

First assume (x′1 �∈ [−q
3, q3])∨ (x′1 �≡q x1). By the

same reasoning as in the proof of Lemma 1, we get a con-
tradiction.
So instead assume that (� ∃x′2 ∈ [−q

3, q3], x′3 ∈ [−q
7, q7] :

(Dsk(m2) = (Dsk(m3))x
′
1+(Dsk(m4))x

′
2+ qx

′
3)∧ (x

′
2 ≡q

x2)). By the same reasoning as in the proof of Lemma 1,
we get that x′′1 ≡q x1 and x

′′
2 ≡q x2, as well as x

′′
1 ≡N x

′
1,

x′′2 ≡N x
′
2, and x

′′
3 ≡N x

′
3. Also we get that x

′
1, x

′
2 ∈

[−q3, q3] and x′3 ∈ [−q
7, q7] (using the fact that N > q9).
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Consequently, again as in the proof of Lemma 1, x′1 ≡q
x1, x

′
2 ≡q x2, and x

′
3 ≡q x3. Thus x

′
2 ∈ [−q

3, q3], x′3 ∈
[−q7, q7], and x′2 ≡q x2, which contradicts our
assumption.

Zero-knowledge: We construct a simulator Sim that
takes a string <c, w1, d, w2, m1, m2, m3, m4>, where
c, w1, d, w2 ∈ Z∗p are of order q, m1 ∈ Z

∗
(N ′)2

, and m2,m3,
m4 ∈ Z∗N2 , and outputs a valid proof, using the standard
technique of “backpatching” random oracle queries. The
simulator operates as in Fig. 7. From inspection, the proof
Π′ is valid (i.e., it verifies).
It is trivial to see that with overwhelming probabil-

ity this backpatching is consistent, i.e., the random oracle
has not been previously queried on the input for which
we are backpatching. If the backpatching is inconsistent,
we abort. If we only consider the random value y, we see
that backpatching can be inconsistent with probability at
most nro/q. Also, the probability of any values s1, t1 ∈
[q2, q3− q2] is the same for the real protocol and simu-
lator, the probability of any values s3, t4 ∈ [q2Ñ , q3Ñ −
q2Ñ ] is the same for the real protocol and simulator, the
probability of any value t5 ∈ [q6, q7− q6] is the same for
the real protocol and simulator, the probability of any
value t6 ∈ [q6Ñ , q7Ñ − q6Ñ ] is the same for the real pro-
tocol and simulator, and the probability of any values for
s2, t2, t3 is the same for the real protocol and the simu-
lator. Thus in total the distinguishing probability is at
most

nro

q
+2 ·

2q2

q3
+2 ·

2q2Ñ

q3Ñ
+
2q6

q7
+
2q6Ñ

q7Ñ

=
nro

q
+
12

q
≤ (nro+12)2

−κ+1.

The bound in the lemma comes from the fact that this
simulator is called npr times.
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Appendix : Initialization protocol

The requirements of the initialization protocol for our S-
DSA system are described in properties I1–I3 of Sect. 4.1.
As mentioned there, a trusted third party can be used
to achieve these initialization properties in a straight-

forward way, though we would prefer to achieve I1–I3
without relying on a trusted party. In this section we
describe such an initialization protocol for the S-DSA
system that runs between alice and bob. We require that
this initialization protocol be run before any S-DSA
signature sessions and that it be run sequentially. (Natu-
rally, after the initialization, signature sessions may still
be run concurrently.)

A.1 Definitions

The only additional definition that we require to present
our protocol is that of a zero-knowledge proof of
knowledge.

– Zero-knowledge proofs of knowledge: A zero-
knowledge proof of knowledge system (ZKPK sys-
tem) Ψ for an NP language LR, with witness rela-
tion R, is a tuple (P ,V), where P and V are proba-
bilistic polynomial-time interactive Turing machines,
satisfying
1. Completeness: For all w ∈ LR, 〈P ,V〉(w) is an
accepting transcript for V.

2. Soundness: There is a function Kerr(κ, t)
(knowledge error), a polynomial TX (κ), and
a probabilistic polynomial-time oracle machine
X (knowledge extractor) such that the follow-
ing holds: For all w ∈ LR with |w|= κ, and any
interactive machine P ′ running in time t with
success probability ε(w) on input w, the ma-
chine X , having rewindable black-box access
to P ′, outputs some witness v for w within an
expected number of steps bounded by

TX (κ)

ε(w)−Kerr(|w|)
.

3. Black-box zero-knowledge: There is a function
Simerr(κ, t) (simulation error) and a proba-
bilistic expected9 polynomial-time oracle ma-
chine Sim such that for every input w ∈ LR
with |w| = κ, every probabilistic interactive
machine V ′ that runs in time t, every auxiliary
input y and random input r to V ′, and every
probabilistic polynomial-time oracle machine

Dist (the “distinguisher”) such that DistV
′
y,r(w)

runs in time t:

Pr
(
DistV

′
y,r(w)(〈P ,V ′y,r〉(w))

)
−Pr

(
DistV

′
y,r(w)(SimV

′
y,r(w)(w))

)
≤ Simerr(κ, t).

9 We could require strict polynomial time, but it is sufficient
for our purposes, and, moreover, the protocol of Poupard and
Stern [46] is only proven secure under the weaker definition of
expected polynomial time.
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alice bob

(pk, sk)←GE(1κ)

pk
�

Πsk = zkpk [sk :M(pk, sk) = 1]
� �

(pk′, sk′)←GE(1κ)

pk′
�

Πsk′ = zkpk [sk
′ :M(pk′, sk′) = 1]

� �

x1
R
←Zq

α←Epk(x1)

α
�

x2
R
←Zq

β←Epk′(x2)

β
�

y1←gx1 mod p

Π1← zkp

[
∃η ∈ [−q3, q3] : y1 ≡p gη

∧ Dsk(α) = η

]

<y1,Π1>
�

abort if (Verifier(Π1) = 0)
y2←gx2 mod p

Π2←zkp

[
∃η ∈ [−q3, q3] : y2 ≡p gη

∧ Dsk′(β) = η

]

publish (y1)
x2 mod p

<y2,Π2>
�

abort if (Verifier(Π2) = 0)
publish (y2)

x1 mod p

Fig. 8. S-DSA initialization protocol

In other words, the transcript of 〈P ,V ′y,r〉(w)

can be distinguishied from that of SimV
′
y,r(w)(w)

with probability at most Simerr(κ, t), even
when the distinguisher is allowed black-box ac-
cess to the machine V ′y,r(w).

We denote a zero-knowledge proof of knowledge of a value
w satisfying a predicate P (i.e., that w is in the language
of elements satisfying P ) by zkpk [w : P ].

A.2 Protocol

The protocol for performing initialization, achieving
properties I1, I2, and I3 from Sect. 4.1, is shown in Fig. 8.
This protocol takes public DSA parameters <g, p, q> as
input and produces public values y, y1, and y2, with x
shared between alice and bob as stated in I2. Though
the value y is not mentioned explicitly in Fig. 8, it is
taken as the value published by alice and bob (assum-
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ing they publish the same value) when each completes
the protocol. The protocol is initiated by alice, who
generates an encryption key pair (pk, sk) and proves
knowledge of sk using proof Πsk. Then bob generates
an encryption key pair (pk′, sk′) and proves knowledge
of sk′ using proof Πsk′ . Next, alice generates her se-
cret x1 and an encryption α of x1, and sends α to bob.
Analogously, bob generates his secret x2 and an encryp-
tion β of x2, and sends β to alice. Finally, alice gen-
erates y1 ≡p gx1 and a proof Π1 that α encrypts the
discrete log of y1, and sends y1 and Π1 to bob. Anal-
ogously, bob generates y2 ≡p gx2 and a proof Π2 that
β encrypts the discrete log of y2 and sends y2 and Π2
to alice.
The protocol of Fig. 8 employs interactive zero-know-

ledge proofs of knowledge (Πsk and Πsk′) and nonin-
teractive zero-knowledge proofs of consistency (Π1 and
Π2). These proofs are dependent on the form of sk and
sk′. If we adopt the Paillier cryptosystem as in Sect. 6,
and so pk = <N, g>, alice can prove that N = PQ for
primes P and Q by first proving in zero-knowledge that
there are primes P,Q and values r, s such that N =
P rQs (e.g., using [21], [48], or [25]), and then proving
that gcd(N,λ(N)) = 1 (e.g., using [5] or [25]). Note that
gcd(N,λ(N)) = 1 implies that r = s= 1. In addition, any
proof obligations regarding g can be discharged if g is
simply set to g =N +1. Thus, it is not difficult for alice
to give a zero-knowledge proof that pk = <N, g> is well
formed. Finally, alice can prove knowledge of P and Q
using either the protocol of [47] or the more efficient pro-
tocol of [46]. The proofs Π1 and Π2 can be implemented
using straightforward adaptations of the techniques in
proofs Π and Π′ (Sect. 6) and are omitted.
We remind the reader that Πsk and Πsk′ are inter-

active proofs of knowledge. By making these interactive
(instead of using random oracles to make them noninter-
active), we force each party to fix a public key before com-
pleting the proof. This facilitates our security simulation
(Sect. A.3) by allowing extraction of secret keys for public
keys generated according to the correct distribution. The
black-box zero-knowledge property of these proofs also
facilitates our simulation, as it implies that the simulator
for alice (resp. bob) could effectively replace alice (resp.

Set pk←pk∗.
Simulate Πsk and halt if the simulation fails.
Extract sk′ using the extractor for Πsk′ and halt if extraction fails.
Set α←Epk(0).
Decrypt β to obtain x2.
Halt if Π2 is a fraudulent proof.

Set y1←y(x2)
−1
mod p.

Simulate Π1 and halt if the simulation fails.
Publish y.
Output x2 and sk

′.

Fig. 9. Simulator for alice initialization

bob) in the actual protocol, when running against a given
bob-compromising (resp. alice-compromising) adversary.

A.3 Simulatability

For our initialization protocol to be secure, we show that
there is an expected polynomial-time simulator10 for the
uncompromised party that takes a DSA key y and pub-
lic key pk∗ for the encryption scheme E as input such that
the following properties hold:

S1.The adversary cannot distinguish the real protocol
from the simulated protocol when a random DSA key
and a random public key from E are input to the sim-
ulator.

S2.If the simulated protocol completes successfully, then

(a)The public key produced by the protocol is y;
(b)The public key of the uncorrupted party is set
to pk∗; and

(c) The simulator outputs the secret DSA share
of the compromised party and the secret key
of the encryption scheme of the compromised
party.

If the initialization protocol is secure in this sense, i.e.,
there is a simulator with properties S1 and S2, then we
can replace the trusted initialization with this initializa-
tion protocol. The probability with which the simulator
fails to achieve S1 and S2 augments the failure probabil-
ity of the composite simulation for the resulting signature
protocol as an additive term. To state this property care-
fully, we would also need to change the definition of se-
curity for signature schemes (and encryption schemes for
bob-compromising adversaries) to consider forgers (at-
tackers) that run in expected time t, rather than strict
time t.
The simulator for alice plays the part of alice in the

real initialization, except that it performs the operations
in Fig. 9. The simulator for bob plays the part of bob in
the real initialization, except that it performs the opera-
tions in Fig. 10.

10 This simulator has the ability to “rewind” the adversary, since
we assume that initialization is performed sequentially.
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Extract sk using the extractor for Πsk and halt if extraction fails.
Set pk′←pk∗.
Simulate Πsk′ and halt if the simulation fails.
Decrypt α to obtain x1.
Set β←Epk′(0).

Set y2←y(x1)
−1
.

Simulate Π2 and halt if the simulation fails.
Publish y.
Output x1 and sk.

Fig. 10. Simulator for bob initialization

Property S2 stated above is obviously satisfied by
these simulators. Finally, we must prove that property S1
holds.

Lemma 3. Consider a bob-compromising adversary that
runs in time t and completes the initialization protocol
with probability ε≥ 2KerrΠsk′ (κ

′, t)+SimerrΠsk (κ
′, t).

Then the simulator for alice initialization runs in expected
time O(TX (κ

′)+ texp) and can be distinguished from the
real initialization protocol with probability at most

SimerrΠsk (κ
′, t)+SerrΠ2(κ, t, qhashΠ2

)

+SimerrΠ1(κ, qhashΠ1
, 1)+AdvssE,κ(t).

Proof sketch: Let I0 be the alice initialization protocol.
As in our proofs for S-DSA, the idea behind the proof
is to construct a series of alice simulators I1, I2, . . . re-
lated to I0 and such that we eventually come to an Ij
that is perfectly indistinguishable from the alice simula-
tor of Fig. 9. At each step, we relate the probability of
the bob-compromising adversary distinguishing Ij from
Ij+1 to the simulation or soundness errors of some zero-
knowledge proof or to the probability of breaking the
encryption scheme.

1. Let I1 be like I0, except that I1 sets pk←pk∗ and sim-
ulates Πsk. Then I1 can be distinguished from I0 with
probability at most SimerrΠsk(κ

′, t).
2. Let I2 be like I1, except that if Πsk′ succeeds, I2
extracts sk′ using the extractor for Πsk′ . Since the
adversary completes initialization in I1 with proba-
bility at least ε−SimerrΠsk ≥ 2KerrΠsk′ (κ

′, t), and
so succeeds in generating Πsk′ with some probabil-
ity ε′ ≥ ε−SimerrΠsk , this extraction adds expected
time at most

ε′

(
TX (κ

′)

ε′−KerrΠsk′ (κ
′, t)

)
≤ ε′
(
TX (κ

′)

ε′/2

)
= 2TX (κ

′)

to the simulation.
3. Let I3 be like I2, except that I3 decrypts β to ob-
tain x2 and halts if Π2 is a fraudulent proof. Then I3
can be distinguished from I2 with probability at most
SerrΠ2(κ, t, qhashΠ2

).
4. Let I4 be like I3, except that I4 simulates Π1 and halts
if the simulation fails. Then I4 can be distinguished

from I3 with probability at most SimerrΠ1(κ,
qhashΠ1

, 1).
5. Let I5 be like I4, except that the simulator sets
α←Epk(0). Then I5 can be distinguished from I4 with
probability at most AdvssE,κ(t). To see this, take a pub-
lic key pk and a test oracle, use pk as the public key for
alice, and run I4 except setting α to be the output of
the test oracle for pk with inputs x1 and 0. Note that
this is equivalent to I4 when x1 is used, and I5 when 0
is used.

6. Let I6 be like I5, except that y is chosen randomly
from {gx mod p}x∈Zq∗ and y1←y

(x2)
−1
mod p. Then

I6 is perfectly indistinguishable from I5.

Now I6 is perfectly indistinguishable from the simulator
for alice.

Lemma 4. Consider an alice-compromising adversary
that runs in time t and completes initialization with prob-
ability ε ≥ 2KerrΠsk(κ

′, t). Then the simulator for bob
initialization runs in expected time O(TX (κ

′)+ texp) and
can be distinguished from the real initialization protocol
with probability at most

SimerrΠsk′
(κ′, t)+SerrΠ1(κ, t, qhashΠ1 )

+SimerrΠ2(κ, qhashΠ2 , 1)+Adv
ss
E,κ(t).

Proof sketch: Let I0 be the bob initialization protocol.
As in our previous proof, our approach is to construct
a series of bob simulator I1, I2, . . . related to I0 and such
that we eventually come to an Ij that is perfectly indis-
tinguishable from the bob simulator of Fig. 10. At each
step, we relate the probability of the alice-compromising
adversary distinguishing Ij from Ij+1 to the simulation or
soundness errors of some zero-knowledge proof or to the
probability of breaking the encryption scheme.

1. Let I1 be like I0, except that if Πsk succeeds, the simu-
lator extracts sk using the extractor for Πsk. Since the
adversary completes initialization in I0 with probabil-
ity ε≥ 2KerrΠsk(κ

′, t), and so succeeds in generating
Πsk with at least that probability, this extraction adds
expected time 2TX (κ

′) to the simulation.
2. Let I2 be the I1 protocol, except that the simula-
tor sets pk′←pk∗ and simulates Πsk′ . Then I2 can
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be distinguished from I1 with probability at most
SimerrΠsk′

(κ′, t).
3. Let I3 be the I2 protocol, except that the simula-
tor decrypts α using sk to obtain x1 and halts if
Π1 is a fraudulent proof. Then I3 can be distin-
guished from I2 with probability at most SerrΠ1(κ, t,
qhashΠ1

).
4. Let I4 be the I3 protocol, except that the simulator
simulates Π2 and halts if the simulation fails. Then I4
can be distinguished from I3 with probability at most
SimerrΠ2(κ, qhashΠ2 , 1).

5. Let I5 be the I4 protocol, except that the simulator
sets β←Epk′(0). Then I5 can be distinguished from I4

with probability at most AdvssE,κ(t). To see this, take
a public key pk′ and a test oracle, use pk′ as the pub-
lic key for bob, and run I4 except setting β to be the
output of the test oracle for pk′ with inputs x2 and 0.
Note that this is equivalent to I4 when x2 is used, and
I5 when 0 is used.

6. Let I6 be the I5 protocol, except that y is chosen
randomly from {gx mod p}x∈Zq∗ at the start of the

protocol and y2←y(x1)
−1
mod p. Then I6 is perfectly

indistinguishable from I5.

Now I6 is perfectly indistinguishable from the simulator
for bob.


