
Digital Object Identifier (DOI) 10.1007/s00446-003-0098-4
Distrib. Comput. (2003) 16: 307–327

c© Springer-Verlag 2003

Delegation of cryptographic servers for capture-resilient devices�

Philip MacKenzie1, Michael K. Reiter2

1 Bell Labs, Lucent Technologies, Murray Hill, NJ, USA (e-mail: philmac@research.bell-labs.com)
2 Carnegie Mellon University, Pittsburgh, PA, USA (e-mail: reiter@cmu.edu)

Received November 2001 / Accepted: January 2003

Abstract. A device that performs private key operations (sig-
natures or decryptions), and whose private key operations are
protected by a password, can be immunized against offline
dictionary attacks in case of capture by forcing the device to
confirm a password guess with a designated remote server in
order to perform a private key operation. Recent proposals for
achieving this allow untrusted servers and require no server
initialization per device. In this paper we extend these propos-
als to enable dynamic delegation from one server to another;
i.e., the device can subsequently use the second server to se-
cure its private key operations. One application is to allow a
user who is traveling to a foreign country to temporarily del-
egate to a server local to that country the ability to confirm
password guesses and aid the user’s device in performing pri-
vate key operations, or in the limit, to temporarily delegate
this ability to a token in the user’s possession. Another appli-
cation is proactive security for the device’s private key, i.e.,
proactive updates to the device and servers to eliminate any
threat of offline password guessing attacks due to previously
compromised servers.

1 Introduction

A device that performs private key operations (signatures or
decryptions) risks exposure of its private key if captured.While
encrypting the private key with a password is common, this
provides only marginal protection, since passwords are well-
known to be susceptible to offline dictionary attacks (e.g., [18,
13]). Much recent research has explored better password pro-
tections for the private keys on a device that may be captured.
These include techniques to encrypt the private key under a
password in a way that prevents the attacker from verifying a
successful password guess (cryptographic camouflage) [12];
or to force the attacker to verify his password guesses at an
online server, thereby turning on offline attack into an online
one that can be detected and stopped (e.g., [9,15]).

� Extended abstract appears in Proceedings of the 8th ACM Sympo-
sium on Computer and Communications Security, November 2001.

We take as our starting point the latter approach, in which
an attacker who captures that device must validate its pass-
word guesses at a remote server before the use of the private
key is enabled. In particular, we focus on the proposals of [15],
in which this server is untrusted – its compromise does not
reduce the security of the device’s private key unless the de-
vice is also captured – and need not have a prior relationship
with the device. This approach offers certain advantages: e.g.,
it is compatible with existing infrastructure, whereas crypto-
graphic camouflage requires that “public” keys be hidden from
potential attackers. However, it also comes with the disadvan-
tage that the device must interact with a designated remote
server in order to perform a (and typically each) private key
operation. This interaction may become a bottleneck if the des-
ignated remote server is geographically distant and the rate of
private key operations is significant.

In this paper, we investigate a technique to alleviate this
limitation, with which a device may temporarily delegate the
password-checking function from its originally designated
server to another server that is closer to it. For example, a
traveler in a foreign country may temporarily delegate the
password-checking function for her laptop computer to a
server in the country she is visiting. By doing so, her device’s
subsequent private key operations will require interaction only
with this local server, presumably incurring far less latency
than if the device were interacting with the original server. In
the limit, the user could temporarily delegate to a hardware
token in her possession, so that the device could produce sig-
natures or decryptions in offline mode without network access
at all.

Of course, delegating the password-checking function
from one server to another has security implications. As orig-
inally developed, the techniques that serve as our starting
point [15] have the useful property that the designated server,
in isolation, gains no information that would enable it to forge
signatures or decrypt ciphertexts on the device’s behalf. How-
ever, if both it and the device were captured, then the attacker
could mount an offline dictionary attack against the password,
and then forge signatures or decrypt ciphertexts for the device
if he succeeds. Naturally, in the case of delegation, this vulner-
ability should not extend to any server ever delegated by the
device. Rather, our high-level security goal is to ensure that an

308 P. MacKenzie, M. K. Reiter

individual server authorized for password-checking by dele-
gation, and whose authority is then revoked, poses the same
security threat as a server to which delegation never occurred
in the first place. Specifically, an attacker that captures the de-
vice after the device has revoked the authorization of a server
(even if the server was previously compromised) must still
conduct an online dictionary attack at an authorized server in
order to attack the password.

Even with this goal achieved, delegation does impinge on
security in at least two ways, however. First, if the attacker
captures the device, then it can mount an online dictionary at-
tack against each currently authorized server, thereby gaining
more password guesses than any one server allows. Second, a
feature of the original protocols is that the password-checking
server could be permanently disabled for the device even af-
ter the device and password were compromised; by doing so,
the device can never sign or decrypt again. In a system sup-
porting delegation, however, if the device and password are
compromised, and if there is some authorized server when this
happens, then the attacker can delegate from this authorized
server to any server permitted by the policy set forth when the
device was initialized. Thus, to be sure that the device will
never sign or decrypt again, every server in this permissible
set must be disabled for the device.

As a side effect of achieving our security goals, our tech-
niques offer a means for realizing proactive security (e.g., [11])
in the context of [15]. Intuitively, proactive security en-
compasses techniques for periodically refreshing the cryp-
tographic secrets held by various components of a system,
thereby rendering any cryptographic secrets captured before
the refresh useless to the attacker. Our delegation protocol can
be used as a subroutine for proactively refreshing a password-
checking server, so that if the server’s secrets had been ex-
posed, they are useless to the attacker after the refresh. In
particular, if the attacker subsequently captured the device,
any dictionary attack that the attacker could mount would be
online, as opposed to offline.

In this paper we specify security requirements for delega-
tion in this context and then describe delegation systems for
RSA signing [21] and ElGamal decryption [8]. Supporting
delegation for these not only requires devising custom dele-
gation protocols for RSA and ElGamal keys, but also modi-
fying the original signing and decryption protocols of [15] to
accommodate delegation. One of the most fundamental mod-
ifications lies in how the password itself is protected: whereas
the original systems of [15] permitted the server to conduct
an offline dictionary attack against the user’s password (with-
out placing the device’s signing key at risk), here we must
prevent a server from conducting such an attack or even from
gaining partial information about the password from the user’s
behavior (e.g., the ways in which the user mistypes it). Herein
lies a fundamental tension: By the nature of the server’s role,
i.e., checking the user’s password, the server will necessarily
learn the frequency with which the user mistypes her pass-
word, which is a form of partial information about it. This
tension is one significant source of differentiation from [15],
both in new protocols that limit this information leakage to the
frequency of mistypes, and in new proof techniques to enable
the impact of this leakage to be isolated.

An extended abstract of this paper [17] presented an RSA
signing system supporting delegation with weaker security

properties than those described here. That version also did not
describe an ElGamal decryption system supporting delega-
tion, as we do here.

2 Preliminaries

In this section we state the goals for our systems. We also in-
troduce preliminary definitions and notation that will be nec-
essary for the balance of the paper.

2.1 System model

Our system consists of a device dvc and an arbitrary, possibly
unknown, number of servers. A server will be denoted by svr,
possibly with subscripts or other annotations when useful. The
device communicates to a server over a public network. In our
system, the device is used either for generating signatures or
decrypting messages, and does so by interacting with one of
the servers. The signature or decryption operation is password-
protected, by a password π0. The system is initialized with
public data, secret data for the device, secret data for the user
of the device (i.e., π0), and secret data for each of the servers.
The public and secret data associated with a server should
simply be a certified public key and associated private key for
the server, which most likely would be set up well before the
device is initialized.

The device-server protocol allows a device operated by a
legitimate user (i.e., one who knows π0 and enters it correctly)
to sign or decrypt a message with respect to the public key of
the device, after communicating with one of the servers. This
server must be authorized to execute this protocol. (We define
authorized precisely below.) The system is initialized with
exactly one server authorized, denoted svr0. Further servers
may be authorized, but this authorization cannot be performed
by dvc alone. Rather, for dvc to authorize svr, another already-
authorized server svr′ must also consent to the authorization
of svr after verifying that the authorization of svr is consistent
with policy previously set forth by dvc and is being performed
by dvc with the user’s password. In this way, authorization is
a protected operation just as signing and decryption are. The
device can unilaterally revoke the authorization of a server
when it no longer intends to use that server. A server can be
disabled (for a device) by being instructed to no longer respond
to that device or, more precisely, to requests involving its key.

For the purposes of this paper, the aforementioned pol-
icy dictating which servers can be authorized is expressed as
a set U of servers with well-known public keys. That is, an
authorized server svr will consent to authorize another server
svr′ only if svr′ ∈ U . Moreover, we assume that svr can reli-
ably determine the unique public key pksvr′ of any svr′ ∈ U .
In practice, this policy would generally need to be expressed
more flexibly; for example, a practical policy might allow any
server with a public key certified by a given certification au-
thority to be authorized. For such a policy, our delegation pro-
tocols would then need to be augmented with the appropriate
certificates and certificate checks; for simplicity, we omit such
details here.

To specify security for our system, we must consider the
possible attackers that attack the system. Each attacker we

Delegation of cryptographic servers for capture-resilient devices 309

consider in this paper is presumed to control the network; i.e.,
the attacker controls the inputs to the device and every server,
and observes the outputs. Moreover, an attacker can perma-
nently compromise certain resources. The possible resources
that may be compromised by the attacker are any of the servers,
dvc, and π0. Compromising reveals the entire contents of the
resource to the attacker. The one restriction on the attacker is
that if he compromises dvc, then he does so after dvc initial-
ization and while dvc is in an inactive state – i.e., dvc is not
presently executing a protocol on user input – and the user
does not subsequently provide input to the device. This de-
couples the capture of dvc and π0, and is consistent with our
motivation that dvc is captured while not in use by the user
and, once captured, is unavailable to the user.

We formalize the aspects of the system described thus far
as a collection of events.

1. dvc.startDel(svr, svr′): dvc begins a delegation protocol
with server svr to authorize svr′.

2. dvc.finishDel(svr, svr′): dvc finishes a delegation pro-
tocol with server svr to authorize svr′. This can oc-
cur only after a dvc.startDel(svr, svr′) with no inter-
vening dvc.finishDel(svr, svr′), dvc.revoke(svr) or dvc.
revoke(svr′).

3. dvc.revoke(svr): dvc revokes the authorization of svr.
4. svr.disable: svr stops responding to any requests of the

device (signing, decryption, or delegation).
5. dvc.comp: dvc is compromised (and captured).
6. svr.comp: svr is compromised.
7. π0.comp: the password π0 is compromised.

The time of any event x is given by T (x). Now we define the
following predicates for any time t:

• authorizedt(svr) is true iff either (i) svr = svr0 and
there is no dvc.revoke(svr0) prior to time t, or (ii)
there exist a svr′ and event x = dvc.finishDel(svr′, svr)
where authorizedT (x)(svr′) is true, T (x) < t, and no
dvc.revoke(svr) occurs between T (x) and t. In case (ii),
we call svr′ the consenting server.
• nominatedt(svr) is true iff there exist a svr′ and event
x = dvc.startDel(svr′, svr) where authorizedT (x)(svr′)
is true, T (x) < t, and none of dvc.finishDel(svr′, svr),
dvc.revoke(svr), or dvc.revoke(svr′) occur between T (x)
and t.

For any event x, let

Active(x) = { svr : nominatedT (x)(svr) ∨
authorizedT (x)(svr) }

2.2 Goals

It is convenient in specifying our security goals to partition
attackers into four classes, depending on the resources they
compromise and the state of executions when these attackers
compromise certain resources. An attacker is assumed to fall
into one of these classes independent of the execution, i.e., it
does not change its behavior relative to these classes depending
on the execution of the system. In particular, the resources an
attacker compromises are assumed to be independent of the
execution. In this sense, we consider static attackers only (in
contrast to adaptive ones).

A1. An attacker in class A1 does not compromise dvc or com-
promises dvc only if Active(dvc.comp) = ∅.

A2. An attacker in class A2 is not in class A1, does not com-
promise π0, and compromises dvc only if svr.comp never
occurs for any svr ∈ Active(dvc.comp).

A3. An attacker in class A3 is not in class A1, does not com-
promise π0, and compromises dvc only if svr.comp oc-
curs for some svr ∈ Active(dvc.comp).

A4. An attacker in classA4 is in none of classesA1,A2, orA3,
and does not compromise any svr ∈ U .

Now we state the security goals of our systems against these
attackers as follows (disregarding events that occur with neg-
ligible probability):

G1. An A1 attacker is unable to forge signatures or decrypt
messages for dvc.

G2. An A2 attacker can forge signatures or decrypt messages
for the device with probability at most q

|D| , where q is the
total number of queries to servers in Active(dvc.comp)
after T (dvc.comp), and D is the dictionary from which
the password is drawn (at random).

G3. An A3 attacker can forge signatures or decrypt messages
for the device only if it succeeds in an offline dictionary
attack on the password.

G4. An A4 attacker can forge signatures or decrypt messages
only until maxsvr∈U{T (svr.disable)}.

These goals can be more intuitively stated as follows. First,
if an attacker does not capture dvc, or does so only when no
servers are authorized for dvc (A1), then the attacker gains no
ability to forge or decrypt for the device (G1). On the other
extreme, if an attacker captures bothdvc andπ0 (A4) – and thus
is indistinguishable from the user – it can forge only until all
servers are disabled (G4) or indefinitely if it also compromises
a server.1 The “middle” cases are if the attacker compromises
dvc and not π0. If it compromises dvc and no then-authorized
server is ever compromised (A2), then the attacker can do no
better than an online dictionary attack against π0 (G2). If, on
the other hand, when dvc is compromised some authorized
server is eventually compromised (A3), then the attacker can
do no better than an offline attack against the password (G3).
Note that achieving G3 requires that π0 play an additional
role in the signing or decryption protocol than merely being
checked by the server, since the adversary who compromised
the server can choose to not perform such a check. It is not
difficult to verify that these goals are a strict generalization of
the goals of [15]; i.e., these goals reduce to those of [15] in
the case |U | = 1.

2.2.1 Leakage of password information

A subtlety that pertains to A2 and A3 attackers is the need
to prevent them from obtaining any useful information before
dvc.comp occurs, with which they can later attack the system
in ways not permitted by G2 or G3. In particular, either of
these attackers may compromise servers and interact with dvc

1 If the attacker compromises a server along with both dvc and π0,
then it can delegate from any authorized server to that compromised
server to forge or decrypt indefinitely.

310 P. MacKenzie, M. K. Reiter

before dvc.comp occurs. (If one of these already compromised
servers has not been revoked when dvc.comp occurs, then the
attacker is an A3 attacker.) During this period, the attacker
can observe queries from dvc operated by the correct user,
and if these queries leak any information about π0, then the
attacker can subsequently use this information to reduce the
set of candidate passwords to a subset of D. Therefore, the
attacker will be able to violate G2 or G3 after dvc.comp. This
is in contrast to an A1 attacker, for which G1 continues to hold
even if the attacker performs π0.comp.

Due to the role of a server in our protocol, some par-
tial information about π0, namely the frequency of password
mistypes, necessarily leaks to an A2 or A3 attacker who has
compromised a server used by dvc before dvc.comp occurs.
In our proofs of security in Sects. 6 and 7, therefore, we factor
out this limitation by requiring the attacker to specify when
mistypes occur. Obviously, the attacker then gains no extra
information from the simple fact that a mistype occurs, since
the attacker decides when they occur.

2.2.2 Proactivity

Delegation offers an approach to proactively update dvc to
render useless to an attacker any information it gained by
compromising a server. That is, suppose that each physical
computer running a logical server svr periodically instantiates
a new logical server svr′ having a new public and private key.
If dvc delegates from svr to svr′, and if then dvc revokes svr,
any disclosure of information from svr (e.g., the private key
of svr) is then useless for the attacker in its efforts to forge or
decrypt for dvc. Rather, if the attacker captures dvc, it must
compromise svr′ in order to conduct an offline attack against
dvc.

2.3 Tools

Our systems for meeting the goals outlined in Sect. 2.2 utilize
a variety of cryptographic tools, which we define informally
below.

Security parameters. Let κ be the main cryptographic secu-
rity parameter; a reasonable value today may be κ = 160. We
will use λ > κ as a secondary security parameter for public
keys. For instance, in an RSA public key scheme may we may
set λ = 1024 to indicate that we use 1024-bit moduli.

Hash functions. We use h, with an additional subscript as
needed, to denote a hash function. Unless otherwise stated,
the range of a hash function is {0, 1}κ. We do not specify
here the exact security properties (e.g., one-wayness, colli-
sion resistance) we will need for the hash functions that we
use. To formally prove that our systems meet every goal out-
lined above, we generally require that these hash functions
behave like random oracles [2]. (For heuristics on instantiat-
ing random oracles, see [2].) However, for certain subsets of
goals, weaker properties may suffice; details will be given in
the individual cases.

Keyed hash functions. A keyed hash function family is a fam-
ily of hash functions {f(v)}v parameterized by a secret value
v. We will typically write f(v)(m) as f(v,m), as this will
be convenient in our proofs. In this paper we employ vari-
ous keyed hash functions with different ranges, which we will
specify when not clear from context. We will make use of
keyed hash functions of two forms in this paper, namely pseu-
dorandom function families and message authentication codes
(MACs). Below we denote a pseudorandom function family
by {f(v)}v and a MAC family by {mac(a)}a. For some of
our proofs we will require pseudorandom functions to behave
as random oracles, though we do not require MACs to behave
like random oracles.

Encryption schemes. An encryption scheme E is a triple
(Genc, E,D) of algorithms, the first two being probabilis-
tic, and all running in expected polynomial time. Genc takes
as input 1λ and outputs a public key pair (pk, sk), i.e.,
(pk, sk) ← Genc(1λ). E takes a public key pk and a mes-
sagem as input and outputs an encryption c form; we denote
this c ← E(pk,m), and we denote the maximum bit length
of c by �(|m|). D takes a ciphertext c and a private key sk
as input and returns either a message m such that c is a valid
encryption of m under the corresponding public key, if such
an m exists, and otherwise returns ⊥. Our systems require an
encryption scheme secure against adaptive chosen ciphertext
attacks [20]. Practical examples can be found in [2,3,6].

Signature schemes. A digital signature scheme S is a triple
(Gsig, S, V) of algorithms, the first two being probabilistic,
and all running in expected polynomial time. Gsig takes as
input1λ and outputs a public key pair (pk, sk), i.e., (pk, sk)←
Gsig(1λ). S takes a message m and a private key sk as input
and outputs a signature σ for m, i.e., σ ← S(sk,m). V takes
a message m, a public key pk, and a candidate signature σ′
form as input and returns 1 if σ′ is a valid signature form for
the corresponding private key, and otherwise returns 0. That
is, V (pk,m, σ′) ∈ {0, 1}. Naturally, if σ ← S(sk,m), then
V (pk,m, σ) = 1.

3 Delegation for S-RSA

The work on which this paper is based [15] described several
systems by which dvc could involve a server for performing
the password-checking function and assisting in its crypto-
graphic operations, and thereby gain immunity to offline dic-
tionary attacks if captured. The first of these systems, denoted
Generic, did not support the disabling property (the instanti-
ation of G4 for a single server and no delegation), but worked
for any type of public key algorithm that dvc used. As part
of the signing/decryption protocol in this system, dvc recov-
ered the private key corresponding to its public key. This, in
turn, renders delegation in this system straightforward, being
roughly equivalent to a re-initialization of the device using
the same private key, but for a different server. The technical
changes needed to accommodate delegation are also reflected
in the RSA system we detail here, and so we omit further
discussion of Generic.

Delegation of cryptographic servers for capture-resilient devices 311

The system described in [15] by which dvc performs RSA
signatures is called S-RSA. At a high level, S-RSA uses 2-
out-of-2 function sharing to distribute the ability to generate
a signature for the device’s public key between the device
and the server. The server, however, would cooperate with
the device to sign a message only after being presented with
evidence that the device was in possession of the user’s correct
password.

In this section we describe a new system for RSA signa-
tures, called S-RSA-Del, that supports delegation in addition
to signatures. In order to accommodate delegation in this con-
text, the system is changed so that the server share is split into
an encrypted part generated by the consenting server and an
unencrypted part generated by the device, to allow the device
to construct a new ticket in which neither the device nor the
consenting server can determine the new server’s share. Other
changes are needed as well; e.g., whereas the server in the S-
RSA system could mount an offline dictionary attack against
the user’s password (without risk to the device’s signature op-
erations), here we must prevent the server from mounting such
an attack. While introducing these changes to the signing pro-
tocol, and introducing the new delegation protocol, we strive
to maintain the general protocol structure of S-RSA.

3.1 Preliminaries

We suppose the device creates signatures using a stan-
dard encode-then-sign RSA signature algorithm (e.g., “hash-
and-sign” [7]). The public key pair of the device is
(pkdvc, skdvc) ← GRSA(1λ), where pkdvc = <e,N>,
skdvc = <d,N, φ(N)>, ed ≡φ(N) 1, N is the product of
two λ/2-bit prime numbers, and φ is the Euler totient func-
tion. (The notation≡φ(N) means equivalence modulo φ(N).)
The device’s signature on a message m is defined as follows,
where encode is the encoding function associated with S, and
κsig denotes the number of random bits used in the encoding
function (e.g.,κsig = 0 for a deterministic encoding function):

S(<d,N, φ(N)>,m): r ←R {0, 1}κsig

σ ← (encode(m, r))d mod N
return <σ, r>

Note that it may not be necessary to return r if it can be deter-
mined fromm andσ. Here, r ←R {0, 1}κsig denotes selecting
an element of {0, 1}κsig uniformly at random and assigning
this selection to r. We remark that “hash-and-sign” is an ex-
ample of this type of signature in which the encoding function
is simply a (deterministic) hash of m, and that PSS [4] is an-
other example of this type of signature with a probabilistic
encoding. Both of these types of signatures were proven se-
cure against adaptive chosen message attacks in the random
oracle model [2,4]. Naturally any signature of this form can
be verified by checking that σe ≡N encode(m, r).

3.2 Device initialization

The inputs to device initialization are the identity of svr0 and
its public encryption key pksvr0 , the user’s password π0, the
device’s public key pkdvc = <e,N>, and the corresponding
private key skdvc = <d,N, φ(N)>. The initialization algo-
rithm proceeds as follows:

a←R {0, 1}κ
t←R {0, 1}κ
u← hdsbl(t)
v0 ←R {0, 1}κ
d0 ← f0(v0, π0)
d1 ← d− d0 mod φ(N)
v1 ←R {0, 1}κ
b← f1(v1, π0)
ζ ← E(pksvr0 , <u, d1>)
τ ← E(pksvr0 , <a, b, 0, ζ,N>)

The values pkdvc and u, and the authorization record

<svr0, pksvr0 , τ, t, v0, v1, a> (1)

are saved on stable storage in the device. All other values,
including d, φ(N), π0, b, d0, d1, and ζ, are deleted from the
device. The τ value is the device’s “ticket” that it uses to access
svr0. The u value is the “ticket identifier”.

Several comments about this initialization are helpful in
understanding the protocols in subsequent sections:

• d is broken into shares d0 and d1 such that d0 + d1 ≡φ(N)
d [5] using a pseudorandom function family {f0(v) : D →
{0, 1}λ+κ}v∈{0,1}κ , where D is the space (the “dictio-
nary”) from which passwords are drawn. Since d0 is not
stored on dvc, an A3 adversary who captures dvc and svr0
(before dvc.revoke(svr0) occurs) would need to succeed
in an offline dictionary attack to find it. d1 is encrypted for
svr0 and so remains hidden from an A2 or A4 attacker.

• As will be described in greater detail in Sect. 3.5, t can be
sent to svr0 to disable svr0 for this device or, more pre-
cisely, for the ticket τ . svr0 recognizes a ticket τ to which
a disabling request bearing t pertains as any such that
<∗, ∗, ∗, ζ, ∗> ← D(sksvr, τ), <u, ∗> ← D(sksvr, ζ),
and hdsbl(t) = u. Since t is primarily needed after dvc is
captured (by an A2 or A4 attacker), t should be copied off
the device for use in disabling if the need arises.
• The ticket τ will be sent to svr within the context of the S-

RSA-Del signing and delegation protocols (see Sects. 3.3
and 3.4), and the server will inspect the contents of the
ticket to extract its share d1 of the device’s private signing
key. In anticipation of its own compromise, dvc might in-
clude a policy statement within τ and ζ to instruct svr0 as to
what it should or should not do with requests bearing this
ticket. This policy could include an intended expiration
time for τ , instructions to cooperate in signing messages
only of a certain form, or instructions to cooperate in del-
egating only to certain servers. As discussed in Sect. 2.1,
here we assume a default policy that restricts delegation to
only servers in U . For simplicity, we omit this policy and
its inspection from device initialization and subsequent
protocols, but a practical implementation must support it.
• The value a is a MAC key that will be used in the S-RSA-

Del signing and delegation protocols to enable svr0 to
distinguish between requests from dvc, where a is stored,
and spurious requests from parties not possessing dvc. As
will be described in more detail in Sect. 3.3, this is impor-
tant for defending against denial-of-service attacks on the
device. The value a is included in τ so that svr0 can extract
it upon decrypting τ .
• The value b is computed using the pseudorandom function

family {f1(v) : D → {0, 1}κ}v∈{0,1}κ , where D is the

312 P. MacKenzie, M. K. Reiter

dvc svr

v2 ←R {0, 1}κ
β ← f2(f1(v1, π), v2)
ρ←R {0, 1}λ
r ←R {0, 1}κsig

γ ← E(pksvr, <m, r, v2, β, ρ>)
δ ← mac(a, <γ, τ>)

γ,δ,τ
�

<a, b, d10, ζ, N>← D(sksvr, τ)
abort if mac(a, <γ, τ>) �= δ
<m, r, v2, β, ρ>← D(sksvr, γ)
abort if β �= f2(b, v2)
<u, d11>← D(sksvr, ζ)
abort if u is disabled
d1 ← d10 + d11

ν ← (encode(m, r))d1 mod N
η ← ρ⊕ ν

η
�

ν ← ρ⊕ η
d0 ← f0(v0, π)
σ ← ν(encode(m, r))d0 mod N
abort if σe �≡N encode(m, r)
return <σ, r>

Fig. 1. S-RSA-Del signature protocol

space from which passwords are drawn. b is included in
τ to enable svr0 to confirm that a request from dvc was
originated by a user who knew π0. In Sects. 3.3–3.4, b
will be used as a key to another pseudorandom function
{f2(v) : {0, 1}κ → {0, 1}κ}v∈{0,1}κ .

Each execution of the S-RSA-Del delegation protocol of
Sect. 3.4 to authorize a new server svr will yield a new au-
thorization record stored on dvc. The values in this new au-
thorization record have roles with respect to svr analagous to
how the values in (1) are used in the signing and delegation
protocols with svr0.

3.3 Signature protocol

Here we present the protocol by which the device signs a mes-
sage m. The input provided to the device for this protocol is
the input password π, the message m, and the identity svr of
the server to be used, such that dvc holds an authorization
record <svr, pksvr, τ, t, v0, v1, a>, generated either in the ini-
tialization procedure of Sect. 3.2, or in the delegation protocol
of Sect. 3.4. Recall that dvc also stores pkdvc = <e,N>. In
this protocol, and all following protocols, we do not explicitly
check that message parameters are of the correct form and fall
within the appropriate bounds, but any implementation must
do this. The protocol is described in Fig. 1.

This protocol generates a signature for m by construct-
ing encode(m, r)d0+d1 mod N , where d0 is derived from the
user’s password and d1 is stored (partially encrypted) in τ . svr
cooperates in this operation only after confirming that the v2

and β values contained within the ciphertext γ are valid evi-
dence that dvc holds the user’s password, i.e., if β = f2(b, v2)
where b is extracted from τ . If svr can confirm this construc-
tion, then it generates ν = encode(m, r)d1 mod N , and dvc
multiplies ν by encode(m, r)d0 mod N to get the desired re-
sult. It is important that dvc deletes π, d0, ρ (used to encrypt
ν), and the results of all intermediate computations when the
protocol completes, and that it never stores them on stable
storage.

δ is a message authentication code computed using a, to
show the server that this request originated from the device.
δ enables svr to distinguish an incorrect password guess by
someone holding the device from a request created by some-
one not holding the device. Since svr should respond to only
a limited number of the former (lest it allow an online dictio-
nary attack to progress too far), δ is important in preventing
denial-of-service attacks against the device by an attacker who
has not compromised the device.

3.4 Delegation protocol

Here we present the protocol by which the device delegates the
capability to help it perform cryptographic operations to a new
server. The inputs provided to the device are the identity svr
of the server to be used, such that dvc holds an authorization
record <svr, pksvr, τ, t, v0, v1, a>, a public key pksvr′ for an-
other server svr′ ∈ U , and the input passwordπ. (As described
in Sect. 3.2, one could also input additional policy informa-
tion here.) Recall that dvc also stores pkdvc = <e,N>. The
protocol is (partially) described in Fig. 2, with one significant
omission that is detailed below.

The overall goal of the protocol in Fig. 2 is to generate a
new share d′

1 for server svr′, and new ticket τ ′ for the device
to use with svr′. The new share d′

1 for svr′ is constructed as
d′
1 = d′

10 + d′
11 = (d0 − d′

0 +∆) + (d1 −∆), with the first
and second terms being computed by dvc and svr, respectively.
As a result, d′

0 + d′
1 = d0 + d1. Note that the two terms d′

10
and d′

11 are actually stored separately in the ticket, with d′
11

being encrypted by the consenting server so the device can not
determine the full share d′

1 when it constructs the new ticket.
Hiding d′

1 from dvc is a central component of achieving G4, as
otherwise an A4 attacker could reconstruct d after executing
the delegation protocol just once. svr inserting u into ζ ′ is
similarly important: if u were inserted into τ ′ by dvc, then an
A4 attacker could change it and thereby prevent τ ′ from ever
being disabled.

Note that in the protocol of Fig. 2, it is not possible for
dvc to confirm the correctness of the response it receives from
svr. This is in contrast to the protocol of Fig. 1, where dvc can
check the resulting signature. There are two ways in which
svr– or more specifically, an adversary controlling svr– could
misbehave that are relevant here. The first is if svr fails to
abort the protocol when β 	= f2(b, v2), i.e., even if dvc is
operating with an incorrect password π 	= π0. In this case,
the delegation protocol would complete, but it would create
a useless authorization record <svr′, pksvr′ , τ

′, t, v′
0, v

′
1, a

′>
that could not be used with svr′ to subsequently sign. But
this is not the worst of it: with this as a possibility, we do not
know how to prove property G2. As a result, to achieve a proof
of G2, we stipulate that the protocol in Fig. 2 must (somehow)

Delegation of cryptographic servers for capture-resilient devices 313

dvc svr

α←R {0, 1}κ
v2 ←R {0, 1}κ
β ← f2(f1(v1, π), v2)
ρ←R {0, 1}λ+κ+�(2κ+λ)

γ ← E(pksvr, <v2, β, pksvr′ , ρ, α>)
δ ← mac(a, <γ, τ>)

γ,δ,τ
�

<a, b, d10, ζ, N>← D(sksvr, τ)
abort if mac(a, <γ, τ>) �= δ
<v2, β, pksvr′ , ρ, α>← D(sksvr, γ)
abort if β �= f2(b, v2)
<u, d11>← D(sksvr, ζ)
abort if u is disabled
d1 ← d10 + d11

∆←R {0, 1}λ+κ

d′
11 ← d1 −∆

ζ′ ← E(pksvr′ , <u, d′
11>)

η ← ρ⊕<∆, ζ′>
δ′ ← mac(α, η)

δ′,η
�

abort if mac(α, η) �= δ′

v′
0 ←R {0, 1}κ

d0 ← f0(v0, π)
d′
0 ← f0(v′

0, π)
v′
1 ←R {0, 1}κ

b′ ← f1(v′
1, π)

<∆, ζ′>← ρ⊕ η
d′
10 ← d0 − d′

0 + ∆
a′ ←R {0, 1}κ
τ ′ ← E(pksvr′ , <a′, b′, d′

10, ζ
′, N>)

store <svr′, pksvr′ , τ
′, t, v′

0, v
′
1, a

′>

Fig. 2. S-RSA-Del delegation protocol

be aborted by dvc before completing if π 	= π0. Moreover, this
must be achieved without adding any stored state to dvc, lest
this additional state permit an offline dictionary attack to occur
if dvc is captured. In practice, this can be achieved if dvc runs
the protocol in Fig. 2 concurrently (or after) an instance of the
signature protocol in Fig. 1, say on a random messagem, with
the same password π: If dvc obtains a correct signature onm,
then it knows π = π0 and can proceed safely with delegation.

The second way in which svr can misbehave is to simply
produce an incorrect η. This is no obstacle to our proofs of G1–
G4; it does, however, still yield a useless new authorization
record, and we know of no defense to this denial-of-service
attack. The next best thing to a defense, however, is to limit
this vulnerability to svr only, i.e., to prevent a network attacker
from fabricatingη, and this is exactly the purpose ofα in Fig. 2.
α is a mac key used to authenticate svr’s response to dvc.

Aside from these distinctions, this protocol borrows many
components from the signature protocol of Fig. 1. For exam-
ple, β, γ and δ all play similar roles in the protocol as they
did in Fig. 1. And deletion is once again important: dvc must
delete α, β, b′, d′

10, d0, d′
0, ρ, π, ζ ′, and all other intermediate

computations at the completion of this protocol. Similarly, svr
should delete α, β, b, d10, d11, ∆, d′

11, ρ, ζ ′, and all other
intermediate results when it completes.

To relate this protocol to the system model of Sect. 2.1,
and for our proofs in Sect. 6, we define the execution of
the code before the first message in Fig. 2 to constitute a
dvc.startDel(svr, svr′) event. Likewise, we define the execu-
tion of the code after the second message in Fig. 2 to constitute
a dvc.finishDel(svr, svr′) event. The event dvc.revoke(svr),
though not pictured in Fig. 2, can simply be defined as dvc
deleting any authorization record <svr, pksvr, τ, t, v0, v1, a>
and halting any ongoing delegation protocols to authorize svr.

3.5 Key disabling

As in [15], the S-RSA-Del system supports the ability to dis-
able the device’s key at servers, as would be appropriate to do
if the device were stolen. Provided that the user backed up t
before the device was stolen, the user can send t to a server svr.
svr can then storeu = hdsbl(t)on a list of disabled ticket identi-
fiers. Subsequently, svr should refuse to respond to any request
containing a ticket τ such that <∗, ∗, ∗, ζ, ∗> ← D(sksvr, τ)
and <u, ∗> ← D(sksvr, ζ). Rather than storing u forever,
the server can discard u once there is no danger that pkdvc
will be used subsequently (e.g., once the public key has been
revoked). Note that for security against denial-of-service at-
tacks (an attacker attempting to disable u without t), we do
not need hdsbl to be a random oracle, but simply a one-way
hash function.

In relation to the model of Sect. 2.1, svr.disable denotes
the event in which svr receives t and marks u = hdsbl(t) as
disabled. For convenience, we say that a ticket τ is disabled at
svr if <∗, ∗, ∗, ζ, ∗> ← D(sksvr, τ), <u, ∗> ← D(sksvr, ζ),
and u is marked as disabled at svr.

4 Delegation for D-ElG

In addition to RSA signatures, ElGamal decryption [8] has
also been used to demonstrate the general approach to achiev-
ing capture-resilient devices advocated here. Specifically, our
prior work [15] presented a protocol D-ElG by which the
device can perform an ElGamal decryption only after vali-
dating the user’s password at a designated remote server. In
this section, we show a protocol achieving our goals, includ-
ing delegation, for ElGamal decryption. We call this protocol
D-ElG-Del.

In designing the D-ElG-Del decryption and delegation
protocols, we attempted to mimic the approach taken in S-
RSA-Del as closely as possible. However, substantive differ-
ences are required by the goal of decryption (versus signa-
tures). Some of these differences relate primarily to the defi-
nition of security, which will be introduced in Sect. 4.1. Other
differences impact the protocol more noticeably, however.
For example, in S-RSA-Del the device is protected against
a cheating svr (an A1 attacker) partially because it can ver-
ify the proper behavior of svr, i.e., by verifying the resulting
signature. Decryption is different, however, in that dvc can-
not simply re-encrypt the result of the decryption protocol to
verify that svr provided proper output; ElGamal encryption

314 P. MacKenzie, M. K. Reiter

is randomized (as is any secure encryption), and decryption
does not reveal the random bits used in the encryption. Practi-
cally speaking, this problem can be overcome to some extent
“outside” our decryption protocol, by requiring the cipher-
text creator to embed redundancy into the plaintext that dvc
can verify upon completion of the decryption protocol. This is
less satisfying for several reasons, however: First, as a practical
matter, a failed redundancy check does not distinguish svr mis-
behavior from misbehavior by the ciphertext creator. Second,
we cannot prove the security of such a protocol. As a result,
the approach we adopt here is one in which svr proves that it
has performed its function correctly. Moreover, it proves this
in zero-knowledge so as to leak no new information to dvc–
which, in turn, is essential for proving security against an A4
attacker.

Our techniques, applied to decryption algorithms, only ap-
ply to ones that do not have a private validity check, that is, a
validity check that uses the private key. (For example, OAEP
[3] is a scheme that uses a private validity check.) We also note
that while protocols for signature schemes based on discrete
logarithms (e.g., DSA [14]) do not immediately follow from
the protocol of this section, they can be achieved using more
specialized cryptographic techniques, as corollaries of [16].

4.1 Preliminaries

For ElGamal encryption, the public key pair of the device
is (pkdvc, skdvc) ← GElG(1λ) where pkdvc = <g, p, q, y>,
skdvc = <g, p, q, x>, p is a λ-bit prime, g is an element of
order q in Z

∗
p, x is an element of Zq chosen uniformly at

random, and y = gx mod p. Following [15], we describe the
D-ElG protocol using an abstract specification of “ElGamal-
like” encryption. An ElGamal-like encryption scheme is an
encryption scheme in which (i) the public and private keys are
as above; and (ii) the decryption function D can be expressed
in the following form:

D(<g, p, q, x>, c): if valid(c) = 0, return ⊥
w ← select(c)
z ← wx mod p
m← reveal(z, c)
return m

Above, valid(c) tests the well-formedness of the ciphertext c;
it returns 1 if well-formed and 0 otherwise. select(c) returns
the argument w that is raised to the x-th power modulo p.
reveal(z, c) generates the plaintextm using the result z of that
computation. For example, in original ElGamal encryption,
where q = p−1 and c = <c1, c2> = <gk mod p,myk mod
p> for some secret value k ∈ Zq, valid(<c1, c2>) returns 1 if
c1, c2 ∈ Z

∗
p and 0 otherwise; select(<c1, c2>) returns c1; and

reveal(z,<c1, c2>) returns c2z−1 mod p. We note, however,
that the private key is not an argument to valid, select, or
reveal; rather, the private key is used only in computing z.
Using this framework, the D-ElG-Del protocol is described
in the following subsections.

There are several possibilities for ElGamal-like encryp-
tion schemes that, when used to instantiate the framework
above, enable goals G1–G4 to be proved for our D-ElG-
Del protocol. That said, the precise senses in which a par-
ticular instance can satisfy goal G4 deserve some discussion.

The most natural definition of security for key disabling is
that an A4 adversary who is presented with a ciphertext c
after maxsvr∈U{T (svr.disable)} will be unable to decrypt c.
A stronger definition for key disabling could require that c
remain indecipherable even if c were given to the adversary
before this time, as long as c were not sent to any svr ∈ U
before disabling.

If the original ElGamal scheme [8] is secure against in-
different chosen ciphertext attacks [20], then the D-ElG-Del
protocol can be proven secure in the former sense when in-
stantiated with original ElGamal. However, the security of El-
Gamal in this sense has not been established, and is an active
area of research (e.g., see [19]). There are, however, ElGamal-
like encryption schemes that suffice to achieve even the latter,
stronger security property, such as the proposals in [22]. When
our protocol is instantiated with one of these (as in [15]), D-
ElG-Del can be proved secure even in the stronger sense, in
the random oracle model.

4.2 Device initialization

The inputs to device initialization are the identity of a server
svr0 along with its public encryption key pksvr0 , the user’s
password π0, the device’s public key pkdvc = <g, p, q, y>,
and the corresponding private key skdvc = <g, p, q, x>. The
initialization algorithm proceeds as follows:

a←R {0, 1}κ
t←R {0, 1}κ
u← hdsbl(t)
v0 ←R {0, 1}κ
x0 ← f0(v0, π0)
x1 ← x− x0 mod q
v1 ←R {0, 1}κ
b← f1(v1, π0)
ζ ← E(pksvr0 , <u, x1>)
τ ← E(pksvr0 , <a, b, g, p, q, 0, ζ>)

Here, we assume the pseudorandom function families f0 and
f1 have the form {f0(v) : D → Zq}v∈{0,1}κ and {f1(v) :
D → {0, 1}κ}v∈{0,1}κ , where D is the space from which
passwords are drawn. And, as in Sect. 3, the value b will be
used as the key for another pseudorandom function family
{f2(v) : {0, 1}κ → {0, 1}κ}v∈{0,1}κ .

The value pkdvc and the authorization record<svr0, pksvr0 ,
τ , t, v0, v1, a>, are saved on stable storage in the device. All
other values, including b, u, x, x0, x1, ζ, and π0, are deleted
from the device. The value t should be backed up offline for
use in disabling if the need arises. The value τ is the device’s
“ticket” that it uses to access the service.

4.3 Decryption protocol

Figure 3 describes the protocol by which the device decrypts
a ciphertext c generated using the device’s public key in an
ElGamal-like encryption scheme. The input provided to the
device for this protocol is the input password π, the ciphertext
c, and the identity svr of the server to be used, such that dvc
holds a record<svr, pksvr, τ, t, v0, v1, a>. Recall that dvc also
stores pkdvc = <g, p, q, y>.

Delegation of cryptographic servers for capture-resilient devices 315

dvc svr

abort if valid(c) = 0
v2 ←R {0, 1}κ
β ← f2(f1(v1, π), v2)
ρ←R {0, 1}λ
γ ← E(pksvr, <c, v2, β, ρ>)
δ ← mac(a, <γ, τ>)

γ,δ,τ
�

<a, b, g, p, q, x10, ζ>← D(sksvr, τ)
abort if mac(a, <γ, τ>) �= δ
<c, v2, β, ρ>← D(sksvr, γ)
abort if β �= f2(b, v2) ∨

valid(c) = 0
w ← select(c)
<u, x11>← D(sksvr, ζ)
abort if u is disabled
x1 ← x10 + x11 mod q
ν ← wx1 mod p
η ← ν ⊕ ρ
r ←R Zq

e← hzkp(<w, ν,wr mod p,
gr mod p>)

s← x1e + r mod q

η,e,s
�

ν ← ρ⊕ η
abort if νq �≡p 1
w ← select(c)
x0 ← f0(v0, π)
abort if e �= hzkp(<w, ν, wsν−e mod p,

gs(yg−x0)−e mod p>)
µ← wx0 mod p
return reveal(νµ mod p, c)

Fig. 3. D-ElG-Del decryption protocol

In Fig. 3, hzkp is assumed to return an element of Zq. The
reader should observe in Fig. 3 that the device’s decryption
function is implemented jointly by dvc and svr. Moreover,
<ν, e, s> constitutes a noninteractive zero-knowledge proof
from svr (the “prover”) to dvc (the “verifier”) that svr con-
structed its contribution ν correctly. As before, β is a value
that proves the device’s knowledge of π to the server. γ is an
encryption of c, v2, β, and ρ to securely transport them to the
server. δ is a message authentication code computed using a,
to show the server that this request originated from the device.

4.4 Delegation protocol

Here we present the protocol by which the device delegates
the password checking function from an authorized server svr
to another server svr′. The inputs provided to the device for
this protocol are the identity of svr, such that dvc holds a
record <svr, pksvr, τ, t, v0, v1, a>, the public key pksvr′ for
svr′, and the input password π. (As stated above, one could
also input policy information here.) Recall that dvc also stores
pkdvc = <g, p, q, y>. The protocol is described in Fig. 4.

The overall goal of the protocol in Fig. 4 is to generate a
new share x′

1 for server svr′, and new ticket τ ′ for the device to
use with svr′. x′

1 is constructed in a fashion similar to how d′
1

was constructed in Fig. 2, specifically as x′
1 ≡q x′

10 +x′
11 ≡q

(x0 − x′
0 + ∆) + (x1 − ∆), with the first and second terms

being computed by dvc and svr, respectively. In Fig. 4, v2, β,
γ, δ, δ′ and α play roles similar to those in S-RSA-Del. It
is important that the device deletes v2, β, b′, ρ and all other
intermediate results when the protocol completes, and it never
stores them on stable storage.

For reasons similar to those in Sect. 3.4, to achieve prov-
able security it is necessary that dvc complete the protocol in
Fig. 4 only if π = π0; otherwise, dvc must abort the protocol.
As there is nothing in the protocol of Fig. 4 that itself enables
dvc to confirm that π = π0, this must be confirmed somehow
outside the protocol, but without storing additional state on
dvc that might permit an offline dictionary attack to occur if
dvc is captured. Similar to our approach in Sect. 3.4, we rec-
ommend that dvc concurrently execute the decryption protocol
in Fig. 3 on a ciphertext c formed by dvc by, e.g., encrypting
a newly generated random message. If that protocol success-
fully decrypts c to reveal the same message, then π = π0 with
high probability and dvc is cleared to successfully complete
the protocol of Fig. 4.

4.5 Key disabling

Like S-RSA-Del, the D-ElG-Del protocol also supports key
disabling. Assuming the user backed up t before the device
was stolen, the user can send t to a server svr. svr then com-
putes u = hdsbl(t) and records u on a disabled list. Subse-
quently, svr should refuse to respond to any request contain-
ing a ticket τ such that <∗, ∗, ∗, ∗, ∗, ∗, ζ> ← D(sksvr, τ)
and <u, ∗> ← D(sksvr, ζ). Rather than storing u forever,
the server can discard u once there is no danger that pkdvc
will be used subsequently (e.g., once the public key has been
revoked). Note that for security against denial-of-service at-
tacks (an adversary attempting to disable u without t), we do
not need hdsbl to be a random oracle, but simply a one-way
hash function.

5 Changing the password

As described previously, a primary motivation for our pro-
tocols, and specifically property G2, is to render the user’s
password (and thus her device’s private key) largely invulner-
able to dictionary attacks in the event that her device is stolen.
In practice, however, the user’s password may be disclosed in
other ways, e.g., by being observed. In this case, the user may
wish to change her password, so that if the attacker subse-
quently captures her device, she will be afforded the stronger
protections of G2 versus only G4. In this section we informally
describe how our S-RSA-Del and D-ElG-Del systems can
be adopted to support password changes.

In examining the protocols of the previous sections, the
password π is an input in the computation of two values,
namely the value b = f1(v1, π) in each ticket τ (and the cor-
responding β in requests to the server accompanying τ) and
the user’s share of the private key, i.e., either d0 = f0(v0, π)

316 P. MacKenzie, M. K. Reiter

dvc svr

v2 ←R {0, 1}κ
β ← f2(f1(v1, π), v2)
ρ←R {0, 1}κ+�(2κ)

α←R {0, 1}κ
γ ← E(pksvr, <v2, β, pksvr′ , ρ, α>)
δ ← mac(a, <γ, τ>)

γ,δ,τ
�

<a, b, g, p, q, x10, ζ>← D(sksvr, τ)
abort if mac(a, <γ, τ>) �= δ
<v2, β, pksvr′ , ρ, α>← D(sksvr, γ)
abort if β �= f2(b, v2)
<u, x11>← D(sksvr, ζ)
abort if u is disabled
x1 ← x10 + x11 mod q
∆←R Zq

x′
11 ← x1 −∆ mod q

ζ′ ← E(pksvr′ , <u, x′
11>)

η ← ρ⊕<∆, ζ′>
δ′ ← mac(α, η)

δ′,η
�

abort if mac(α, η) �= δ′

v′
0 ←R {0, 1}κ

x0 ← f0(v0, π)
x′

0 ← f0(v′
0, π)

v′
1 ←R {0, 1}κ

b′ ← f1(v′
1, π)

<∆, ζ′>← η
x′

10 ← x0 − x′
0 + ∆ mod q

a′ ←R {0, 1}κ
τ ′ ← E(pksvr′ , <a′, b′, g, p, q, x′

10, ζ
′>)

store <svr′, pksvr′ , τ
′, t, v′

0, v
′
1, a

′>

Fig. 4. D-ElG-Del delegation protocol

in S-RSA-Del or x0 = f0(v0, π) in D-ElG-Del. There-
fore, a strategy for changing the user’s password from π to
π′ is to execute a variation of the delegation protocol to ad-
just b and the user’s share for use with a server. In the case
of S-RSA-Del, this new password-changing protocol would
be identical to that of Fig. 2 except that d′

0 would be com-
puted as d′

0 ← f0(v′
0, π

′), and b′ would be computed as
b′ ← f1(v′

1, π
′). In this way, the ticket τ ′ would then be con-

sistent with the new password π′, and would not work with
the old password π.

After running this password-changing protocol, the device
would need to delete the old authorization record reflecting π,
and the password change would be complete at this server.
In order to change her password globally, for each authorized
server svr, either this password-changing protocol would need
to be executed with svr, or else svr would need to be revoked.
For simplicity, we do not consider this extension further in
this paper, or more specifically, in the correctness proofs of
Sects. 6 and 7.

6 Security for S-RSA-Del

In this section we provide a formal proof of security for the
S-RSA-Del system, as described in Sect. 3, in the random
oracle model. We begin, however, with some intuition for the
goals G1–G4 in light of the protocols of Figs. 1 and 2.

• An A1 attacker never obtains an authorization record
<svr, pksvr, τ, t, v0, v1, a> from dvc, either because it
never compromises dvc or because dvc has deleted all such
records by the time it is compromised. Without any v0 used
with any svr, the attacker has no ability to forge a signature
for dvc (even if it knows π0); this is property G1.

• An A2 attacker can obtain <svr, pksvr, τ, t, v0, v1, a> for
some svr, but only for a svr that is never compromised.
Thus, the attacker has no information about the d1 in τ (or
more precisely, the values d10 and ζ encoded in τ , or the
value d11 encoded in ζ) and can forge only by succeeding
in an online dictionary attack with some such svr (goal G2).
• For an A3 attacker, since some svr ∈ Active(dvc.comp)

is compromised, the attacker can obtain its d10 and ζ by
decrypting τ for svr, and then d11 by decrypting ζ. The
A3 attacker can then conduct an offline dictionary attack
on π0 using the v0 for svr and d1 ← d10 + d11, and so
goal G3 is the best that can be achieved in this case.

• An attacker in classA4 compromises bothπ0 and dvc when
there is at least one active svr (and so it learns d0 for svr).
Moreover, the attacker can delegate from svr to any other
svr′ ∈ U , and obviously will learn the d′

0 for that svr′.
Thus, to achieve disabling, it is necessary that the attacker
never corrupts any svr (and so never learns any d1 for any
svr). If this is the case, then goal G4 says that disabling all
servers will prevent further forgeries.

We now proceed to a formal proof of goals G1–G4.

6.1 Definitions

To prove security of our system, we must first state require-
ments for the security of a pseudorandom function, an encryp-
tion scheme, of a signature scheme, and of S-RSA-Del.

Security for pseudorandom functions. A bit ξ ←R {0, 1} is
selected randomly. If ξ = 0, then the attacker A is given
access to an oracle for f(v) where v ←R {0, 1}κ. If ξ = 1,
thenA is given access to an oracle for a random function with
the same domain and range as f(v). A can query its oracle
with arbitrary elements in the domain and receive its outputs.
Finally, A must choose ξ′ ∈ {0, 1} and succeeds if ξ′ = ξ.
We say that A (q, ε)-breaks the pseudorandom function if the
attacker makes q queries to the oracle, and Pr(A succeeds) ≥
1
2 + ε. For simplicity, we assume in the proofs below that
ε is always negligible as a function of κ. As a result, if v
remains unknown to the attacker, then f(v) can be replaced
with a random function, and the attacker will have negligible
probability of noticing a difference.

Security for encryption schemes. We specify adaptive chosen-
ciphertext security [20] for an encryption scheme E =

Delegation of cryptographic servers for capture-resilient devices 317

(Genc, E,D). (For more detail, see [1, Property IND-CCA2].)
An attacker A is given pk, where (pk, sk)← Genc(1λ). A is
allowed to query a decryption oracle that takes a ciphertext as
input and returns the decryption of that ciphertext (or⊥ if the
input is not a valid ciphertext). At some pointA generates two
equal length stringsX0 andX1 and sends these to a test oracle,
which chooses ξ ←R {0, 1}, and returns Y ← E(pk,Xξ).
Then A continues as before, with the one restriction that it
cannot query the decryption oracle on Y . Finally A outputs
ξ′, and succeeds if ξ′ = ξ. We say an attacker A (q, ε)-breaks
a scheme if the attacker makes q queries to the decryption
oracle, and Pr(A succeeds) ≥ 1

2 + ε.

Security for signature schemes. We specify existential un-
forgeability versus chosen message attacks [10] for a signa-
ture scheme S = (Gsig, S, V). A forger is given pk, where
(pk, sk) ← Gsig(1λ), and tries to forge signatures with re-
spect to pk. It is allowed to query a signature oracle (with re-
spect to sk) on messages of its choice. It succeeds if after this
it can output a valid forgery (m,σ), where V (pk,m, σ) = 1,
but m was not one of the messages signed by the signature
oracle. We say a forger (q, ε)-breaks a scheme if the forger
makes q queries to the signature oracle, and succeeds with
probability at least ε.

Security for S-RSA-Del. Let S-RSA-Del[E ,D,M] denote
an S-RSA-Del system based on encryption scheme E , dictio-
nary D, and probabilistic mistype functionM : D → D.M
models the ways in which users mistype passwords, and is as-
sumed to satisfy ∀π ∈ D : Pr[M(π) = π] = 0. As described
in Sect. 2.2.1, in our proof of S-RSA-Del, we will require
the forger to select when dvc is operated prior to dvc.comp
with an incorrect password (see startSign and startDel be-
low). When this is requested,M determines what password
is used instead.

A forger is given <e,N> where (<e, N>, <d, N ,
φ(N)>)← GRSA(1λ), and the public data generated by the
initialization procedure for the system. The initialization pro-
cedure specifies svr0. The goal of the forger is to forge RSA
signatures with respect to <e,N>. The forger is allowed to
query a dvc oracle, a disable oracle, svr oracles, a password
oracle, and (possibly) random oracles. A random oracle takes
an input and returns a random hash of that input, in the defined
range. A disable oracle query returns a value t that can be sent
to the server to disable any ticket τ containing ζ having ticket
identifier u = hdsbl(t) at the server. A password oracle may
be queried with comp, and returns π0.

A svr oracle may be queried with handleSign, handleDel,
disable, and comp. On a comp query, the svr oracle returns
sksvr. On a handleSign(γ, δ, τ) query, which represents the
receipt of a message in the S-RSA-Del signature protocol
ostensibly from the device, it returns an output messageη (with
respect to the secret server data generated by the initialization
procedure). On a handleDel(γ, δ, τ) query, which represents
the receipt of a message in the S-RSA-Del delegation protocol
ostensibly from the device, it returns an output message δ′, η.
On a disable(t) query the svr oracle rejects all future queries
with tickets containing ticket identifiers equal to hdsbl(t) (see
Sect. 3.5).

The dvc oracle may be queried with startSign, finishSign,
startDel, finishDel, revoke, and comp. We assume there is an
implicit notion of sessions so that the dvc oracle can deter-
mine the startSign query corresponding to a finishSign query
and the startDel query corresponding to a finishDel query. A
startSign(m, svr, χ) query represents a request to initiate the
S-RSA-Del signature protocol with either the correct pass-
word (if χ = 1) or with an incorrect password (if χ = 0).
If svr is authorized, the dvc oracle returns an output message
γ, δ, τ , and sets some internal state (with respect to the secret
device data and the password generated by the initialization
procedure). On the corresponding finishSign(η) query, which
represents the device’s receipt of a response ostensibly from
svr, the dvc oracle either aborts or returns a valid signature for
the messagem given as input to the previous startSign query.
A startDel(svr, svr′, χ) query represents a request to initiate
the S-RSA-Del delegation protocol with either the correct (if
χ = 1) or an incorrect (if χ = 0) password. If svr is au-
thorized, the dvc oracle returns an output message γ, δ, τ , and
sets some internal state. On the corresponding finishDel(δ′, η)
query, which represents the device’s receipt of a response os-
tensibly from svr, the dvc oracle either aborts or authorizes
svr′, i.e., it creates a new authorization record for svr′. Recall
that as stipulated in Sect. 3.4, if finishDel(δ′, η) corresponds to
a startDel(svr, svr′, 0) query, then dvc aborts. On a revoke(svr)
query, the dvc oracle erases the authorization record for svr,
thus revoking the authorization of svr. On a comp query, the
dvc oracle returns all stored authorization records.

A class A1, A2, or A3 forger succeeds if after attacking
the system it can output a pair (m,<σ, r>) where σe ≡N
encode(m, r) and there was no startSign(m, svr, ∗) query. A
classA4 forger succeeds if after attacking the system it can out-
put a pair (m,<σ, r>) where σe ≡N encode(m, r) and there
was no svr handleSign(γ, δ, τ) query, where D(sksvr, γ) =
<m, ∗, ∗, ∗, ∗>, before all servers received disable(t) queries,
where u = hdsbl(t) is the ticket identifier generated in initial-
ization.

Let qdvc be the number of startSign and startDel queries to
the device. Let qsvr be the number of handleSign and handleDel
queries to the servers. For Theorem 3, where we model f0,
f1, and f2 as random oracles, let qf0 , qf1 , and qf2 be the
number of queries to the respective random oracles. Let qo
be the number of other oracle queries not counted above. Let
q = (qdvc, qsvr, qo, qf0 , qf1 , qf2). In a slight abuse of notation,
let |q| = qdvc+qsvr+qo+qf0 +qf1 +qf2 , i.e., the total number
of oracle queries. We say a forger (q, ε)-breaks S-RSA-Del if
it makes |q| oracle queries (of the respective type and to the
respective oracles) and succeeds with probability at least ε.

6.2 Theorems

Here we prove that if a forger breaks the S-RSA-Del system
with probability non-negligibly more than what is inherently
possible in a system of this kind then either the underlying RSA
signature scheme or the underlying encryption scheme used
in S-RSA-Del can be broken with non-negligible probability.
This implies that if the underlying RSA signature scheme and
the underlying encryption scheme are secure, our system will
be as secure as inherently possible.

318 P. MacKenzie, M. K. Reiter

We prove security separately for the different classes of
attackers from Sect. 2.2. The idea behind each proof is a sim-
ulation argument. We assume that a forger F can break the
S-RSA-Del system, and then depending on how F attacks
the system, we show that we can use it to either break the
underlying encryption scheme or break the underlying RSA
signature scheme.

For security against all classes of forgers, we must assume
that f0, f1 and f2 are random oracles, and that f0(v0) (for
random v0) and f1(v1) (for random v1) have negligible prob-
abilities of collision over D. (The latter property would be
achieved, for example, if f0 and f1 were random oracles and
|D| < 2cκ for a constant c < 1

2 .) However, for certain types
of forgers, weaker hash function properties suffice. For exam-
ple, to prove security against a forger in class A2, we require
that {f0(v)}v∈{0,1}κ , {f1(v)}v∈{0,1}κ and {f2(v)}v∈{0,1}κ

are pseudorandom function families, and that f1(v) (for ran-
dom v) has a negligible probability of collision over D. For
proving security against a class A4 forger we make no require-
ment on f0, f1, or f2.

In the theorems below, we use “≈” to indicate equality
to within negligible factors. Moreover, in our simulations, the
forgerF is run at most once, and so the times of our simulations
are straightforward and omitted from our theorem statements.

Theorem 1. Suppose that {f0(v)}v∈{0,1}κ is a pseudoran-
dom function family. If a class A1 forger (q, ε)-breaks the
S-RSA-Del[E ,D,M] system, then there is a forger that
(qdvc, ε

′)-breaks the RSA signature scheme with ε′ ≈ ε.
Proof. Assume a class A1 forger F forges in the S-RSA-
Del system with probability ε. Let Real′ denote the S-RSA-
Del system in which all instances of f0(v0) are replaced
by perfectly random functions, and suppose that F forges in
Real′ with probability ε′. Then, by the pseudorandomness of
{f0(v)}v∈{0,1}κ , ε′ ≈ ε. Now we construct a forger F ∗ for
the RSA signature scheme that receives an RSA public key
<e,N> and corresponding signature oracle as input, and runs
a simulation of Real′ for F . Whenever F forges in this simu-
lation, F ∗ will forge an RSA signature.

F ∗ runs the following simulation of the Real′ system. F ∗
sets the dvc public key to <e,N>, and chooses π0 ←R D. It
generates all server key pairs {(pksvr, sksvr)}svr∈U , and gives
{pksvr}svr∈U toF .F ∗ then constructs the authorization record
<svr0, pksvr0 , τ, t, v0, v1, a> as normal, except setting d1 ←R

ZN .F ∗ stores this authorization record and this corresponding
value of d1; d1 is called the “correct server share” for τ . F ∗
then responds to oracle queries from F as follows:

• F ∗ responds to svr and disable oracle queries as Real′.
• F ∗ responds to a startSign(m, svr, χ) query by querying

the signature oracle to get σ and r (or deriving r from
σ, if necessary), and responding as in Real′ using that
r value and, if χ = 0, using π ← M(π0) in place of
π0. F ∗ responds to a finishSign(η) query corresponding
to a startSign(m, svr, 0) query by simulating a dvc abort.
F ∗ responds to a finishSign(η) query corresponding to a
startSign(m, svr, 1) query by looking up the authorization
record <svr, pksvr, τ, t, v0, v1, a> and the correct server
share d1 for τ , computing ν ← η ⊕ ρ (for the ρ value
from the startSign(m, svr) query) and checking that ν ≡N
(encode(m, r))d1 . If this is false,F ∗ simulates a dvc abort.
Otherwise, F ∗ returns <σ, r>.

• F ∗ responds to startDel(svr, svr′, χ) as in Real′, except
using π ← M(π0) in place of π0 if χ = 0. F ∗ re-
sponds to a finishDel(δ′, η) query corresponding to a
startDel(svr, svr′, 0) query by simulating a dvc abort. F ∗
responds to a finishDel(δ′, η) query corresponding to a
startDel(svr, svr′, 1) query by looking up the authorization
record <svr, pksvr, τ, t, v0, v1, a> and the correct server
share d1 for τ , behaving as in Real′ to generate and store
a new authorization record <svr′, pksvr′ , τ

′, t, v′
0, v

′
1, a

′>,
and storing d′

1 ← d1 + d0− d′
0 as the correct server share

for τ ′. F ∗ responds to revoke queries as in Real′.

From F ’s perspective, the above simulation is statistically in-
distinguishable from Real′. (It is not perfectly indistinguish-
able from Real′ due to the choice of d1 in initialization, and
the possibility that F ∗ simulates a dvc abort when this would
not have happened in Real′ due to the F guessing the output
of a random function f0(v0).) So, if F forges with probility
ε′ in Real′, then it forges with probability ε′′ ≈ ε′ ≈ ε in this
simulation. To break the RSA signature scheme with proba-
bility ε′′ ≈ ε, F ∗ simply runs F in this simulation and outputs
any forgery produced by F .

Theorem 2. Suppose that {f0(v)}v∈{0,1}κ , {f1(v)}v∈{0,1}κ ,
and {f2(v)}v∈{0,1}κ are pseudorandom function families,
and that f1(v) (for random v) has a negligible probability
of collision over D. If a class A2 forger (q, ε)-breaks the
S-RSA-Del[E ,D,M] system where ε = qsvr

|D| + ψ, then ei-
ther there is an attacker A that (3qsvr, ε′′)-breaks E where
ε′′ ≈ ψ

2|U |(2qdvc+1) , or there is a forgerF ∗ that (qdvc, ε
′)-breaks

the RSA signature scheme with ε′ ≈ ψ
2 .

Proof. Assume a class A2 forger F forges in the S-RSA-Del
system with probability qsvr

|D| + ψ. Now define a server to be
good ifF never compromises it. (Recall that we consider static
adversaries only, and so the good servers are determined be-
fore the system begins.) Consider the following systems, each
building upon the next:

• Let Real1 be the S-RSA-Del system in which all instances
of f0(v0) used for servers that are not good are replaced
by perfectly random functions. If F forges in Real1 with
probability qsvr

|D| +ψ1, then by pseudorandomness of f0 we
know that ψ1 ≈ ψ.

• Let Real2 be the Real1 system in which all instances of
f1(v1) used for servers that are not good are replaced by
perfectly random functions. IfF forges in Real2 with prob-
ability qsvr

|D| +ψ2, then by pseudorandomness of f1 we know
that ψ2 ≈ ψ1.

• Let Real3 be the Real2 system with values B1, . . .,
Bqdvc ←R {0, 1}κ selected during initialization, and so
that if the i-th dvc query is of the form startSign(∗, svr,
0) or startDel(svr, ∗, 0), utilizes π ← M(π0), and svr is
not good, then f1(v1, π) is set to Bi (if f1(v1, π) was not
previously set to some Bj , j < i). Since each f1(v1) is a
random function, f1(v1, π) is never disclosed to F ,2 and
B1, . . . , Bqdvc are chosen randomly,F forges in Real3 with
probability qsvr

|D| + ψ3 with ψ3 = ψ2.
2 Recall from Sect. 3.4 that dvc must abort any delegation using a

π �= π0 before completion, and so no f1(v1, π) for π �= π0 will ever
be inserted in a ticket τ by dvc.

Delegation of cryptographic servers for capture-resilient devices 319

• Let Real4 be the Real3 system with functions f2(B1), . . .,
f2(Bqdvc) replaced by perfectly random functions. If F
forges in Real4 with probability qsvr

|D| + ψ4, then by pseu-
dorandomness of f2 we know that ψ4 ≈ ψ3.
• Let Real5 be the Real4 system utilizing a single random

function f in place of the random functions f2(B1), . . . ,
f2(Bqdvc). F distinguishes Real5 from Real4 only if the
same value v2 is chosen in two distinct dvc queries of the
form startSign(∗, svr, 0) or startDel(svr, ∗, 0) where svr
is not good (since f(v2) would repeat, whereas f2(Bi, v2)
and f2(Bj , v2) may be different). This happens with prob-
ability at most (qdvc)2/2κ, which is negligible. There-
fore, if F forges in Real5 with probability qsvr

|D| + ψ5, then
ψ5 ≈ ψ4.

Now we construct a simulator Sim for Real5 that takes an
RSA public key <e,N> and corresponding signature oracle
as input. If forger F wins (as defined below) against Sim with
probability greater than qsvr

|D| + ψ5
2 , then we will be able to con-

struct a forger that (qdvc, ε
′)-breaks the RSA signature scheme

with ε′ ≈ ψ5
2 ≈ ψ

2 . If, on the other hand, F wins against
Sim with probability at most qsvr

|D| + ψ5
2 , then we will construct

an attacker that (3qsvr, ε′′)-breaks E with ε′′ ≈ ψ
2|U |(2qdvc+1) .

We say that F wins against Sim if either F produces a valid
forgery under <e,N> or F makes a successful online pass-
word guess. The latter happens ifF makes a query to a good svr
with input (γ, δ, τ), such that if<a, ∗, ∗, ∗, ∗>← D(sksvr, τ)
then δ = mac(a,<γ, τ>), and either

• τ is a ticket that was stored on the device for svr, v1 was
stored in the authorization record with τ , and either

– for a handleSign query to svr, γ was not generated
by a device startSign(∗, svr, 1) query, <∗, ∗, v2, β,
∗>← D(sksvr, γ), and β = f2(f1(v1, π0), v2),

– for a handleDel query to svr, γ was not generated by
a device startDel(svr, ∗, 1) query, <v2, β, ∗, ∗, ∗>←
D(sksvr, γ), and β = f2(f1(v1, π0), v2); or

• τ is not a ticket that was stored on the device for
svr, γ was generated by a device startSign(∗, svr, 1) or
startDel(svr, ∗, 1) query using a record<svr, ∗, ∗, ∗, ∗, v1,
∗>, <∗, b′, ∗, ∗, ∗>← D(sksvr, τ), and b′ = f1(v1, π0).

We now define Sim. Below, we say that Sim zeroes a ticket
τ for svr if Sim generates τ ← E(pksvr, 03κ+�(2κ+λ)+2λ), and
we call the values<a, b, d10, ζ,N> present when Sim creates
τ the zeroed inputs to τ . Similarly, Sim zeroes a value γ for
svr if Sim generates γ ← E(pksvr, 0|m|+κsig+2κ+λ) (respec-
tively, γ ← E(pksvr, 04κ+2λ+�(2κ+λ))) in a startSign(m, svr,
∗) (resp., startDel(svr, svr′, ∗)) oracle query, and the values
<m, r, v2, β, ρ> (resp., <v2, β, pksvr′ , ρ, α>) are its zeroed
inputs, respectively.

Sim gives <e,N> to F as the device’s public signa-
ture key. Then Sim generates all servers’ key pairs {(pksvr,
sksvr)}svr∈U , and gives {pksvr}svr∈U to F . Next Sim gener-
ates π0 ←R D and the data <a, b, 0, ζ,N> for the ticket τ
in the normal way, except that d1 is chosen as d1 ←R ZN .
If svr0 is good, then Sim zeroes τ for svr0, and else Sim
sets τ ← E(pksvr0 , <a, b, 0, ζ,N>). d1 is called the “correct
server share” for τ .

Sim responds to oracle queries as follows (using truly ran-
dom functions for f0 and f2 when used with non-good servers,
as in Real5).

• Sim responds to a dvc.comp query by giving all authoriza-
tion records stored on the device to F . Sim responds to a
svr.comp query by giving sksvr to F .
• Sim responds to a svr disable(t′) query by storing u′ =
hdsbl(t′). Subsequently, any ticket τ of the following form
is considered disabled at svr: either τ is zeroed for svr
with zeroed inputs <∗, ∗, ∗, ζ, ∗> or <∗, ∗, ∗, ζ, ∗> ←
D(sksvr, τ); and <u′, ∗>← D(sksvr, ζ).
• Sim responds to a svr handleSign(γ, δ, τ) or handleDel(γ,
δ, τ) query for a τ that has not been disabled at svr as a
normal server would, except for the following changes:

– If τ or γ was zeroed for svr, then its zeroed inputs are
used in the handleSign or handleDel processing. Oth-
erwise, their actual decryptions using sksvr are used.

– Sim aborts in the event of a successful password guess.
• Sim responds to a dvc startSign(m, svr, χ) query as in

Theorem 1, except if svr is good, it zeroes γ. Sim responds
to a dvc finishSign(η) query as in Theorem 1.

• Sim responds to a dvc startDel(svr, svr′, χ) query as in
Theorem 1, except if svr is good, it zeroes γ. Sim re-
sponds to a dvc finishDel(δ′, η) query corresponding to
a startDel(svr, svr′, χ) query as in Theorem 1, except if
svr′ is good, it zeroes τ ′.

Suppose that the probability of F winning against Sim is
more than qsvr

|D| + ψ5
2 . Since f0 and f2 for non-good servers

are replaced by random functions, and all τ or γ ciphertexts
encrypted under the public keys of good servers are zeroed, F
obtains no information on the password from Sim, and thus the
probability of F making a successful online password guess
is at most qsvr

|D| plus the probability of a collision in f1(v1)
over D for one of qdvc random v1’s. So F forges in Sim with
probability at least ε′ ≈ ψ

2 . A forger F ∗ for the RSA signature
scheme can thus run Sim for F and output any forgery by F
to (qdvc, ε

′)-break the RSA signature scheme.
Now assume that the probability ofF winning against Sim

is at most qsvr
|D| + ψ5

2 . Since F forges in Real5 with probability
qsvr
|D| +ψ5, it wins in the Real5 with at least that probability. Then
we construct an attackerA that breaks E with probability ε′′ ≈

ψ
2|U |(2qdvc+1) . Our attacker A is given a public key pk from E
and corresponding decryption oracle, and runs a simulation of
the Real5 system for F , using a device signing key <e,N>
and private key <d,N, φ(N)> that it generates itself.

First consider a simulator that gives pk to F as the public
key pksvr of some svr that is good, and then simulates Real5
exactly, except for aborting on a successful password guess
and using a decryption oracle to decrypt messages encrypted
under key pk by the adversary. There will be at most 3qsvr
of these. (Note that the decryptions of τ and any γ generated
by the dvc would already be known to the simulator.) This
simulation would be perfectly indistinguishable from Real5 to
F (at least until F wins). Now consider the same simulation,
but with all τ and γ values for good servers generated by the
device zeroed. (Naturally, the server pretends the encryptions
are of the normal messages, not strings of zeros.) The latter
simulation is statistically indistinguishable from Sim. Thus,
the probability of F winning in the latter simulation is at most

320 P. MacKenzie, M. K. Reiter

qsvr
|D| + ψ5

2 plus a negligible term due to the fact that the latter
simulation is not perfectly indistinguishable from Sim, while
the probability of F winning in the former simulation is at
least qsvr

|D| + ψ5.
Now we use a standard hybrid argument to constructA. Let

experiment j ∈ {0, . . . , 2qdvc +1} correspond to the first j τ -
ciphertexts or γ-ciphertexts (generated by A) to good servers
being of the normal messages (and all ζ ciphertexts being of
the normal messages), and the remainder being encryptions
of strings of 0’s, and let pj be the probability of F winning in
experiment j. Then the average value for i ∈ {0, . . . , 2qdvc} of
pi+1−pi is at least≈ ψ5

2(2qdvc+1) . Therefore, to constructA, we
simply haveA choose a random value i ∈ {0, . . . , 2qdvc +1},
assign pksvr ← pk for a random good server svr, and run
experiment i as above, but if the (i + 1)st encryption to be
generated by the simulator is to use pksvr, it calls the test
oracle for this encryption, where the two messages X0 and
X1 submitted to the test oracle are the normal message and
the string of zeros, respectively. Then A∗ outputs 0 if F wins
(meaning it believes X0 was encrypted by the test oracle),
and 1 otherwise. By the analysis above, A∗ breaks E with
probability ε′′ ≈ ψ5

2|U |(2qdvc+1) ≈ ψ
2|U |(2qdvc+1) .

Our next proof is of property G3, i.e., for an A3 attacker. In
order to prove security against this attacker, however, we have
to make additional assumptions aboutM. To understand why,
note that an A3 attacker, who performs both dvc.comp and
svr.comp for some svr that is active when dvc.comp occurs,
learns v0 and v1 used for svr. Consequently, and unlike an A2
attacker, an A3 attacker can obtain f1(v1, π) for passwords
π 	= π0: it simply uses v1 and evaluates f1(v1, π) for any
password π of its choosing. If dvc had previously revealed
a v2, β pair where β = f2(f1(v1, π), v2) and π 	= π0 – as
it would in response to a dvc startSign(∗, svr, 0) query using
π ← M(π0) – the attacker can then confirm a guess at π.
Depending on the properties ofM, relatively few guesses at
π can significantly reduce the adversary’s effort to find π0 (the
only secret remaining in the system). For example, suppose
there is an even partition D1,D2 of D (i.e., |D1| = |D2|,
D1 ∩ D2 = ∅, D1 ∪ D2 = D) and elements π1, π2 ∈ D
such that ∀π ∈ D1 : M(π) = π1 and ∀π ∈ D2 : M(π) =
π2 (deterministically). Then the adversary need only confirm
whether π1 or π2 was used in the construction of a v2, β pair
to reduce the search for π0 by a factor of two! In order to state
a theorem for an A3 attacker, then, we stipulate that M be
diffuse in the following sense:M is diffuse if

∀π ∈ D : Pr[π0 ←R D;π ←M(π0)] = 1/|D|. (2)

Intuitively, M is diffuse if it spreads mistypes of different
passwords evenly across the password space. This seems to be
a reasonable assumption, since presumably the mistypes of a
password depend on the password that the user is attempting to
type. With this definition, we now state and prove Theorem 3.

Theorem 3. Suppose f0, f1, and f2 are random oracles, and
that f0(v0) (for random v0) and f1(v1) (for random v1) have
negligible probabilities of collision overD. Also suppose that
M is diffuse. If a class A3 forger (q, ε)-breaks the S-RSA-
Del[E ,D,M] system with ε = qf0+qf1+qf2

|D| + ψ, then there
is a forger F ∗ that (qdvc, ε

′)-breaks the RSA signature scheme
with ε′ ≈ ψ.

Proof. Assume a class A3 forger F forges in the S-RSA-Del
system with probability

qf0+qf1+qf2
|D| +ψ. Then we show how

to break the underlying RSA signature scheme with probabil-
ity ε′ ≈ ψ. Say we are given an RSA public key <e,N> and
a corresponding signature oracle. We construct a simulation
of the S-RSA-Del system as in the proof of Theorem 1, ex-
cept that the simulation aborts if the adversary nearly guesses
the password. Here, the adversary nearly guesses the pass-
word if it either (i) queries the f0 oracle or f1 oracle with
π0 in its second argument, i.e., it actually guesses the pass-
word and confirms it; or (ii) queries f1(v1, π) to obtain some
value b, where v1 and π are used in a startSign(∗, ∗, 0) or
startDel(∗, ∗, 0) query (i.e., π ← M(π0)), and also queries
f2(b, v2) for the value v2 generated in that startSign(∗, ∗, 0)
or startDel(∗, ∗, 0) query. SinceM is diffuse, (ii) occurs with

probability at most
qf2
|D| + (qf1)2

2κ (with the second term com-
ing from the possibility of a collision in f1(v1)), and so the
total probability of F nearly guessing the password is at most
negligibly greater than

qf0+qf1+qf2
|D| .

This simulation is statistically indistinguishable from the
real system (fromF ’s viewpoint) unless the simulation aborts,
the probability of which is the probability of F nearly
guessing the password. So since F forges with probability
qf0+qf1+qf2

|D| +ψ in the real system, it forges with probability
at least ε′ ≈ ψ in the simulation. Then to break the RSA sig-
nature scheme, we simply run F in this simulation and output
any forgery produced by F .

Theorem 4. Suppose the RSA signature scheme is determin-
istic (i.e., κsig = 0). If a class A4 forger (q, ε)-breaks the S-
RSA-Del[E ,D,M] system, then there is either an attackerA
that (3qsvr, ε

2|U |(qdvc+1))-breaks E or a forgerF ∗ that (qsvr, ε2)-
breaks the RSA signature scheme.

Proof. Assume a class A4 forger F forges in the S-RSA-Del
system with probability ε. Consider the following simulation
Sim of S-RSA-Del for F . Sim is given an RSA public key
<e,N> and a corresponding signature oracle. Sim sets thedvc
public key to<e,N>, and chooses π0 ←R D. It generates all
server key pairs {(pksvr, sksvr)}svr∈U , and gives {pksvr}svr∈U
to F . Sim then constructs τ as in the real system, except with
d1 ← 0 and ζ← E(pksvr0 , 0λ+2κ). Sim then saves the autho-
rization record<svr0,pksvr0 , τ , t,v0,v1,a>. For the ciphertext
ζ, the tuple <pksvr0 , ζ, d0> is recorded on an offset list.3 Sim
then responds to oracle queries from F as follows:

• Sim responds to dvc oracle queries as in the real sys-
tem, except using π ← M(π0) in place of π0 in
startSign(∗, ∗, 0) and startDel(∗, ∗, 0) queries and their
corresponding finishSign(∗) and finishDel(∗, ∗) queries.
• Sim responds to a svr handleDel(γ, δ, τ) query as svr

would normally, except for the following changes. Sim
runs normally until either the decryption of ζ or until svr
aborts. If svr does not abort, then Sim has computed <a,

3 The third value in this tuple is an overestimate of the value of the
device share d0, including the value d10 that is added to create the
server share d1. For the original ticket τ , this d10 value is actually
zero, and thus the third value in the tuple is the true value of the
device share d0.

Delegation of cryptographic servers for capture-resilient devices 321

b, d10, ζ,N>←D(sksvr, τ) and<v2, β, pksvr′ , ρ, α>←
D(sksvr, γ). Now Sim examines the offset list with pksvr
and ζ. If for some d+

0 ,<pksvr, ζ, d+
0 > appears in the offset

list, then Sim causes svr to abort if u = hdsbl(t) is marked
as disabled at svr, and otherwise

– computes ζ ′ ← E(pksvr′ , 0λ+2κ),
– computes d0 ← d+

0 − d10,
– computes ∆← {0, 1}λ+κ (i.e., as normal), and
– stores <pksvr′ , ζ

′, d0 +∆> on the offset list.
Sim then completes the computation of η and δ′ and re-
sponds. If <pksvr, ζ, ∗> does not appear on the offset list,
then Sim responds as svr would normally.
• Sim responds to a svr handleSign(γ, δ, τ) query as svr

would normally, except for the following changes: Sim
runs normally until either the decryption of ζ or until svr
aborts. If svr does not abort, then Sim has computed <a,
b, d10, ζ, N> ← D(sksvr, τ) and <m, r, v2, β, ρ> ←
D(sksvr, γ). Now Sim examines the offset list with pksvr
and ζ. If for some d+

0 ,<pksvr, ζ, d
+
0 > appears in the offset

list, then Sim causes svr to abort if u is marked as disabled
at svr, and otherwise

– computes d0 ← d+
0 − d10,

– invokes the signature oracle with the message m to be
signed to obtain signature <σ, r′> (though note that
|r′| = κsig = 0 by assumption), and

– computes ν ← σ(encode(m, r′)−d0) mod N .
Sim then completes the computation of η and responds. If
<pksvr, ζ, ∗> does not appear on the offset list, then Sim
responds as svr would normally.
We note that once u is marked as disabled at all servers,
there will never be a need to call the signature oracle again.
• Sim responds to a svr disable(t′) query by marking u′ =
hdsbl(t′) as disabled at svr.

• Sim responds to a dvc comp query by returning the autho-
rization records on dvc. Note that there are no svr comp
queries, because the attacker is in class A4.

If F forges with probability greater than ε
2 in Sim, then there

is a forger F ∗ for the underlying RSA signature scheme that
forges with probability ε

2 . F ∗ is given an RSA public key
<e,N> and a corresponding signature oracle. F ∗ runs Sim
for F and outputs any forgery produced by F .

Now suppose that F wins in Sim with probability at most
ε
2 . We use a hybrid argument to construct an attacker A that
breaks E with probability at least ε

2|U |(qsvr+1) , as follows. A is
given a public key pk from E with corresponding decryption
and test oracles, and sets pksvr∗ ← pk for a randomly chosen
svr∗. In addition, A generates (<e,N>,<d,N, φ(N)>) ←
GRSA(1λ) and sets the device’s public signing key to<e,N>.
A then chooses an index i ←R {0, . . . , qsvr}. A computes
d0, d1, t, u, v0, v1, a, and b normally, but sets ζ as follows:
if i = 0 and svr0 = svr∗, then it sets ζ to be the output
of the test oracle for pk queried with X0 = <u, d1> and
X1 = 0κ+λ and records the tuple <pksvr0 , ζ, d1> on an off-
set list.4 If i > 0 or svr0 	= svr∗, then it sets ζ normally
and records the tuple <pksvr0 , ζ, d1> on the offset list. After
this,A proceeds normally to complete the authorization record

4 The third value in the tuple is the value that is supposed to be
encrypted in ζ (but may not be the actual value that is encrypted).

<svr0, pksvr0 , τ, t, v0, v1, a>. A then simulates S-RSA-Del
for F as follows.

• A responds to dvc oracle queries as in the real sys-
tem, except using π ← M(π0) in place of π0 in
startSign(∗, ∗, 0) and startDel(∗, ∗, 0) queries and their
corresponding finishSign(∗) and finishDel(∗, ∗) queries.
• A responds to a svr handleDel(γ, δ, τ) query as follows. If

either γ or τ are the output of the test oracle (if the test or-
acle has been queried), then svr aborts. Otherwise, A runs
normally – using the decryption oracle for pk to decrypt γ
and τ if svr = svr∗ – until either the decryption of ζ or un-
til svr aborts. If svr does not abort, suppose this is the j-th
handleDel query (to any server) in which the server did not
abort. At this point A has computed <a, b, d10, ζ,N>←
D(sksvr, τ) and <v2, β, pksvr′ , ρ, α> ← D(sksvr, γ) (or
computed them using the decryption oracle). Now A ex-
amines the offset list with pksvr and ζ:

– If <pksvr, ζ, ∗> does not appear in the offset list, then
if pk 	= pksvr, A decrypts ζ to obtain <u′, d11>, and
if pk = pksvr then A calls the decryption oracle on ζ
to obtain<u′, d11>. If u′ is marked as disabled at svr,
thenA simulates a svr abort, and otherwiseA continues
as svr would normally.

– If for some d11, <pksvr, ζ, d11> appears in the offset
list, then A has svr abort if u = hdsbl(t) is marked as
disabled at svr, and otherwise proceeds as follows: A
sets d1 ← d10 + d11, computes ∆ and d′

11 as normal,
and alters the computation of ζ ′ as follows. If j < i,
thenA computes ζ ′ ← E(pksvr′ , <u, d

′
11>) as normal

and records<pksvr′ , ζ ′, d′
11> in the offset list. If j = i

and svr′ = svr∗, then A calls the test oracle for pk
with X0 = <u, d′

11> and X1 = 0λ+2κ, obtains the
response ζ ′, and records<pksvr′ , ζ

′, d′
11> in the offset

list. If j > i, or j = i and svr′ 	= svr∗, then A sets
ζ ′ ← E(pksvr′ , 0λ+2κ) and records <pksvr′ , ζ

′, d′
11>

in the offset list. In all cases, A then computes η and
δ′ normally and responds.

• A responds to a svr handleSign(γ, δ, τ) query as follows.
If either γ or τ are the output of the test oracle (if the
test oracle has been queried), then svr aborts. Otherwise,
A runs normally – using the decryption oracle for pk to
decrypt γ and τ if svr = svr∗ – until either the decryp-
tion of ζ or until svr aborts. If svr does not abort, then
Sim has computed <a, b, d10, ζ,N> ← D(sksvr, τ) and
<m, r, v2, β, ρ> ← D(sksvr, γ) (or computed them us-
ing the decryption oracle). NowA examines the offset list
with pksvr and ζ:

– If <pksvr, ζ, ∗> does not appear in the offset list, then
if pk 	= pksvr, A decrypts ζ to obtain <u′, d11>, and
if pk = pksvr then A calls the decryption oracle on ζ
to obtain<u′, d11>. If u′ is marked as disabled at svr,
thenA simulates a svr abort, and otherwiseA continues
as svr would normally.

– If for some d11, <pksvr, ζ, d11> appears in the offset
list, then A has svr abort if u = hdsbl(t) is marked as
disabled at svr. If u is not marked as disabled, then A
sets d1 ← d10 + d11, sets ν ← encode(m, r)d1 mod
N , and responds as svr would normally.

• A responds to a svr disable(t′) query by marking u′ =
hdsbl(t′) as disabled at svr.

322 P. MacKenzie, M. K. Reiter

• A responds to a dvc comp query by returning the autho-
rization records on dvc. Note that there are no svr comp
queries, because the attacker is in class A4.

Finally, A outputs 0 if F forges (meaning it believes X0 was
encrypted by the test oracle), and 1 otherwise.

Let experiment j ∈ {0, . . . , qsvr + 1} correspond to the
first j ζ-ciphertexts (generated by A), i.e., the ciphertexts in-
ternal to the tickets, being of normal messages, and the re-
mainder being encryptions of zero. Let pj be the probability
of F winning in experiment j. Note that experiment 0 is per-
fectly indistinguishable from Sim, and experiment qsvr + 1
is perfectly indistinguishable from the real system. Therefore
p0 ≤ ε

2 and pqsvr+1 ≥ ε. Note thatAwill run either experiment
i or i + 1, depending on the output of the test oracle, and if
svr∗ is the server that receives encryption request i+ 1. Then
the average value for i ∈ {0, . . . , qsvr} of pi+1 − pi is at least
≈ ε

2(qsvr+1) , and the probability with which A breaks E is at
least ε

2|U |(qsvr+1) .

7 Security for D-ElG-Del

In this section we provide a formal proof of security for the D-
ElG-Del system, as described in Sect. 4 and instantiated with
an ElGamal-like encryption scheme. Specifically, we provide
a formal proof of goals G1–G4.

7.1 Definitions

We first define security for an ElGamal-like (ElGL) encryp-
tion scheme, and for the D-ElG-Del protocol itself.

Security for ElGL encryption schemes. The security for an
ElGL encryption scheme is defined exactly like the security
for a standard encryption scheme, except for the definition of
the decryption oracle. Assume that the public/private key pair
is

(<g, p, q, y>,<g, p, q, x>)← GElG(1λ),

and that the decryption oracle receives a ciphertext c. If
valid(c) = 0, it returns ⊥. Otherwise, it returns z =
(select(c))x mod p, from which the decryption of c can be
computed using reveal(z, c). (Note that in the standard defini-
tion of security for encryption schemes, the decryption oracle
would not return z, but the decryption of c.)

Note: The TDH1 and TDH2 encryption schemes from [22],
when restricted to a single server, are in fact ElGL encryp-
tion schemes secure in this sense (i.e., secure against adaptive
chosen ciphertext attacks with a decryption oracle that returns
z = (select(c))x mod p instead of the decryption of c).

Security for D-ElG-Del. Let D-ElG-Del[E ,D,M] denote
an D-ElG-Del system based on an encryption scheme E , dic-
tionaryD, and probabilistic mistype functionM : D → D.M
models the ways in which users mistype passwords, and is as-
sumed to satisfy ∀π ∈ D : Pr[M(π) = π] = 0. As described

in Sect. 2.2.1, in our proof of D-ElG-Del, we will require
the attacker to select when dvc is operated prior to dvc.comp
with an incorrect password (see startDecr and startDel be-
low). When this is requested,M determines what password
is used instead.

An attacker A is given <g, p, q, y> where (<g, p, q, y>,
<g, p, q, x>)← GElG(1λ), and the public data generated by
the initialization procedure for the system. The initialization
procedure specifies svr0. The attacker is allowed to query a
dvc oracle, a disable oracle, svr oracles, a password oracle, a
test oracle, and (possibly) random oracles. A random oracle
takes an input and returns a random hash of that input, in the
defined range. A disable oracle query returns a value t that can
be sent to a server to disable any ticket τ containing ζ having
ticket identifier u = hdsbl(t) at the server. A password oracle
may be queried with comp, and returns π0.

A svr oracle may be queried with handleDecr, handleDel,
disable, and comp. On a comp query, the svr oracle returns
sksvr. On a handleDecr(γ, δ, τ) query, which represents the
receipt of a message in the D-ElG-Del decryption protocol
ostensibly from the device, it returns an output message η, e, s
(with respect to the secret server data generated by the ini-
tialization procedure). On a handleDel(γ, δ, τ) query, which
represents the receipt of a message in the D-ElG-Del delega-
tion protocol ostensibly from the device, it returns an output
message δ′, η. After a disable(t) query the svr oracle rejects
all future queries with tickets containing (ζ-values containing)
ticket identifiers equal to hdsbl(t) (see Sect. 4.5).

The dvc oracle may be queried with startDecr, finishDecr,
startDel, finishDel, revoke, and comp. We assume there is an
implicit notion of sessions so that the dvc oracle can determine
the startDecr query corresponding to a finishDecr query and
the startDel query corresponding to a finishDel query. On a
startDecr(c, svr, χ) query, which represents a request to initi-
ate the D-ElG-Del decryption protocol with either the correct
password (if χ = 1) or an incorrect password (if χ = 0), if svr
is authorized, the dvc oracle returns an output message γ, δ, τ ,
and sets some internal state (with respect to the secret device
data and the password generated by the initialization proce-
dure). On the corresponding finishDecr(η, e, s) query, which
represents the device’s receipt of a response ostensibly from
svr, the dvc oracle either aborts or returns a valid decryption for
the ciphertext c given as input to the previous startDecr query.
On a startDel(svr, svr′, χ) query, which represents a request
to initiate the D-ElG-Del delegation protocol, if svr is au-
thorized, the dvc oracle returns an output message γ, δ, τ , and
sets some internal state. On the corresponding finishDel(δ′,
η) query, which represents the device’s receipt of a response
ostensibly from svr, the dvc oracle either aborts or authorizes
svr′, i.e., it creates a new authorization record for svr′. Recall
that as stipulated in Sect. 4.4, if finishDel(δ′, η) corresponds to
a startDel(svr, svr′, 0) query, then dvc aborts. On a revoke(svr)
query, the dvc oracle erases the authorization record for svr,
thus revoking the authorization of svr. On a comp query, the
dvc oracle returns all stored authorization records.

At some point, the attacker A generates two equal length
strings X0 and X1 and sends these to the test oracle, which
chooses ξ ←R {0, 1}, and returns the ElGL encryption Y ←
E(pk,Xξ). Then A continues as before, with the restriction
that if A is of class A1, A2, or A3, then it cannot query the
dvc with a startDecr(Y, svr, ∗) query, and if A is of class A4,

Delegation of cryptographic servers for capture-resilient devices 323

then it cannot query the svr with handleDecr(γ, δ, τ) query,
whereD(sksvr, γ) = <Y, ∗, ∗, ∗>, before all servers received
disable(t) queries, where u = hdsbl(t) is the ticket identifier
generated in initialization. Finally A outputs ξ′, and succeeds
if ξ′ = ξ.

Let qdvc, qsvr, qf0 , qf1 , and qf2 be defined in the same
manner as in Sect. 6. Let qo be the number of other oracle
queries not counted above. Let q = (qdvc, qsvr, qo, qf0 , qf1 ,
qf2). In a slight abuse of notation, let |q| = qdvc + qsvr + qo +
qf0 + qf1 + qf2 , i.e., the total number of oracle queries. We
say that A (q, ε)-breaks D-ElG-Del if A makes |q| oracle
queries (of the respective types and to the respective oracles),
and Pr(A succeeds) ≥ 1

2 + ε.

7.2 Theorems

Here we prove that if an attacker breaks the D-ElG-Del
[E ,D,M] system with probability non-negligibly more than
what is inherently possible in a system of this kind then either
the underlying ElGL encryption scheme or the underlying
encryption scheme E can be broken with non-negligible prob-
ability. This implies that if the underlying ElGL encryption
scheme and E are secure, our system will be as secure as in-
herently possible. As in Sect. 6, we prove security separately
for the different classes of attackers from Sect. 2.2.

Theorem 5. Let hzkp be a random oracle and let
{f0(v)}v∈{0,1}κ be a pseudorandom function family. If a
class A1 attacker (q, ε)-breaks the D-ElG-Del[E ,D,M] sys-
tem, then there is an attacker that (qdvc, ε

′)-breaks the under-
lying ElGL scheme with ε′ ≈ ε.
Proof. Assume a classA1 attackerA (q, ε)-breaks the D-ElG-
Del system. Let Real′ denote the D-ElG-Del system in which
all instances of f0(v0) are replaced by perfectly random func-
tions, and suppose that A breaks Real′ with probability ε′.
Then, by the pseudorandomness of {f0(v)}v∈{0,1}κ , ε′ ≈ ε.
Now we construct an attacker A∗ that (qdvc, ε

′′)-breaks the
underlying ElGL scheme with ε′′ ≈ ε. Suppose A∗ is given
public key<g, p, q, y> for the ElGL scheme, and correspond-
ing test and decryption oracles.

A∗ runs the following simulation of the Real′ system. A∗
sets the dvc public key to<g, p, q, y>, and choosesπ0 ←R D.
It generates all server key pairs {(pksvr, sksvr)}svr∈U and gives
{pksvr}svr∈U toA.A∗ then constructs the authorization record
<svr0, pksvr0 , τ, t, v0, v1, a> as normal, except settingx1 ←R

Zq.A∗ stores this authorization record and this corresponding
value of x1; x1 is called the “correct server share” for τ . A∗
then responds to oracle queries from A as follows:

• A∗ responds to svr and disable oracle queries as in Real′.
• A∗ responds to queries to the test oracle by forwarding the

query to the underlying ElGL test oracle, and respond-
ing with the answer from the underlying test oracle. Say
X0, X1 are the inputs to the test oracle, and Y is the re-
sponse.
• A∗ responds to hzkp queries as a normal random oracle.
• A∗ responds to a startDecr(c, svr, χ) query as in Real′,

though using π ← M(π0) if χ = 0. A∗ responds to a
finishDecr(η, e, s) query corresponding to a startDecr(c,
svr, 0) query by simulating a dvc abort. A∗ responds to a

finishDecr(η, e, s) query corresponding to a startDecr(c,
svr, 1) query as follows. (Without loss of generality, we
may assume valid(c) = 1 and c 	= Y .) A∗ computes
w ← select(c). Then A∗ looks up the authorization
record <svr, pksvr, τ, t, v0, v1, a> and the correct server
share x1 for τ and computes ν ← η ⊕ ρ (for the ρ
value from the startDecr(c, svr, 1) query). If νq 	≡p 1
or e 	= hzkp(<w, ν, wsν−e mod p, gs−ex1 mod p>) then
A∗ simulates a dvc abort. Subsequently, if ν 	≡p wx1 , then
A∗ itself aborts and outputs 0. Otherwise, A∗ queries the
ElGL decryption oracle with c to obtain a value z and
computes the plaintext m ← reveal(z, c), which is then
returned byA∗ in response to the finishDecr(η, e, s) query.

• A∗ responds to revoke queries as in Real′. A∗ responds
to a startDel(svr, svr′, χ) as in the real system, except
using π ← M(π0) in place of π0 if χ = 0. A∗ re-
sponds to a finishDel(δ′, η) query corresponding to a
startDel(svr, svr′, 0) query by simulating a dvc abort. A∗
responds to a finishDel(δ′, η) query corresponding to a
startDel(svr, svr′, 1) query by looking up the authorization
record <svr, pksvr, τ, t, v0, v1, a> and the correct server
share x1 for τ , behaving as in Real′ to generate a new
authorization record <svr′, pksvr′ , τ ′, t, v′

0, v′
1, a′>, and

storing x′
1 ← x1 + x0 − x′

0 mod q as the correct server
share for τ ′.

Finally, if A outputs a bit ξ for the D-ElG-Del system,
A∗ outputs the same bit ξ for the underlying ElGL scheme.

Now, to analyze the simulation, note that if A∗ it-
self does not abort, then the response by the simulation
for a device finishDecr(η, e, s) query corresponding to a
startDecr(c, svr, 1) query is exactly the same as the response
in Real′, since the z value computed byA∗ would be the same
as the z value computed by the device. Here we show that
the probability that A∗ aborts is negligible. First note that if
νq ≡p 1 andν 	≡p wx1 , then for any valuesν′ andν′′, the prob-
ability that there is an s for which e = hzkp(<w, ν, ν′, ν′′>),
ν′ ≡p wsν−e, and ν′′ ≡p gs−ex1 is 1/q. Thus the probability
that A ever produces values η, e, s that determine such values
ν, ν′, ν′′ is negligible.

Therefore, the above simulation is statistically indistin-
guishable from Real′ from A’s perspective. So, if A succeeds
with probability 1

2 + ε′ in Real′, then it succeeds with proba-
bility 1

2 + ε′′ ≈ 1
2 + ε′ ≈ 1

2 + ε in this simulation, and thus
A∗ succeeds with probability 1

2 + ε′′ in the underlying ElGL
scheme.

Theorem 6. Suppose that hzkp is a random oracle, that
{f0(v)}v∈{0,1}κ , {f1(v)}v∈{0,1}κ and {f2(v)}v∈{0,1}κ are
pseudorandom function families, and that f1(v) (for random
v) has a negligible probability of collision overD. If a class A2
attacker (q, ε)-breaks the D-ElG-Del[E ,D,M] system where
ε = qsvr

|D| +ψ, then either there is an attackerA∗ that (3qsvr, ε′)-

breaks E where ε′ ≈ ψ
2|U |(2qdvc+1) , or there is an attacker

A∗∗ that (qdvc, ε
′′)-breaks the underlying ElGL scheme with

ε′′ ≈ ψ
2 .

Proof. Assume a classA2 attackerA (q, ε)-breaks the D-ElG-
Del[E ,D,M] system with ε = qsvr

|D| + ψ. Define a server to
be good if A never compromises it. (Recall that we consider
static adversaries only, and so the good servers are determined

324 P. MacKenzie, M. K. Reiter

before the system begins.) Consider the following systems,
each building upon the next:

• Let Real1 be the D-ElG-Del system in which all instances
of f0(v0) used for servers that are not good are replaced
by perfectly random functions. If A succeeds in the Real1
system with probability 1

2 + qsvr
|D| + ψ1, then by the pseu-

dorandomness of f0 we know that ψ1 ≈ ψ.
• Let Real2 be the Real1 system in which all instances of
f1(v1) used for servers that are not good are replaced by
perfectly random functions. If A succeeds in Real2 with
probability 1

2 + qsvr
|D| + ψ2, then by pseudorandomness of

f1 we know that ψ2 ≈ ψ1.
• Let Real3 be the Real2 system with values B1, . . .,
Bqdvc ←R {0, 1}κ selected during initialization, and so
that if the i-th dvc query is of the form startDecr(∗, svr,
0) or startDel(svr, ∗, 0), utilizes π ← M(π0), and svr is
not good, then f1(v1, π) is set to Bi (if f1(v1, π) was not
previously set to some Bj , j < i). Since each f1(v1) is
a random function, f1(v1, π) is never disclosed to A, and
B1, . . . , Bqdvc are chosen randomly, A succeeds in Real3
with probability 1

2 + qsvr
|D| + ψ3 with ψ3 = ψ2.

• Let Real4 be the Real3 system with functions f2(B1), . . .,
f2(Bqdvc) replaced by perfectly random functions. If A
succeeds in Real4 with probability 1

2 + qsvr
|D| + ψ4, then by

pseudorandomness of f2 we know that ψ4 ≈ ψ3.
• Let Real5 be the Real4 system utilizing a single random

function f in place of the random functions f2(B1), . . . ,
f2(Bqdvc). A distinguishes Real5 from Real4 only if the
same value v2 is chosen in two distinct dvc queries of the
form startDecr(∗, svr, 0) or startDel(svr, ∗, 0) where svr
is not good (since f(v2) would repeat, whereas f2(Bi, v2)
and f2(Bj , v2) may be different). This happens with prob-
ability at most (qdvc)2/2κ, which is negligible. Therefore,
ifA succeeds in Real5 with probability 1

2 + qsvr
|D| +ψ5, then

ψ5 ≈ ψ4.

Now we construct a simulator Sim for Real5 that takes
a public key <g, p, q, y> for the ElGL scheme, and corre-
sponding test and decryption oracles as input. If attacker A
wins (as defined below) against Sim with probability greater
than 1

2 + qsvr
|D| +

ψ5
2 , then we will be able to construct an attacker

that (qdvc, ε
′′)-breaks the underlying ElGL scheme with ε′′ ≈

ψ5
2 ≈ ψ

2 . If, on the other hand,A wins against Sim with prob-
ability at most 1

2 + qsvr
|D| +

ψ5
2 , then we will construct an attacker

that (3qsvr, ε′)-breaks E where ε′ ≈ ψ
2|U |(2qdvc+1) . We say that

A wins against Sim if A successfully guesses the bit ξ used in
the test oracle query or if A makes a successful online pass-
word guess. The latter happens if A makes a query to a good
svr with input (γ, δ, τ), such that if <a, ∗, ∗, ∗, ∗, ∗, ∗> ←
D(sksvr, τ) then δ = mac(a,<γ, τ>), and either

• τ is a ticket that was stored on the device for svr, v1 was
stored in the authorization record with τ , and either

– for a handleDecr query to svr, γ was not generated by
a device startDecr(∗, svr, 1) query, <∗, v2, β, ∗>←
D(sksvr, γ), and β = f2(f1(v1, π0), v2),

– for a handleDel query to svr, γ was not generated by
a device startDel(svr, ∗, 1) query, <v2, β, ∗, ∗, ∗>←
D(sksvr, γ), and β = f2(f1(v1, π0), v2); or

• τ is not a ticket that was stored on the device for
svr, γ was generated by a device startDecr(∗, svr, 1) or
startDel(svr, ∗, 1) query using a record <svr, ∗, ∗, ∗, ∗,
v1, ∗>, <∗, b′, ∗, ∗, ∗, ∗, ∗> ← D(sksvr, τ), and b′ =
f1(v1, π0).

We now define Sim. Below, we say that Sim zeroes a
ticket τ for svr if Sim generates τ ← E(pksvr, 04κ+2λ+�(2κ)),
and we call the values <a, b, g, p, q, x10, ζ> present when
Sim creates τ the zeroed inputs to τ . Similarly, Sim zeroes
a value γ for svr if Sim generates γ ← E(pksvr, 0|c|+2κ+λ)
(respectively, γ ← E(pksvr, 04κ+λ+�(2κ))) in a startDecr(c,
svr, ∗) (resp., startDel(svr, svr′, ∗)) oracle query, and the val-
ues <c, v2, β, ρ> (resp., <v2, β, pksvr′ , ρ, α>) are its zeroed
inputs.

Sim is given an ElGL public key <g, p, q, y>, and cor-
responding test and decryption oracles. Sim gives <g, p, q,
y> to A as the device’s ElGL public key. Then Sim gen-
erates all servers’ key pairs {(pksvr, sksvr)}svr∈U , and gives
{pksvr}svr∈U to A. Next Sim generates π0 ←R D and
the data <a, b, g, p, q, 0, ζ> for the ticket τ in the normal
way, except that x1 is chosen as x1 ←R Zq. If svr0 is
good, then Sim zeroes τ for svr0, and else Sim sets τ ←
E(pksvr0 , <a, b, g, p, q, 0, ζ>). x1 is called the “correct server
share” for τ .

Sim responds to oracle queries as follows (using truly ran-
dom functions for f0 and f2 when used with non-good servers,
as in Real5).

• Sim responds to queries to the test oracle as in Theorem 5.
• Sim responds hzkp queries as a normal random oracle.
• Sim responds to a dvc.comp query by giving all authoriza-

tion records stored on the device to A. Sim responds to a
svr.comp query by giving sksvr to A.
• Sim responds to a svr disable(t′) query by storing
u′ = hdsbl(t′). Subsequently, any ticket τ of the fol-
lowing form is considered disabled at svr: either τ is
zeroed for svr with zeroed inputs <∗, ∗, ∗, ∗, ∗, ∗, ζ>
or <∗, ∗, ∗, ∗, ∗, ∗, ζ> ← D(sksvr, τ); and <u′, ∗> ←
D(sksvr, ζ).

• Sim responds to a svr handleDecr(γ, δ, τ) or handleDel(γ,
δ, τ) query for a τ that has not been disabled at svr as a
normal server would, except for the following changes:

– If τ or γ was zeroed for svr, then its zeroed inputs are
used in the handleDecr or handleDel processing. Oth-
erwise, their actual decryptions using sksvr are used.

– Sim aborts in the event of a successful password guess.
• Sim responds to a dvc startDecr(c, svr, χ) query as in The-

orem 5, except if svr is good, it zeroes γ. Sim responds to
a dvc finishDecr(η, e, s) query as in Theorem 5.
• Sim responds to a dvc startDel(svr, svr′, χ) query as in

Theorem 5, except if svr is good, it zeroes γ. Sim re-
sponds to a dvc finishDel(δ′, η) query corresponding to
a startDel(svr, svr′, χ) query as in Theorem 5, except if
svr′ is good it zeroes τ ′.

Suppose that the probability of A winning against Sim is
more than 1

2 + qsvr
|D| + ψ5

2 . Since f0 and f2 for non-good servers
are replaced by random functions, and all τ or γ ciphertexts
encrypted under the public keys of good servers are zeroed,A
obtains no information on the password from Sim, and thus the
probability of A making a successful online password guess

Delegation of cryptographic servers for capture-resilient devices 325

is at most qsvr
|D| plus the probability of a collision in f1(v1) over

D for one of qdvc random v1’s. So,A succeeds in guessing the
bit ξ chosen by the test oracle with probability 1

2 + ε′′ where
ε′′ ≈ ψ5

2 ≈ ψ
2 . An attacker A∗∗ for the the underlying ElGL

scheme can thus run Sim for A and output the bit ξ selected
by A to (qdvc, ε

′′)-break the underlying ElGL scheme.
Now assume that the probability of A winning against

Sim is at most 1
2 + qsvr

|D| + ψ5
2 . Since A succeeds in Real5 with

probability 1
2 + qsvr

|D| + ψ5, it wins in Real5 with at least that
probability. Then we construct an attacker A∗ that breaks E
with probability ε′ ≈ ψ

2|U |(2qdvc+1) . Our attacker A∗ is given
a public key pk from E and corresponding decryption oracle,
and runs a simulation of the Real5 system forA, using a device
signing key <g, p, q, y> and private key <g, p, q, x> that it
generates itself.

First consider a simulator that gives pk to A as the public
key pksvr of some svr that is good, and then simulates Real5
exactly, except for aborting on a successful password guess
and using a decryption oracle to decrypt messages encrypted
under key pk by the adversary. There will be at most 3qsvr of
these. (Note that the decryptions of any τ , γ or ζ generated by
the simulator would already be known to the simulator.) This
simulation would be perfectly indistinguishable from Real5 to
A (at least until A wins). Now consider the same simulation,
but with all τ and γ values for good servers generated by the
device zeroed. (Naturally, the server pretends the encryptions
are of the normal messages, not strings of zeros.) The latter
simulation is statistically indistinguishable from Sim. Thus,
the probability ofAwinning in the latter simulation is at most
1
2 + qsvr

|D| + ψ5
2 plus a negligible term due to the fact that the

latter simulation is not perfectly indistinguishable from Sim,
while the probability of A winning in the former simulation
is at least 1

2 + qsvr
|D| + ψ5.

Now we use a standard hybrid argument to construct A∗.
Let experiment j ∈ {0, . . . , 2qdvc + 1} correspond to the
first j τ -ciphertexts or γ-ciphertexts (generated by A∗) to
good servers being of the normal messages (and all ζ cipher-
texts being of the normal messages), and the remainder being
encryptions of strings of 0’s, and let pj be the probability
of A winning in experiment j. Then the average value for
i ∈ {0, . . . , 2qdvc} of pi+1−pi is at least≈ ψ5

2(2qdvc+1) . There-
fore, to construct A∗, we simply have A∗ choose a random
value i ∈ {0, . . . , 2qdvc + 1}, assign pksvr ← pk for a ran-
dom good server svr, and run experiment i as above, but if
the (i+ 1)st encryption to be generated by the simulator is to
use pksvr, it calls the test oracle for this encryption, where the
two messages X0 and X1 submitted to the test oracle are the
normal message and the string of zeros, respectively. ThenA∗
outputs 0 ifAwins (meaning it believesX0 was encrypted by
the test oracle), and 1 otherwise. By the analysis above, A∗

breaks E with probability ε′ ≈ ψ5
2|U |(2qdvc+1) ≈ ψ

2|U |(2qdvc+1) .

In order to prove property G3, we need to require thatM
be diffuse – see (2) in Sect. 6 – as we did for Theorem 3 in the
case of S-RSA-Del.

Theorem 7. Let f0, f1, f2 and hzkp be random oracles. Also
suppose that f0(v0) (for random v0) and f1(v1) (for random
v1) have negligible probabilities of collision over D, and that

M is diffuse. If a class A3 attacker (q, ε)-breaks the D-ElG-
Del[E ,D,M] system with ε = qf0+qf1+qf2

|D| +ψ, then there is
an attacker that (qdvc, ε

′)-breaks the underlying ElGL scheme
with ε′ ≈ ψ.

Proof. Assume a classA3 attackerA (q, ε)-breaks the D-ElG-
Del[E ,D,M] system with ε = qf0+qf1+qf2

|D| + ψ. Then we
show how to construct an attackerA∗ that (qdvc, ε

′)-breaks the
underlying ElGL scheme with ε′ ≈ ψ. Suppose A∗ is given
public key<g, p, q, y> for the ElGL scheme, and correspond-
ing test and decryption oracles. We construct a simulation of
the D-ElG-Del system as in the proof of Theorem 5, except
that the simulation aborts if the adversary nearly guesses the
password. Here, the adversary nearly guesses the password if
it either (i) queries the f0 or f1 oracle with π0 in its second
argument, i.e., it actually guesses the password and confirms
it; or (ii) queries f1(v1, π) to obtain some value b, where v1
andπ are used in a startDecr(∗, ∗, 0) or startDel(∗, ∗, 0) query
(i.e., π ← M(π0)), and also queries f2(b, v2) for the value
v2 generated in that startDecr(∗, ∗, 0) or startDel(∗, ∗, 0)
query. SinceM is diffuse, (ii) occurs with probability at most
qf2
|D| + (qf1)2

2κ (with the second term coming from the possi-
bility of a collision in f1(v1)), and so the total probability of
A nearly guessing the password is at most negligibly greater
than

qf0+qf1+qf2
|D| .

This simulation is statistically indistinguishable from the
real system (fromA’s viewpoint) unless the simulation aborts,
the probability of which is exactly that of A nearly guessing
the password. So since A succeeds with probability 1

2 + ε in

the real system with ε = qf0+qf1+qf2
|D| + ψ, A succeeds with

probability at least 1
2 + ε′ in the simulation, where ε′ ≈ ψ. If

A outputs a bit ξ for the D-ElG-Del system, thenA∗ outputs
the same bit ξ for the underlying ElGL scheme and thereby
(qdvc, ε

′)-breaks the underlying ElGL scheme with ε′ ≈ ψ.

Theorem 8. Suppose that hzkp is a random oracle. If a
class A4 attacker (q, ε)-breaks the D-ElG-Del[E ,D,M]
system, then there is either an attacker A∗ that (3qsvr,

ε
2|U |(qsvr+1))-breaks E , or an attackerA∗∗ that (qsvr, ε2)-breaks
the underlying ElGL scheme.

Proof. Assume a class A4 attacker A (q, ε)-breaks the D-
ElG-Del[E ,D] system. Consider the following simulation
Sim of D-ElG-Del for A. Sim is given an ElGL public
key <g, p, q, y> and corresponding test and decryption or-
acles as input. Sim sets the device public key to <g, p, q, y>
and chooses π0 ←R D. It generates all server key pairs
{(pksvr, sksvr)}svr∈U , and gives {pksvr}svr∈U to A. Sim then
constructs τ as in the real system, except with x1 ← 0 and
ζ ← E(pksvr0 , 0

2κ). Sim then saves the authorization record
<svr0, pksvr0 , τ, t, v0, v1, a>. For the ciphertext ζ, the tuple
<pksvr0 , ζ, x0> is recorded on an offset list. Sim then responds
to oracle queries from A as follows:

• Sim responds to queries to the test oracle as in Theorem 5.
• Sim responds todvcoracle queries as in the real system, ex-

cept usingπ ←M(π0) in place ofπ0 in startDecr(∗, ∗, 0)
and startDel(∗, ∗, 0) queries and their corresponding
finishDecr(∗, ∗, ∗) and finishDel(∗, ∗) queries.

326 P. MacKenzie, M. K. Reiter

• Sim responds to a svr handleDel(γ, δ, τ) query as svr
would normally, except for the following changes. Sim
runs normally until either the decryption of ζ or until svr
aborts. If svr does not abort, then Sim has computed<a, b,
g, p, q,x10, ζ>←D(sksvr, τ) and<v2,β, pksvr′ , ρ,α>←
D(sksvr, γ). Now Sim examines the offset list with pksvr
and ζ. If for some x+

0 ,<pksvr, ζ, x
+
0 > appears in the offset

list, then Sim causes the server to abort if u = hdsbl(t) is
marked as disabled at svr, and otherwise

– computes ζ ′ ← E(pksvr′ , 02κ),
– computes x0 ← x+

0 − x10 mod q,
– computes ∆← Zq (i.e., as normal), and
– stores <pksvr′ , ζ

′, x0 +∆ mod q> on the offset list.
Sim then completes the computation of η and δ′ and re-
sponds. If <pksvr, ζ, ∗> does not appear on the offset list,
then Sim responds as svr would normally.
• Sim responds to a svr handleDecr(γ, δ, τ) query as

svr would normally, except for the following changes:
Sim runs normally until either the decryption of ζ
or until svr aborts. If svr does not abort, then Sim
has computed <a, b, g, p, q, x10, ζ> ← D(sksvr, τ) and
<c, v2, β, ρ>← D(sksvr, γ). Now Sim examines the off-
set list with pksvr and ζ. If for some x+

0 , <pksvr, ζ, x+
0 >

appears in the offset list, then Sim causes svr to abort if u
is marked as disabled at svr, and otherwise

– computes x0 ← x+
0 − x10 mod q,

– queries the decryption oracle on c to obtain z,
– computes ν ← zw−x0 mod p,
– generates e←R Zq and s←R Zq, and
– backpatches hzkp:
hzkp(<w, ν,wsν−e mod p,

gs(yg−x0)−e mod p>)← e
Sim then completes the computation of η and responds. If
<pksvr, ζ, ∗> does not appear on the offset list, then Sim
responds as svr would normally.
We note that once u is marked as disabled at all servers,
there will never be a need to call the decryption oracle
again.
• Sim responds to a svr disable(t′) query by marking u′ =
hdsbl(t′) as disabled at svr.

• Sim responds to a dvc comp query by returning the autho-
rization records on dvc. Note that there are no svr comp
queries, because the attacker is in class A4.

If A succeeds with probability greater than 1
2 + ε

2 in Sim,
then there is an attackerA∗∗ for the underlying ElGL scheme
that succeeds with probability 1

2 + ε
2 . A∗∗ is given the ElGL

public key<g, p, q, y> and corresponding test and decryption
oracles. A∗∗ runs Sim for A and outputs the bit ξ chosen by
A.

Now suppose that A succeeds in Sim with probability at
most 1

2 + ε
2 . We use a hybrid argument to construct an at-

tacker A∗ that breaks E with probability at least ε
2|U |(qsvr+1) ,

as follows. A is given a public key pk from E with cor-
responding decryption and test oracles, and sets pksvr∗ ←
pk for a randomly chosen svr∗. In addition, A∗ generates
(<g, p, q, y>,<g, p, q, x>) ← GElG(1λ) and sets the de-
vice’s public key to <g, p, q, y>. A∗ then chooses an index
i ←R {0, . . . , qsvr}. A∗ computes x0, x1, t, u, v0, v1, a, and
b normally, but sets ζ as follows: if i = 0 and svr0 = svr∗,
then it sets ζ to be the output of the test oracle for pk queried

with X0 = <u, x1> and X1 = 02κ and records the tuple
<pksvr0 , ζ, x1> on an offset list.5 If i > 0 or svr0 	= svr∗, then
it sets ζ normally and records the tuple<pksvr0 , ζ, x1> on the
offset list. After this, A∗ proceeds normally to complete the
authorization record <svr0, pksvr0 , τ , t, v0, v1, a>. A∗ then
simulates D-ElG-Del for A as follows.

• A∗ responds to queries to the test oracle as in Theorem 5.
• A∗ responds to dvc oracle queries as in the real sys-

tem, except using π ← M(π0) in place of π0 in
startDecr(∗, ∗, 0) and startDel(∗, ∗, 0) queries and their
corresponding finishDecr(∗, ∗, ∗) and finishDel(∗, ∗)
queries.
• A∗ responds to a svr handleDel(γ, δ, τ) query as fol-

lows. If either γ or τ are the output of the test oracle (if
the test oracle has been queried), then svr aborts. Oth-
erwise, A∗ runs normally – using the decryption oracle
for pk to decrypt γ and τ if svr = svr∗ – until either
the decryption of ζ or until svr aborts. If svr does not
abort, suppose this is the j-th handleDel query (to any
server) in which the server did not abort. At this point A
has computed <a, b, g, p, q, x10, ζ> ← D(sksvr, τ) and
<v2, β, pksvr′ , ρ, α> ← D(sksvr, γ) (or computed them
using the decryption oracle). Now A examines the offset
list with pksvr and ζ:
– If <pksvr, ζ, ∗> does not appear in the offset list, then

if pk 	= pksvr,A∗ decrypts ζ to obtain<u′, x11>, and
if pk = pksvr then A∗ calls the decryption oracle on
ζ to obtain <u′, x11>. A∗ causes svr to abort if u′ is
marked as disabled at svr, and otherwise A continues
as svr would normally.

– If for some x11, <pksvr, ζ, x11> appears in the offset
list, then A∗ has svr abort if u = hdsbl(t) is marked
as disabled at svr, and otherwise proceeds as follows:
A∗ sets x1 ← x10 + x11, computes ∆ and x′

11 as
normal, and alters the computation of ζ ′ as follows. If
j < i, thenA∗ computes ζ ′ ← E(pksvr′ , <u, x

′
11>) as

normal and records<pksvr′ , ζ
′, x′

11> in the offset list.
If j = i and svr′ = svr∗, then A calls the test oracle
for pk with X0 = <u, x′

11> and X1 = 02κ, obtains
the response ζ ′, and records <pksvr′ , ζ

′, x′
11> in the

offset list. If j > i, or j = i and svr′ 	= svr∗, then A∗
sets ζ ′ ← E(pksvr, 02κ) and records<pksvr′ , ζ

′, x′
11>

in the offset list. In all cases, A∗ then computes η and
δ′ normally and responds.

• A∗ responds to a svr handleDecr(γ, δ, τ) query as follows.
If either γ or τ are the output of the test oracle (if the
test oracle has been queried), then svr aborts. Otherwise,
A∗ runs normally – using the decryption oracle for pk to
decrypt γ and τ if svr = svr∗ – until either the decryption
of ζ or until svr aborts. If svr does not abort, then Sim
has computed <a, b, g, p, q, x10, ζ>← D(sksvr, τ) and
<c, v2, β, ρ>← D(sksvr, γ) (or computed them using the
decryption oracle). Now A∗ examines the offset list with
pksvr and ζ:
– If <pksvr, ζ, ∗> does not appear in the offset list, then

if pk 	= pksvr,A∗ decrypts ζ to obtain<u′, x11>, and
if pk = pksvr then A∗ calls the decryption oracle on
ζ to obtain <u′, x11>. If u′ is marked as disabled at

5 The third value in the tuple is the value that is supposed to be
encrypted in ζ (but may not be the actual value that is encrypted).

Delegation of cryptographic servers for capture-resilient devices 327

svr, then A∗ simulates a svr abort, and otherwise A∗
continues as svr would normally.

– If for some x11, <pksvr, ζ, x11> appears in the off-
set list, then A∗ causes svr to abort if u = hdsbl(t)
is marked as disabled at svr. If u is not marked as
disabled, then A∗ sets x1 ← x10 + x11 mod q, and
responds as svr would normally.

• A∗ responds to a svr disable(t′) query by marking u′ =
hdsbl(t′) as disabled at svr.

• A∗ responds to a dvc comp query by returning the autho-
rization records on dvc. Note that there are no svr comp
queries, because the attacker is in class A4.

Finally, A∗ outputs the bit ξ output by A.
Let experiment j ∈ {0, . . . , qsvr + 1} correspond to the

first j ζ-ciphertexts (generated by A∗), i.e., the ciphertexts
internal to the tickets, being of normal messages, and the re-
mainder being encryptions of zero. Let pj be the probability
of A succeeding in experiment j. Note that experiment 0 is
perfectly indistinguishable from Sim, and experiment qsvr +1
is perfectly indistinguishable from the real system. Therefore
p0 ≤ 1

2 + ε
2 and pqsvr+1 ≥ 1

2 + ε. Note that A∗ will run either
experiment i or i+1, depending on the output of the test oracle,
and if svr∗ is the server that receives encryption request i+ 1.
Then the average value for i ∈ {0, . . . , qsvr} of pi+1− pi is at
least ≈ ε

2(qsvr+1) , and the probability with which A∗ breaks E
is at least ε

2|U |(qsvr+1) .

References

1. M. Bellare, A. Desai, D. Pointcheval, P. Rogaway. Relations
among notions of security for public-key encryption schemes.
In Advances in Cryptology – CRYPTO ’98 (Lecture Notes in
Computer Science 1462), pp. 26–45, 1998

2. M. Bellare, P. Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In 1st ACM Conf.
on Comp. and Comm. Security, pp. 62–73, 1993

3. M. Bellare, P. Rogaway. Optimal asymmetric encryption. In
Advances in Cryptology – EUROCRYPT ’94 (Lecture Notes in
Computer Science 950), pp. 92–111, 1995

4. M. Bellare, P. Rogaway. The exact security of digital signatures
– How to sign with RSA and Rabin. In Advances in Cryptology
– EUROCRYPT ’96 (Lecture Notes in Computer Science 1070),
pp. 399–416, 1996

5. C. Boyd. Digital multisignatures. In H. J. Beker and F. C. Piper,
editors, Cryptography and Coding, pp. 241–246. Clarendon
Press, 1989

6. R. Cramer, V. Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In Ad-
vances in Cryptology – CRYPTO ’98 (Lecture Notes in Com-
puter Science 1462), pp. 13–25, 1998

7. D. E. Denning. Digital signatures with RSA and other public-
key cryptosystems. Comm. of the ACM 27(4), 388–392 (Apr.
1984)

8. T. ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. on Info. Theory 31,
469–472 (1985)

9. R. Ganesan. Yaksha: Augmenting Kerberos with public key
cryptography. In Proceedings of the 1995 ISOC Network and
Distributed System Security Symposium, February 1995

10. S. Goldwasser, S. Micali, R. L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM
J. on Computing 17(2), 281–308 (Apr. 1988)

11. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, M. Yung.
Proactive public key and signature systems. In 4th ACM Conf.
on Comp. and Comm. Security, pp. 100-110, 1997

12. D. N. Hoover, B. N. Kausik. Software smart cards via cryp-
tographic camouflage. In 1999 IEEE Symp. on Security and
Privacy, pp. 208–215, 1999

13. D. Klein. Foiling the cracker: A survey of, and improvements
to, password security. In 2nd USENIX Security Workshop, Aug.
1990

14. D. W. Kravitz. Digital signature algorithm. U.S. Patent
5,231,668, 27 July 1993

15. P. MacKenzie, M. K. Reiter. Networked cryptographic devices
resilient to capture. DIMACS Technical Report 2001-19, May
2001. Extended abstract in 2001 IEEE Symp. on Security and
Privacy, May 2001

16. P. MacKenzie, M. K. Reiter. Two-party generation of DSA sig-
natures. In Advances in Cryptologie – CRYPTO 2001 (Lecture
Notes in Computer Science 2139), pp. 138–154, August 2001

17. P. MacKenzie, M. K. Reiter. Delegation of cryptographic servers
for capture-resilient devices (extended abstract). In 8th ACM
Conf. on Comp. and Comm. Security, Nov. 2001

18. R. Morris, K. Thompson. Password security: A case history.
Comm. of the ACM 22(11), 594–597 (Nov. 1979.)

19. U. Maurer, S. Wolf. The Diffie-Hellman protocol. Designs,
Codes, and Cryptography 19, 147–171, Kluwer Academic Pub-
lishers, 2000

20. C. Rackoff, D. Simon. Noninteractive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Advances in Cryp-
tology – CRYPTO ’91, (Lecture Notes in Computer Science
576), pp. 433–444, 1991

21. R. L. Rivest, A. Shamir, L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Comm. of the
ACM 21(2), 120–126 (Feb. 1978)

22. V. Shoup, R. Gennaro. Securing threshold cryptosystems against
chosen ciphertext attack. In Advances in Cryptology – EURO-
CRYPT ’98 (Lecture Notes in Computer Science 1403), pp. 1–
16, 1998

Philip MacKenzie is a Member of Technical Staff at Bell Laborato-
ries, the research and development arm of Lucent Technologies. He
received a B.Sc. degree in computer science and mathematics from
the University of Michigan in 1987, and received M.Sc. and Ph.D.
degrees in computer science in 1988 and 1992, respectively, also at
the University of Michigan. He continued on with postdoctoral work
at the University of Texas in 1992, and then at Sandia National Lab-
oratories in 1994. He joined Boise State University in 1996 as an
Assistant Professor in the Mathematics and Computer Science De-
partment, before joining Bell Labs in 1998. His research interests
include cryptography and all areas of computer and communications
security.

Michael K. Reiter is a Professor of Electrical & Computer Engineer-
ing and Computer Science at Carnegie Mellon University in Pitts-
burgh, Pennsylvania, USA. He received the B.Sc. degree in mathe-
matical sciences from the University of North Carolina in 1989, and
the M.Sc. and Ph.D. degrees in computer science from Cornell Uni-
versity in 1991 and 1993, respectively. He joined AT&T Bell Labs
in 1993 and became a founding member of AT&T Labs – Research
when NCR and Lucent Technologies (including Bell Labs) were split
away from AT&T in 1996. He returned to Bell Labs in 1998 as Di-
rector of Secure Systems Research, and then joined Carnegie Mellon
in 2001. His research interests include all areas of computer and
communications security and distributed computing.

