
IJIS (2002) 1: 69–83 / Digital Object Identifier (DOI) 10.1007/s102070100006

Passwordhardeningbased on keystroke dynamics

Fabian Monrose, Michael K. Reiter∗, Susanne Wetzel

Bell Labs, Lucent Technologies, Murray Hill, N.J., USA

Published online: 26 October 2001 – Springer-Verlag 2001

Abstract. We present a novel approach to improving
the security of passwords. In our approach, the legiti-
mate user’s typing patterns (e.g., durations of keystrokes
and latencies between keystrokes) are combined with the
user’s password to generate a hardened password that is
convincingly more secure than conventional passwords
alone. In addition, our scheme automatically adapts to
gradual changes in a user’s typing patterns while main-
taining the same hardened password across multiple lo-
gins, for use in file encryption or other applications re-
quiring a long-term secret key. Using empirical data and
a prototype implementation of our scheme, we give evi-
dence that our approach is viable in practice, in terms of
ease of use, improved security, and performance.

Keywords: Security – Biometrics – Cryptographic –
Key generation

1 Introduction

Textual passwords have been the primary means of au-
thenticating users to computers since the introduction
of access controls in computer systems. Passwords re-
main the dominant user authentication technology to-
day, despite the fact that they have been shown to be
a fairly weak mechanism for authenticating users. Stud-
ies have shown that users tend to choose passwords that
can be broken by an exhaustive search of a relatively
small subset of all possible passwords. In one case study
of 14 000 Unixpasswords, almost 25% of the passwords
were found by searching for words from a carefully formed
“dictionary” of only 3× 106 words [15] (see also [9, 26,

∗ Correspondence to: M. Reiter, Carnegie Mellon University,
Hamerschlag Hall D208, Pittsburgh, PA 15213, USA

33, 34]). This high success rate is not unusual despite the
fact that there are roughly 2×1014 eight-character pass-
words consisting of digits and upper- and lower-case let-
ters alone.

In this paper, we propose a technique for improving
the security of password-based applications by incorpo-
rating biometric information into the password. Specific-
ally, our technique generates a hardened password based
on both the password characters and the user’s typing
patterns when typing the password. This hardened pass-
word can be tested for login purposes or used as a cryp-
tographic key for file encryption, virtual private network
access, etc. The primary attacker we consider is one who
obtains all stored system information for password veri-
fication (the analog of the /etc/passwd file in a typical
Unix environment). We show that this attacker faces
a convincingly more difficult task to exhaustively search
for the hardened password than in a traditional password
scheme.

There are several challenges to realizing this goal.
The first is to identify features of a user’s typing pat-
terns (e.g., latencies between keystrokes and duration
of keystrokes) that the user reliably repeats (approxi-
mately) when typing her password. The second is to use
these features when the user types her password to gen-
erate the correct hardened password. At the same time,
however, the attacker who captures system information
used to generate or verify hardened passwords should be
unable to determine which features are relevant to gen-
erating a user’s hardened password, since revealing this
information could reveal information about the charac-
ters related to that password feature. For example, sup-
pose the attacker learns that the latency between the
first and second keystrokes is a feature that is reliably
repeated by the user and thus is used to generate her
hardened password. Then this may reveal information

70 F. Monrose et al.: Password hardening based on keystroke dynamics

about the first and second characters of the text pass-
word, since due to keyboard dynamics, some digraphs
are more amenable to reliable latency repetitions than
others.

Our approach effectively hides information about
which of a user’s features are relevant to generating her
hardened password, even from an attacker that captures
all system information. At the same time, it employs
novel techniques to impose an additional (multiplicative)
work factor on the attacker who attempts to exhaustively
search the password space. Using empirical data, we eval-
uate both this work factor and the reliability with which
legitimate users can generate their hardened passwords.
Our empirical studies demonstrate various choices of pa-
rameters that yield both increased security and sufficient
ease of use.

Our scheme is very attractive for use in practice. Un-
like other biometric authentication procedures (e.g., fin-
gerprint recognition, and retina or iris scans), our ap-
proach is unintrusive and works with off-the-shelf key-
boards. Initially our scheme is as secure as a “normal”
password scheme and then adapts to the user’s typing
patterns over time, gradually hardening the password
with biometric information. Moreover, while fully able
to adapt to gradual changes in user typing patterns, our
scheme can be used to generate the same hardened pass-
word indefinitely, despite changes in the user’s typing pat-
terns. Therefore, the hardened password can be used to
encrypt files, for example, without needing to decrypt and
re-encrypt files with a new hardened password on each
login.

The main limitation of our scheme is that a user whose
typing patterns change substantially between consecutive
instances of typing her password may be unable to gener-
ate her correct hardened password and thus, for example,
might be unable to log in. The most common circum-
stance in which this could happen is if the user attempts
to log in using a different style of keyboard than her regu-
lar one, which can cause a dramatic change in the user’s
typing patterns. In light of this, applications for which our
scheme is ideally suited are access to virtual private net-
works from laptop computers, and file or disk encryption
on laptop computers. Laptops provide a single, persis-
tently available keyboard at which the user can type her
password, which is the ideal situation for repeated gen-
eration of her hardened password. Moreover, with the
alarming rate of laptop thefts (e.g., see [28]), these ap-
plications demand security better than that provided by
traditional passwords.

Although we study only the generation of hardened
passwords using keystroke patterns in this paper, the
techniques we introduce are of more general interest.
In particular, any repeatable and unpredictable physi-
cal phenomenon for which features can be measured can,
in theory, be employed with our techniques to generate
cryptographic secrets. Our continuing work, for example,
has demonstrated this for voice patterns [24, 25].

2 Related work

The motivation for using keystroke features to harden
passwords comes from years of research validating the
hypothesis that user keystroke features are both highly
repeatable and different between users [1, 10, 13, 17, 18,
23, 30]. Prior work has anticipated utilizing keystroke in-
formation in the user login process (e.g., [13]), and in-
deed products implementing this are being marketed to-
day (e.g., see http://www.biopassword.com/). All such
prior schemes work by storing a model of user keystroke
behavior in the system, and then comparing this to user
keystroke behavior during password entry. Thus, while
they are useful for defending against an attacker who at-
tempts to log into the system directly, they provide no
additional protection against an attacker who captures
system information related to user authentication and
then conducts an off-line dictionary attack to find the
password (e.g., to then decrypt files encrypted under the
password). On the contrary, the captured model of the le-
gitimate user’s keystroke behavior can leak information
about the password to such an attacker, as discussed in
Sect. 1. Our work therefore improves on these schemes in
two ways: (1) our method is the first to offer stronger se-
curity against this stronger attacker, and (2) our scheme
is the first to generate a repeatable secret based on the
password and keystroke dynamics that is stronger than
the password itself and that can be used in applications
other than login, such as file encryption.

The first work (that we are aware of) that previ-
ously proposed generating a repeatable key based on
biometric information is due to Soutar and Tomko [32].
This work outlines a technique for using optical com-
puting to generate a cryptographic key from a finger-
print pressed against a glass prism; products based
on this technique are marketed by Mytec Technologies
(http://www.mytec.com/). Due to the dependence of
this technique on optical computing, and specifically on
the presentation of a two-dimensional surface (such as
a finger surface) for generating the cryptographic key, this
approach is not directly amenable to generating crypto-
graphic keys from timing information.

A different approach to generating a repeatable key
based on biometric data is due to Davida, Frankel, and
Matt [6]. In this scheme, a user carries a portable storage
device containing: (1) error-correcting parameters to de-
code readings of biometric data (e.g., an iris scan) with
a limited number of errors to a “canonical” reading for
that user, and (2) a one-way hash of that canonical read-
ing for verification purposes. Moreover, they further pro-
posed a scheme in which the canonical biometric read-
ing for that user is hashed together with a password.
Their techniques, however, are inappropriate for our goals
because the stored error-correcting parameters, if cap-
tured, reveal information about the canonical form of
the biometric data for the user. For this reason, their
approach requires a biometric with substantial entropy:

F. Monrose et al.: Password hardening based on keystroke dynamics 71

for example, they considered iris scans offering an esti-
mated 173 bits of entropy, so that the remaining entropy
after exposure of the error-correcting parameters (they
estimated 147 bits of remaining entropy) was still suffi-
ciently large for their application. In our case, the measur-
able keystroke features for an eight-character password
are relatively few (at most 15 on standard keyboards),
and indeed in our scheme, the password’s entropy will
generally dominate the entropy available from keystroke
features. Exposing error-correcting parameters in our set-
ting would therefore substantially diminish the available
entropy from keystroke features. Moreover, exposing in-
formation about the keystroke features can, in turn, ex-
pose information about the password itself (as discussed
in Sect. 1). This makes the careful utilization of keystroke
features critical in our setting, whereas in [6] the bio-
metric data considered were presumed independent of
the password chosen. Juels and Wattenberg [14] gener-
alized and improved the Davida et al. scheme through
a novel modification in the use of error-correcting codes,
thereby shrinking the code size and achieving higher re-
silience. However, since the performance of this scheme
on actual biometric data was not explored, it is un-
known whether this technique is more applicable in our
setting.

Ellison et al. independently developed a method for
generating a cryptographic key based on answers to ques-
tions posed to a user [8]. The work is premised on the
assumption that questions can be posed that the legiti-
mate user will answer one way but others attempting to
impersonate the user will answer another way. Their con-
struction resembles one instance of our technique, namely
that of Sects. 5.1 and 5.2, and in this way their scheme
achieves a degree of resilience to forgotten answers. How-
ever, Bleichenbacher and Nguyen have shown that the
Ellison et al. scheme is insecure, whereas our construc-
tions appear to be much stronger [2]. In work subsequent
to ours, a construction similar to that in Sects. 5.1 and
5.2 was used in the design of a forensic database, where
a person’s medical record can be decrypted only once
a DNA sample of the person is obtained (e.g., at a crime
scene) [3].

Our method of hardening user passwords has con-
ceptual similarities to password “salting” for user lo-
gins. Salting is a method in which the user’s password is
prepended with a random number (the “salt”) of s bits
in length before hashing the password and comparing the
result to a previously stored value [20, 26]. As a result,
the search space of an attacker is increased by a factor of
2s if the attacker does not have access to the salts. How-
ever, the correct salt either must be stored in the system
or found by exhaustive search at login time. Intuitively,
the scheme that we propose in this paper can be used to
improve this approach, by determining some or all of the
salt bits using the user’s typing features. In addition, an
advantage of our approach over salting is that our scheme
can be effective against an attacker who learns the legiti-

mate user’s password (e.g., by observing the user type it)
and who then attempts to log in as that user.

Finally, we note that several other research efforts on
password security have focused on detecting the unau-
thorized modification of system information related to
password authentication (e.g., the attacker adds a new
account with a password it knows, or changes the pass-
word of an existing account) [12, 16, 19]. Here we do not
focus on this threat model, although our hardened pass-
words can be directly combined with these techniques to
also provide security against this type of attacker.

3 Preliminaries

The hardened passwords generated in our scheme have
many potential uses, including user login, file encryption,
and authentication to virtual private networks. However,
for clarity, in the remainder of this paper we focus on the
generation and use of hardened passwords for the pur-
poses of user login. Extending our discussion to these
other applications is straightforward.

We assume a computer system with a set A of user ac-
counts. Access to each user account is regulated by a login
program that challenges the user for an account name and
password. Using the user’s input and some stored infor-
mation for the account a that the user is trying to access,
the login program either accepts or rejects the attempt to
log into a. As in existing computer systems, the charac-
ters that the user types into the password field are a fac-
tor in determining whether to accept or reject the login.
For the remainder of the paper, we denote by pwda the
correct string of characters for the password field when
logging into account a. That is, pwda denotes the cor-
rect text password as typically used in computer systems
today.

In our architecture, typing pwda is necessary but not
sufficient to access a. Rather, the login program combines
the characters typed in the password field with keystroke
features to form a hardened password that is tested to
determine whether login is successful. The correct hard-
ened password for account a is denoted hpwda. The login
program will fail to generate hpwda if either something
other than pwda is entered in the password field or if the
user’s typing patterns differ significantly from the typing
patterns displayed in previous successful logins to the ac-
count. Here we present our scheme in a way that keeps
hpwda constant across logins, despite gradual shifts in the
user’s typing patterns, so that hpwda can also be used for
longer-term purposes (e.g., file encryption). However, our
scheme can be easily tuned to change hpwda after each
successful login, if desired.

3.1 Features

In order to generate hpwda from pwda and the (legit-
imate) user’s typing patterns, the login program mea-
sures a set of features whenever a user types a password.

72 F. Monrose et al.: Password hardening based on keystroke dynamics

We will empirically examine the use of keystroke dura-
tion and latency between keystrokes as features of inter-
est, but other features (e.g., force of keystrokes) could
be used if they can be measured by the login program.
In addition, derived features could be used, such as the
total duration of a subset of keystrokes, the ratio of one
keystroke’s duration to another, or the latency scaled ac-
cording to the particular keys between which the latency
is measured.

Abstractly, we represent a feature by a function φ :
A×N→ R where φ(a, l) is the measurement of that fea-
ture during the lth (successful or unsuccessful) login at-
tempt to account a. For example, if the feature φ denotes
the latency between the first and second keystrokes, then
φ(a, 6) is that latency on the sixth attempt to log into a.
Let m denote the number of features that are measured
during logins, and let φ1, . . . , φm denote their respective
functions.

Central to our scheme is the notion of a distin-
guishing feature. For each feature φi, let ti ∈ R be
a fixed parameter of the system. Also, let µai and σai
be the mean and standard deviation of the measure-
ments φi(a, j1), . . . , φi(a, jh) where j1, . . . , jh are the last
h successful logins to the account a and h ∈ N is a fixed
parameter of the system. We say that φi is a distinguish-
ing feature for the account (after these last h successful
logins) if |µai− ti|> kσai where k ∈ R+ is a parameter of
the system. If φi is a distinguishing feature for the account
a, then either ti > µai+ kσai, that is, the user consis-
tently measures below ti on this feature, or ti < µai−
kσai, that is, the user consistently measures above ti on
this feature.

We define a feature descriptor to be a partial function
b : {1, . . . ,m} → {0, 1}, and the feature descriptor ba for
account a to be

ba(i) =

0 if µai+kσai < ti
1 if µai−kσai > ti
⊥ otherwise

That is, ba(i) = 1 for every distinguishing feature φi on
which the user is “slow” and ba(i) = 0 for every distin-
guishing feature φi on which the user is “fast”. For other
features φi, ba(i) is undefined (⊥). A total feature descrip-
tor is one defined on all domain elements; let T be the set
of all total feature descriptors. For any feature descriptor
b, the total descriptors that extend it is the set

T (b) = {b′ ∈ T | ∀i ∈ {1, . . . ,m} : b(i) �=⊥⇒ b′(i) = b(i)}

3.2 Security goals

In our login architecture, the system stores information
for each account that is accessed by the login program
to verify attempts to log in. This information is necessar-
ily based on pwda and hpwda, but will not include either
of these values themselves. This is similar to Unix sys-
tems, for example, where the /etc/passwd file contains

the salt for that password and the result of encrypting
a fixed string with a key generated from the password and
salt. In our login architecture, the information stored per
account will be more extensive but will still be relatively
small.

The primary attacker with which we are concerned is
an attacker who captures this information stored in the
system, and then uses this information in an off-line effort
to find hpwda (and pwda). A first and basic requirement
is that any such attack should be at least as difficult as
exhaustively searching for pwda in a traditional Unix
setting where the attacker has the /etc/passwd file. In
particular, if the user chooses pwda to be difficult for an
attacker to find using a dictionary attack, then hpwda will
be at least as secure in our scheme.

A more ambitious goal of our scheme is to increase the
work that the attacker must undertake by a considerable
amount even if pwda is chosen poorly, that is, in a way
that is susceptible to a dictionary attack. The amount of
additional work that the attacker must undertake in our
scheme generally grows with the number of distinguish-
ing features for the account (when the attacker captured
the system information). On one extreme, if there are no
distinguishing features for the account, then the attacker
can find pwda and hpwda in roughly the same amount of
time as the attacker would take to find pwda in a tra-
ditional Unix setting. On the other extreme, if all m
features are distinguishing for the account, then the at-
tacker’s task can be slowed by a multiplicative factor up
to 2m. In Sect. 8, we describe an empirical analysis that
sheds light on what this slowdown factor is likely to be
in practice. In addition, we show how our scheme can be
combined with salting techniques, and so that the slow-
down factor that our scheme achieves is over and above
any benefits that salting offers.

We emphasize that our goals are quite different from
the goal of biometrics as usually applied to user authenti-
cation. In particular, we do not insist that it is necessarily
difficult to find a person who can impersonate the typ-
ing of another user on a certain password; i.e., from an
authentication perspective, the false positive rate may be
substantial among users who know the right password.
Nevertheless, by incorporating typing variability within
the search space of the attacker described above, we can
slow the attacker considerably at virtually no additional
cost to the legitimate user.

4 Overview

In this section we give an overview of our technique for
generating hpwda from pwda and user keystroke features.
When the account a is initialized, the initialization pro-
gram chooses the value of hpwda from a large space. In
the instances of our technique in Sects. 5 and 6, this large
space is Zq or Z

∗
q where q is a fixed, large prime number

(e.g., of 160 bits in length). The initialization program

F. Monrose et al.: Password hardening based on keystroke dynamics 73

then creates 2m shares {s0i , s
1
i }1≤i≤m of hpwda using a se-

cret sharing scheme such that for any total feature de-
scriptor b, the shares {sb(i)i }1≤i≤m can be used to recon-
struct hpwda. These shares are arranged in an “instruc-
tion table”:

< ti ≥ ti

1 s01 s11
2 s02 s12
...

...
...

m s0m s1m

The initialization program encrypts each element of both
columns (i.e., the “< ti” and “≥ ti” columns) with pwda.
This (encrypted) table is stored in the system. In the lth
login attempt to a, the login program uses the entered
password text pwd′ to decrypt the elements of the table,
which will result in the previously stored values only if
pwda = pwd′. For each feature φi, the value of φi(a, l) in-
dicates which of the two values in the ith row should be
used in the reconstruction to find hpwda: if φi(a, l) < ti,
then the value in the first column is used, and otherwise
the value in the second column is used. In the first logins
after initialization, the value in either the first or second
column works equally well. However, as distinguishing
features φi for this account develop over time, the login
program perturbs the value in the second column of row
i if µai < ti, and perturbs the value in the first column of
row i otherwise. So, the reconstruction to find hpwda in
the future will succeed only when future measurements
of features are consistent with the user’s previous distin-
guishing features.

Not all secret sharing schemes satisfying the proper-
ties described above will suffice for our technique, since
to defend against an attacker who captures the table, the
shares must be of a form that does not easily reveal if
a guessed password pwd′ successfully decrypts the table.
Abstractly, suppose the attacker is given either a com-
pletely random table (as would be obtained by decrypting
the table with an incorrect password pwd′) or a plaintext
instruction table that is formed according to our scheme
as outlined above (as would be obtained if pwd′ = pwda),
each with equal likelihood. The security of our scheme
against an attacker requires that it be costly for the at-
tacker to determine which type of table it is, i.e., random
or not. In other words, if the probability that the at-
tacker correctly guesses the type of table is significantly
better than 1/2 after performing up to ∆ computational
steps, then ∆ should be large. Here, ∆ corresponds di-
rectly to the computational slowdown that the attacker
will suffer. The value of ∆will generally depend on a num-
ber of factors, not least of which is the distribution on
which features are distinguishing and, for each distin-
guishing feature φi, the probability that µai < ti (versus
µai ≥ ti). Since these distributions are not known, we are
not able to mathematically prove that the instances of
our schemes we propose in Sects. 5 and 6 will yield large

values for ∆, even under reasonable cryptographic as-
sumptions. However, in Sect. 8 we give empirical evidence
that these distributions are sufficiently nonconcentrated
to suggest that ∆ can be substantial in practice.

There are numerous extensions and variations on this
scheme:

1. One extension is to combine the scheme with salting
to further improve security. A natural place to include
a salt is in the validation of hpwda just after recon-
structing it. For example, when hpwda is generated
during a login, it could be prepended with a salt be-
fore hashing and testing against a previously stored
hash value. The salt can be stored as is typically done
today, or may not be stored so that the system must
exhaustively search for it [20]. In the latter case, the
extra salt results in an additional work factor that the
attacker must overcome.

2. A second variation is to correct some number of “er-
rors” in the user’s typing. For example, if the recon-
struction dictated by the feature measurements fails
to produce hpwda, then the login program can at-
tempt m additional reconstructions, each identical to
the first but with the value taken from one row i re-
placed with the other value in row i. In this way, if
the login measurements are similar to the user’s previ-
ous measurements in all but one feature, the login will
still succeed. This “error correction” can naturally be
extended to accommodate a larger number of errors.

3. A third extension is to divide the range of each feature
φi into more than two regions and introduce addi-
tional, corresponding columns for these regions in the
instruction table. For example, rather than having the
two regions “< ti” and “≥ ti” as above, there could be
thresholds ti1 and ti2 with columns in the instruction
table for “< ti1”, “≥ ti1 and ≤ ti2”, and “> ti2”. The
main challenges when using these variations are to en-
sure that the instruction table is costly to distinguish
from random, and that all regions are roughly equally
likely to contain µai for a randomly chosen account a.
Otherwise, an off-line attacker could discard a guessed
password pwd′ after examining only those components
of the decrypted instruction table that correspond to
the high probability regions for each feature.

We omit further discussion of the first and third of
these extensions from this paper. In particular, we focus
on the original two-column version described above, and
leave the study of fruitful extensions to multiple columns
to future work. We will omit discussion of the second ex-
tension above (error correction) from Sects. 5 and 6, but
will return to this in Sect. 7.

5 An instance using polynomials

In this section we describe an instance of the technique
of Sect. 4 using Shamir’s secret sharing scheme [31].

74 F. Monrose et al.: Password hardening based on keystroke dynamics

In this scheme, hpwda is shared by choosing a ran-
dom polynomial fa ∈ Zq[x] of degree m− 1 such that
fa(0) = hpwda, where q > 2m+1 is a large prime (e.g., of
size 160 bits). The shares are points on this polynomial.
We present the method in two steps, by first describing
a simpler variation and then extending it in Sect. 5.4 to be
more secure.

5.1 Stored data structures and initialization

Let G be a pseudorandom function family and P be
a pseudorandom permutation family [29] such that for
any key K, GK : Zq → Zq and PK : Z∗q → Z

∗
q .
1 There are

three data structures stored in the system per account:

1. A randomly chosen element r ∈ {0, 1}κ where κ is a se-
curity parameter of, say, κ= 160.

2. An instruction table that contains “instructions” re-
garding how feature measurements are to be used
to generate hpwda. More specifically, this instruction
table contains an entry of the form 〈i, αai, βai〉 for each
feature φi. Here,

αai = y0ai+Gr,pwda(2i) mod q

βai = y1ai+Gr,pwda(2i+1) mod q

and y0ai, y
1
ai are elements of Zq. Initially (i.e., when the

user first chooses pwda), all 2m values {y0ai, y
1
ai}1≤i≤m

are chosen such that all the points {(Pr(2i), y0ai),
(Pr(2i+1), y1ai)}1≤i≤m lie on a single, random poly-
nomial fa ∈ Zq[x] of degree m−1 such that fa(0) =
hpwda.

3. An encrypted, constant-size history file that con-
tains the measurements for all features over the last
h successful logins to a for some fixed parameter h.
More specifically, if since the last time that pwda was
changed, login attempts j1, . . . , jl to a were success-
ful, then this file contains φi(a, j) for each 1≤ i≤m
and j ∈ {jl−h+1, . . . , jl}. In addition, enough redun-
dancy is added to this file so that when it is decrypted
with the key under which it was previously encrypted,
the fact that the file decrypted successfully can be
recognized.
This file is encrypted with hpwda using a symmetric
cipher. The size of this file should remain constant
over time (e.g., it must be padded when necessary),
so that its size yields no information about how many
successful logins there have been.

1 That is, a polynomially bounded adversary not knowing K
cannot distinguish between GK(x) (PK(x)) and a randomly
chosen element of Zq (respectively, Z∗q), even if he is first al-
lowed to examine GK(x̂) (respectively, PK(x̂)) for many x̂’s of
his choice and is allowed to even pick x, as long as it is dif-
ferent from every x̂ he previously asked about. Though the
key K for P will be available to the primary attacker consid-
ered in this paper, we assume that the pseudorandom prop-
erty of P destroys any useful structure among the outputs
of P .

5.2 Logging in

The login program takes the following steps whenever the
user attempts to log into a. Suppose that this is the lth
attempt to log into a, and let pwd′ denote the sequence of
characters that the user typed. The login program takes
the following steps:

1. For each φi, the login program uses r (stored in
nonvolatile storage) and pwd′ to “decrypt” αai if
φi(a, l)< ti, and uses r and pwd′ to “decrypt” βai oth-
erwise. Specifically, it assigns

(xi, yi) =

(Pr(2i), αai−Gr,pwd′(2i) mod q)

if φi(a, l)< ti
(Pr(2i+1), βai−Gr,pwd′(2i+1) mod q)

if φi(a, l)≥ ti

The loginprogramnowholdsmpoints{(xi, yi)}1≤i≤m.
2. The login program sets

hpwd′ =
m∑
i=1

yi ·λi mod q

where

λi =
∏

1≤j≤m,j �=i

xj

xj−xi

is the standard Lagrange coefficient for interpolation
(e.g., see [24, p. 526]). It then decrypts the history
file using hpwd′. If this decryption yields a properly
formed plaintext history file, then the login is deemed
successful. (If the login were deemed unsuccessful,
then the login procedure would halt here.)

3. The login program updates the data in the history file,
computes the standard deviation σai and mean µai for
each feature φi over the last h successful logins to a,
encrypts the new history file with hpwd′ (i.e., hpwda),
and overwrites the old history file with this new en-
crypted history file.2

4. The login program generates a new random r′ ∈
{0, 1}κ and replaces r with r′ in nonvolatile storage. It
then generates a new random polynomial fa ∈Zq[x] of
degreem−1 such that fa(0) = hpwd′.

5. For each distinguishing feature φi, i.e., |µai− ti| >
kσai, the login program chooses new random values
y0ai, y

1
ai ∈ Zq subject to the following constraints:

µai < ti⇒ fa(Pr′(2i)) = y0ai∧fa(Pr′(2i+1)) �= y1ai

µai ≥ ti⇒ fa(Pr′(2i)) �= y0ai∧fa(Pr′(2i+1)) = y1ai

For all other features φi (i.e., those for which |µai−
ti| ≤ kσai, or all features if there have been fewer than
h successful logins to this account since initialization;

2 For maximum security, this and the previous step should be
performed without writing the plaintext history file to nonvolatile
storage. Rather, the login program should hold the plaintext his-
tory in volatile storage only.

F. Monrose et al.: Password hardening based on keystroke dynamics 75

see Sect. 3.1) the login program sets y0ai = fa(Pr′(2i))
and y1ai = fa(Pr′(2i+1)).

6. The login program replaces the instruction table with
a new table with an entry of the form 〈i, α′ai, β

′
ai〉 for

each feature φi. Here,

α′ai = y0ai+Gr′,pwd′(2i) mod q

β′ai = y1ai+Gr′,pwd′(2i+1) mod q

where y0ai, y
1
ai are the new values generated in the pre-

vious step.

Step 4 above is particularly noteworthy for two rea-
sons. Firstly, due to this step, the value r and polynomial
fa are changed during each successful login. This ensures
that an attacker viewing the instruction table at two dif-
ferent times will gain no information about which features
switched from distinguishing to undistinguishing and vice
versa during the interim logins. That is, each time the at-
tacker views an instruction table for an account, either
all values will be the same since the last time (if there
were no successful logins since the attacker last saw the
table) or all values will be different. Secondly, though gen-
erated randomly, fa is chosen so that fa(0) = hpwda. This
ensures that hpwda remains constant across multiple lo-
gins.

Step 5 is also noteworthy, since it shows that whether
or not each feature is distinguishing is recomputed in each
successful login. So, a feature that was previously dis-
tinguishing can become undistinguishing and vice versa.
Recomputing the set of distinguishing features allows our
scheme to adapt to gradual changes in the user’s typing
pattern over time.

5.3 Security

Consider the attacker who obtains the history file and
instruction table of account a, and attempts to find the
value of hpwda. Presuming that the encryption of the his-
tory file using hpwda is secure, since the values y0ai, y

1
ai are

effectively encrypted under pwda, and since pwda is pre-
sumably chosen from a much smaller space than hpwda,
the easiest way to find hpwda is to first find pwda. There-
fore, to argue the benefits of this scheme, we have to show
two things: (1) that finding pwda is not made easier in our
scheme than it is in a typical environment where access
is determined by testing the hash of the password against
a previously stored hash value, and (2) that the cost to
the attacker of finding hpwda is generally greater by a sig-
nificant multiplicative factor.

It is clear that searching for pwda is not made eas-
ier in our scheme. The attacker has available only r, the
instruction table, and the encrypted history file. Since
there is a row in the instruction table for each feature
(not just those that are distinguishing for a), and since
the contents of each row are pseudorandom values, the
rows reveal no useful information about pwda. Further-
more, all other data available to the attacker is encrypted
with hpwda.

The more interesting consideration in our scheme is
the degree of security increase over a traditional password
scheme. Suppose that the attacker captured the history
file and instruction table after l≥ h successful logins to a,
and let d be the number of distinguishing features for this
account in the lth login. When guessing a password pwd′,
the attacker can decrypt each field αai and βai using pwd′

to yield points (Pr(2i), ŷ
0
ai) and (Pr(2i+1), ŷ

1
ai), respec-

tively, for 1 ≤ i ≤m. Note that ŷ0ai = y0ai and ŷ1ai = y1ai,
where y0ai, y

1
ai are as generated in Step 5, if and (with

overwhelming probability) only if pwd′ = pwda. There-
fore, there exists a total feature descriptor b such that
{(Pr(2i+ b(i)), ŷ

b(i)
ai)}1≤i≤m interpolates to a polynomial

f̂ with f̂(0) = hpwda, if and only if pwd′ = pwda. Con-
sequently, one approach that the attacker can take is to
enumerate through all total feature descriptors and, for
each f̂ thus computed, see if f̂(0) = hpwda (i.e., if f̂(0)
will decrypt the history file). This approach slows down
the attacker’s search for hpwda (and pwda) by a multi-
plicative factor of ∆= 2m. In practice, the slowdown that
the attacker suffers may be less because user typing pat-
terns are not random. In Sect. 8 we use empirical data to
quantify the degree of security achieved against this form
of attack, and show that it is substantial.

However, the attacker has potentially more power-
ful attacks against this scheme using the 2m points
{(Pr(2i), ŷ0ai), (Pr(2i+1), ŷ1ai)}1≤i≤m, due to the follow-
ing contrast. On the one hand, if pwd′ �= pwda, then
with overwhelming probability, no m+1 points will lie
on a single polynomial of degree m− 1; i.e., each sub-
set of m points interpolates to a different polynomial
with a different y-intercept (not equal to hpwda). On the
other hand, if pwd′ = pwda, then there are 2m− d≥m
points that all lie on a polynomial f of degree m− 1
(and f(0) = hpwda); in particular if d < m, then there
are at least m+1 points that all lie on some such f .
Asymptotically (i.e., as m grows arbitrarily large), it is
known that the second case can be distinguished from
the first in O(m2) time if d≤ (2−

√
2)m ≈ 0.585m using

error-correcting techniques [11]. These techniques do not
attack our scheme directly, since our analysis in Sect. 8
suggests that for many reasonable values of k, d will typ-
ically be too large relative to m for these techniques to
succeed (unless the attacker captures the account infor-
mation before the account is used). Moreover, m may
be too small in our scenario for these techniques to offer
substantial benefit over the exhaustive approach above.
However, because these techniques might be improved
with application-specific knowledge – for example, that in
the second case at least one of (Pr(2i), ŷ

0
ai) and (Pr(2i+

1), ŷ1ai) lies on f – it is prudent to look for schemes that
confound the use of error-correcting techniques. This is
the goal of Sect. 5.4.

5.4 A variation using exponentiation

In this section we present a minor variation of the scheme
presented in Sects. 5.1 and 5.2, to which we refer as the

76 F. Monrose et al.: Password hardening based on keystroke dynamics

“original” scheme here. The scheme described in this sec-
tion is more secure than the original scheme in several
ways, as described below.

Let p be a large prime such that computing discrete
logarithms modulo p is computationally intractable (e.g.,
choose p of length 1024 bits) and such that q divides p−1.
Also, let g be an element of order q in Z∗p . The main
conceptual differences in this variation are that hpwda is
defined to be gfa(0) mod p, and rather than storing αai
and βai in the instruction table, the values

γai = gαai mod p

δai = gβai mod p

are stored instead. Intuitively, since the attacker cannot
compute discrete logarithms modulo p, this hides y0ai, y

1
ai

from him even if he guesses pwda.
There are a number of reasons to prefer this varia-

tion to the original in practice. First, this modified in-
struction table can yield no more information about fa(0)
to the attacker than can the original, since the attacker
can easily transform any instruction table in the original
scheme to an instruction table for this variation by com-
puting gαai mod p and gβai mod p for each αai and βai.
Second, Bleichenbacher and Nguyen, in their analysis of
the noisy polynomial interpolation problem [2], provide
good evidence that this variation is indeed significantly
stronger than the original. In particular, error-correcting
algorithms such as [11] that offer faster-than-brute-force
attacks whenm grows large and d is small do not directly
apply to this variation, and we are unaware of any tech-
nique that the attacker can use to search for hpwda faster
than brute force. Third, as a practical matter, this vari-
ation seems to require the attacker to perform modular
exponentiations per guessed password when conducting
a dictionary attack. Since these are computationally in-
tensive operations, this should slow the attacker’s efforts
even further.

This modification imposes other changes to the scheme.
In particular, the job of determining hpwda from pwda
and the feature measurements changes somewhat. More-
over, re-randomizing the polynomial fa after each suc-
cessful login must be done somewhat differently, since
fa(0) is hidden even from the login program. The re-
sulting login process for the lth login attempt to a is as
follows. Let pwd′ denote the sequence of characters that
the user has typed:

1. For each φi, the login program assigns

(xi, zi) =

(Pr(2i), (γai)g

−Gr,pwd′ (2i) mod p)
if φi(a, l)< ti

(Pr(2i+1), (δai)g
−Gr,pwd′ (2i+1) mod p)

if φi(a, l)≥ ti

The login program now holdsm pairs {(xi, zi)}1≤i≤m.

2. The login program sets

hpwd′ =
m∏
i=1

(zi)
λi mod p

where λi is the standard Lagrange coefficient. It then
decrypts the history file using hpwd′. If this decryp-
tion yields a properly formed plaintext history file,
then the login is deemed successful. (If the login were
deemed unsuccessful, then the login procedure would
halt here.)

3. The login program updates the data in the history file,
computes the standard deviation σai and mean µai for
each feature φi over the last h successful logins to a,
encrypts the new history file with hpwd′ (i.e., hpwda),
and overwrites the old history file with this new en-
crypted history file.

4. The login program generates a new random r′ ∈
{0, 1}κ and replaces r with r′ in nonvolatile storage. It
then generates a new random polynomial f ∈ Zq[x] of
degreem−1 such that f(0) = 0.

5. For each distinguishing feature φi, i.e., |µai− ti| >
kσai, the login program chooses new random values
y0ai, y

1
ai ∈ Z

∗
q subject to the following constraints:

µai < ti⇒ f(Pr′(2i)) = y0ai∧f(Pr′(2i+1)) �= y1ai

µai ≥ ti⇒ f(Pr′(2i)) �= y0ai∧f(Pr′(2i+1)) = y1ai

For all other features φi – i.e., those for which |µai−
ti| ≤ kσai, or all features if there have been fewer
than h successful logins to this account since initial-
ization (see Sect. 3.1) – the login program sets y0ai =
f(Pr′(2i)) and y1ai = f(Pr′(2i+1)).

6. The login program replaces the instruction table with
a new table with an entry of the form 〈i, γ′ai, δ

′
ai〉 for

each feature φi. Here,

γ′ai = hpwd
′ ·gy

0
ai+Gr′,pwd′ (2i) mod p

δ′ai = hpwd
′ ·gy

1
ai+Gr′,pwd′ (2i+1) mod p

where y0ai, y
1
ai are the new values generated in the pre-

vious step.

Step 4 is again noteworthy. In this case, fa is de-
termined by choosing a random polynomial f of degree
m−1 such that f(0) = 0. The polynomial fa is then im-
plicitly determined as fa(x) = f(x)+ logg(hpwda), where
the logarithm is taken modulo p due to the construction
of γ′ai and δ′ai in Step 6. This roundabout method of re-
randomizing fa in order to maintain the same hpwda =
gfa(0) mod p is needed because the login program cannot
compute logg(hpwda).

6 An instance based on vector spaces

In this section we describe a second candidate instance
of the technique outlined in Sect. 4. This solution ad-
dresses a potential weakness of the scheme of Sect. 5,

F. Monrose et al.: Password hardening based on keystroke dynamics 77

namely that any m of the 2m values in the instruction
table could conceivably be used to reconstruct hpwda.
That is, the attacker need not limit his attempts at re-
constructing hpwda to those involving one value from
each row of the table since, for example, the topmost
m values in the instruction table could be used to re-
construct hpwda if none of the first m/2 features are
distinguishing. It would seem that our technique could
be strengthened if the secret sharing scheme used to
populate the table would allow reconstruction only with
one value from each row. Here we present such a secret
sharing scheme and the corresponding instance of our
method.

6.1 A secret sharing scheme based on vector spaces

We first briefly present the secret sharing scheme based
on vector spaces that we use in our construction.
Vector-space secret sharing schemes have been studied
extensively (e.g., [4]). The scheme presented here is
based on similar ideas, though it is tuned for use in
our application. For example, this sharing scheme re-
quires no information other than the shares to recon-
struct the secret; i.e., no additional “public information”
is needed. Moreover, the m pairs of shares {s0i , s

1
i }1≤i≤m

are constructed from the secret s ∈ Z∗q so that s can
be reconstructed from a set of shares if and only if
that set contains one share from each pair. That is,
in secret sharing parlance, the access structure is Γ =
{{sb(i)i }1≤i≤m | b ∈ T }, which corresponds precisely to
our needs in this application. The secret sharing scheme
works as follows:

1. The dealer3 chooses random, linearly independent
(column) vectors w01, . . . , w

0
m ∈ Z

m
q such that

s= det(w01, . . . , w
0
m) mod q.

2. The dealer computesm random vectors u1, . . . , um so
that

∀b ∈ T : det(u
b(1)
1 , . . . , ub(m)m)≡ 1 mod q (1)

where

u
b(i)
i =

{
ei if b(i) = 0
ui if b(i) = 1

and ei is the unit vector with a 1 in position i and 0 in
all other positions.

3. The dealer computes vectors w11, . . . , w
1
m ∈ Z

m
q as

w1i = (w01, . . . , w
0
m) ·ui, with all computations per-

formed modulo q.
4. Each share sji is defined as sji = wji .

An efficient algorithm to generate u1, . . . , um so that
they contain significant randomness and satisfy (1) is
as follows. The dealer first chooses an upper-triangular

3 Secret sharing schemes are often presented in terms of a dealer
who creates and distributes shares of the secret. We adopt this
terminology for this section.

matrix U ′ = (u′1, . . . , u
′
m) that has 1 for each diagonal

element and random elements of Zq above the diagonal.
Then the dealer sets (u1, . . . , um) = Π ·U ′ ·Π−1 where
Π = (π1, . . . , πm) is any permutation matrix (i.e., the
identity matrix with columns permuted). For the pur-
poses of secret sharing alone, setting Π to be the identity
matrix suffices. In Sect. 6.2, however, we will tune Π for
our application.

Theorem 1. The scheme in Steps 1–4 is a secret sharing
scheme for access structure Γ.

Proof. First we show that for any b ∈ T , the secret s

can be reconstructed from {sb(i)i }1≤i≤m by arranging the

vectors w
b(i)
i in ascending order of i in a matrix and com-

puting the corresponding determinant:

det(w
b(1)
1 , . . . , wb(m)m) mod q

= det(w01, . . . , w
0
m) ·det(u

b(1)
1 , . . . , ub(m)m) mod q

(1)
= det(w01, . . . , w

0
m) mod q

= s mod q

We now prove that given any set of shares that con-
tains neither w0l nor w1l , for some l, any element of Z∗q
remains possible for the secret. Let ui,j denote the ith
element of uj . By the construction above,

ul,j ·w
0
l = w1j −

∑
1≤i≤m
i�=l

ui,j ·w
0
i mod q (2)

for any j �= l (and 1 ≤ j ≤m). Let ûl,j, j �= l, and ŵ0l
be values that satisfy (2) for j �= l when ul,j = ûl,j
and w0l = ŵ0l . Such values must exist due to the con-
struction of the shares. Then for any x ∈ Z∗q , setting

ul,j = ûl,j ·x−1 mod q, j �= l, and w0l = ŵ0l ·x mod q also
satisfies (2) for j �= l. Since s = det(w01, . . . , w

0
m) mod q

and since

det(w01, . . . , ŵ
0
l ·x, . . . , w

0
m) mod q

= x ·det(w01, . . . , ŵ
0
l , . . . , w

0
m) mod q

it follows that any element of Z∗q remains possible for the
secret. �

6.2 Hardened password generation based on vector spaces

In this method, hpwda is expressed as the determinant
of a matrix over Zq, where q is chosen as in Sect. 5. Spe-
cifically, when an account is initialized, m linearly inde-
pendent (column) vectors va1, . . . , vam ∈ Z

m
q are chosen

at random from Zmq . The hardened password is hpwda =
det(va1, . . . , vam) mod q. The instruction table initially
contains an entry of the form <i, αai, βai> for each feature
φi, where

αai = vai+Gr,pwda(2i) mod q

β
ai
= vai+Gr,pwda(2i+1) mod q

78 F. Monrose et al.: Password hardening based on keystroke dynamics

where r is chosen randomly from {0, 1}κ and stored in
nonvolatile storage, and G is a pseudorandom function
family such that for any K, GK : Zq → Zmq . Note that
at initialization, and more generally when there are no
distinguishing features, the “shares” in αai and β

ai
are

the same (albeit encrypted under different outputs from
Gr,pwda). This is reasonable since when there are no dis-
tinguishing features, our approach offers no additional
security over that offered by pwda.

The login process for the lth login attempt to a is as
follows. Let pwd′ denote the sequence of characters that
the user has typed:

1. For each φi, the login program assigns

vi =

{
αai−Gr,pwd′(2i) mod q if φi(a, l)< ti
β
ai
−Gr,pwd′(2i+1) mod q if φi(a, l)≥ ti

The login program now holdsm vectors {vi}1≤i≤m.
2. The login program decrypts the history file, once with

det(v1, . . . , vm) mod q and once with − det(v1, . . . ,
vm) mod q. If either of these decryptions yields a prop-
erly formed plaintext history file, then the login pro-
gram sets hpwd′ to be whichever of ± det(v1, . . . ,
vm) mod q successfully decrypted the history file. If
neither decryption yielded a properly formed history
file, then the login is deemed unsuccessful and the login
procedure halts here.

3. The login program updates the data in the history file,
computes the standard deviation σai and mean µai for
each feature φi over the last h successful logins to a,
and the feature descriptor ba for this account. The lo-
gin program encrypts the new history file with hpwd′

(i.e., hpwda), and overwrites the old history file with
this new encrypted history file.

4. The login program generates a new random r′ ∈
{0, 1}κ and replaces r with r′ on stable storage. It
then generates new random, linearly independent vec-
torsw1, . . . ,wm ∈Z

m
q such that det(w1, . . . , wm) mod

q = hpwd′.
5. The login program takes one of the following two steps,

depending on whether there are distinguishing fea-
tures:
(a) If there are no distinguishing features, then the

login program sets v0ai = v1ai = wi for each 1≤
i≤m.

(b) Otherwise, the login program generates new
random vectors u1, . . . , um ∈ Z

m
q such that

∀b ∈ T (ba) : det(u
b(1)
1 , . . . , ub(m)m)≡±1 mod q (3)

where

u
b(i)
i =

{
ei if b(i) = 0
ui if b(i) = 1

and ei is the unit vector with a 1 in position
i and a 0 in all other positions. Then for each

distinguishing feature φi, the login program
chooses new random vectors v0ai, v

1
ai ∈ Z

m
q sub-

ject to the following constraints, where W =
(w1, . . . , wm):

µai < ti⇒ v0ai = wi∧v
1
ai �=W ·ui

µai ≥ ti⇒ v0ai �= wi∧v
1
ai =W ·ui

For all other features φi – that is, those for
which |µai− ti| ≤ kσai – the login program sets
v0ai = wi and v1ai =W ·ui.

6. The login program replaces the instruction table with
a new table with an entry of the form 〈i, α′ai, β

′
ai
〉 for

each feature φi. Here

α′ai = v0ai+Gr′,pwd′(2i) mod q

β′
ai
= v1ai+Gr′,pwd′(2i+1) mod q

where v0ai, v
1
ai are the new vectors generated in the pre-

vious step.

To perform Step 4 efficiently, the dealer can select any
factorization hpwd′ =

∏2m
i=1 ηi mod q of hpwd′. Then the

dealer sets (w1, . . . , wm) = Tup ·Tlo mod q, where Tlo, Tup
satisfy Tlo[i, j] = Tup[j, i] = 0 for 1 ≤ i < j ≤m, Tlo[i, j]
and Tup[j, i] are random elements of Zq for 1≤ j < i≤m,
and {Tlo[i, i], Tup[i, i]}1≤i≤m = {ηi}1≤i≤2m.

The vectors u1, . . . , um can be computed efficiently as
described in Sect. 6.1. The construction is tuned to the
application by allowing ±1 for the diagonal entries of U ′

and choosing the permutation matrix Π subject to the
constraint that if φi1 , . . . , φid are the distinguishing fea-
tures for this account, then {πj}1≤j≤d = {eij}1≤j≤d. In
particular, this stipulation ensures (with high probabil-
ity) that v0ai �= v1ai for each 1 ≤ i ≤m when created in
Step 5b.

A property of this scheme is that when an off-line
attacker decrypts the instruction table with a candi-
date password pwd′ to yield vectors {v̂0ai, v̂

1
ai}1≤i≤m, the

only combinations of these vectors that could conceivably
yield hpwda are of the form det(v̂

b(1)
a1 , . . . , v̂b(m)am) mod q

for some b ∈ T . That is, not any combination ofm vectors
holds the possibility of generating hpwda.

As in Sect. 5, the security of this scheme against an
offline attacker depends most directly on how quickly
the attacker can distinguish the cases pwd′ = pwda and
pwd′ �= pwda. When an attacker decrypts the instruction
table with a password pwd′ �= pwda, the result will be 2m
random vectors. If pwd′ = pwda, however, the table may
have more structure. For example, if pwd′ = pwda and
there is only one distinguishing feature φi, then v̂

1
ai will be

expressible as a linear combination of v̂0ai and either v̂
0
aj or

v̂1aj for some j �= i (due to our construction of u1, . . . , um
above). In general, whether there is enough additional
structure for the attacker to efficiently exploit depends on
the number and distribution of distinguishing features.

F. Monrose et al.: Password hardening based on keystroke dynamics 79

7 Implementation

We have implemented the method of Sect. 5.4 to experi-
ment with our techniques. Our implementation provides
three types of functions: initialization, login, and recov-
ery. Initialization is implemented as previously described.
Login differs from the description in Sect. 5.4 by correct-
ing a limited number of errors in the user’s typing (see
Sect. 4). Specifically, the algorithm BuildHpwd that at-
tempts to generate hpwda is shown in Fig. 1. In the lth
login attempt, the parameters to this algorithm are the
entered password pwd′, a (total) feature descriptor b de-
fined by

b(i) =

{
0 if φi(a, l)< ti

1 if φi(a, l)≥ ti

and a maximum number maxErrors of errors to correct.
The algorithm then performs a reconstruction corres-
ponding to each total feature descriptor b′ that differs
from b on at most maxErrors values, i.e., such that the
Hamming distance between b and b′ is at most maxEr-
rors. (In Fig. 1, the Hamming distance between b and b′

is denoted by distance(b, b′), and the result of reconstruct-

ing according to b′ is denoted reconstruct({sb
′(i)
i }1≤i≤m).)

Note that these feature descriptors b′ are examined in
order of increasing Hamming distance from b. In this way,
the algorithm quickly completes when b extends or is
similar to the account’s feature descriptor as computed
during the previous successful login.

This design of BuildHpwd also renders it useful as
a recovery routine. Recovery is intended for use in cir-
cumstances where the user finds herself unable to gen-
erate her correct hardened password after repeated at-
tempts, due to a sharp change in her typing patterns.
We show in Sect. 8 that this should be a rare occurrence
for an appropriately tuned system, but it is neverthe-
less one that must be anticipated. The BuildHpwd al-
gorithm can be used as a recovery algorithm by setting
maxErrors =m; that is, the recovery program decrypts
all instruction table entries using the password pwda
(provided by the user) and then exhaustively searches
to find hpwda. Again, because BuildHpwd examines fea-
ture descriptors b′ in order of increasing Hamming dis-

Fig. 1. Algorithm for building hpwd

tance from b, recovery will succeed quickly when a user
types similarly to how she previously typed the password.
Other recovery techniques are possible, such as addi-
tionally storing the hardened password encrypted under
a much stronger secret that can be accessed only with
administrator assistance or with an additional hardware
token.

In experimenting with this implementation, we have
found that our techniques should be accompanied by user
education regarding the fact that the user’s typing pat-
terns are being taken into account in the login process. In
particular, a user should be instructed that when she fails
to log in the first time, she should avoid the temptation to
type the password particularly slowly or methodically on
the second try, as people often do for normal password lo-
gins. Rather, the user should simply attempt to type the
password as she normally would.

8 Empirical analysis

In order to evaluate the viability of our approach, we de-
veloped and deployed an experiment to collect password
typing measurements from users. Specifically, we replaced
the basic-auth function of a Netscape Enterprise Server
3.0 in active use with an implementation that uses a Java
applet to record each user’s keystroke features (keystroke
durations and latencies between keystrokes) when typ-
ing her password. On this web server, all privileged users
used the same password to access the password-protected
pages. This provided an interesting case study, since it
enabled a direct comparison of user typing behavior on
the same password. The password used in this experi-
ment had eight characters (i.e., m = 15), but because it
may still be in active use, we cannot disclose it here.
Login measurements were recorded for approximately 6
months. For the discussion in this section, we use data
gathered from the 20 users for which we have at least 5
logins recorded in which she typed the correct text pass-
word on her usual keyboard, as reported by the user. In
total, this analysis is based on 481 recorded logins, in all
of which the user typed the correct password.

The goal of our experiment was to empirically eval-
uate the number of distinguishing features for the aver-
age user, the entropy of users’ distinguishing features,
and the false negative rate associated with our technique.
The number of distinguishing features for the average
user is important because the strength of our proposal is
enhanced if the number d of distinguishing features for
a user is large relative to the number m of features over-
all. However, this alone is not enough to ensure that our
scheme offers a significant increase in security. To see why,
suppose for an extreme case that all users could be parti-
tioned into “slow typists” and “fast typists”: slow typists
have the property that for any of their distinguishing fea-
tures φi, µai > ti (where a is the user’s account), and fast
typists have the property that µai < ti for all of their dis-
tinguishing features φi. Then even if all of an account’s

80 F. Monrose et al.: Password hardening based on keystroke dynamics

features are distinguishing, the attacker needs to examine
only two possibilities upon guessing a password pwd′ – the
values in the first column of the (decrypted) instruction
table, and the values in the second column. Consequently,
the entropy of users’ distinguishing features (defined be-
low) is at least as important to our scheme as the number
of distinguishing features.

The false negative rate measured in our experiments
is the percentage of login attempts by the legitimate user
that would have failed to generate the correct hardened
password, due to variations in the measured features of
her typing. Clearly the false negative rate is essential to
evaluating the usability of our technique. For complete-
ness, we also evaluate the false positive rate, calculated as
the percentage of impersonations per login (i.e., the per-
centage of accounts other than the user’s own to which
each login would have succeeded), averaged over all logins
by all users. The false positive rate is a common meas-
ure of biometric techniques, but again is not of primary
concern to us here; see Sect. 3.2.

We evaluated these measurements for varying values
of k, where a feature φi is distinguishing if |µai− ti|>kσai
(see Sect. 3.1), and for varying numbers of error correc-
tions (the maxErrors parameter of Fig. 1). In general,
a lower value of k increases the number of distinguish-
ing features per user and thus increases the sensitivity
of the login to user typing patterns. On the other hand,
a higher value of k makes it easier for the user to log in,
but tends to decrease the number of distinguishing fea-
tures per user.

To simplify our analysis, all of the recorded logins for
an account a were used to compute µai and σai. In par-
ticular, we ignored the parameter h. A side effect of this
simplification is that unlike varying k, varying the num-
ber of errors corrected does not impact our computed
entropy measurement or the average number of distin-
guishing features for given values for t1, . . . , tm. Varying
the number of errors corrected does, however, factor into
our calculation of false positives and false negatives.

8.1 Entropy due to keystrokes

Fundamental to our empirical evaluation is the meas-
ure of keystroke entropy we chose, which we now de-
scribe. As described above, all users employ the same
password in our experiments. Intuitively, our measure of
entropy should capture the amount of remaining uncer-
tainty present in hpwda for a randomly chosen account a.

More specifically, we would like to compute the en-
tropy of the feature descriptor of a randomly chosen ac-
count. However, this is complicated by the fact that a fea-
ture descriptor may (and typically will) have undefined
values. For example, suppose that |A|=m, that each ac-
count has only a single distinguishing feature, and that
no feature is distinguishing for two accounts. Then the
Shannon entropy of the feature descriptor of a randomly
chosen account a would seem to be at least logm, due

to the uncertainty in the position i of the account’s dis-
tinguishing feature (i.e., ba(i) �=⊥). Nevertheless, an at-
tacker knowing pwda need only attempt to reconstruct
hpwda using at most two different (total) feature descrip-
tors, for example, b such that b(i) = 0 for each 1≤ i≤m,
and b such that b(i) = 1 for each 1≤ i≤m.4

As a tool to better capture the entropy available due
to keystrokes, we define a cover to be a function C from
accounts to total feature descriptors such that C(a) ∈
T (ba). That is, a cover maps each account a with fea-
ture descriptor ba to a (total) feature descriptor that ex-
tends ba. Given a cover, we can evaluate the entropy of
C(a) under a random choice of a, in a way that will be
defined below. We then choose a cover that minimizes
this entropy, and take this cover’s entropy as “the en-
tropy due to keystrokes”. This provides a more conser-
vative evaluation of the entropy due to keystrokes, be-
causemultiple accounts canmap to the same total feature
descriptor under C. So, in the example of the previous
paragraph, all accounts can map to at most two such
descriptors.

Guessing entropy [5, 21] is a natural way to define
the entropy of a cover. Let Img(C) = {b | ∃a ∈A : C(a) =
b}, and wC(b) = |{a ∈ A | C(a) = b}|/|A|. If we denote
Img(C) = {b1, . . . , bl} such that wC(b1)≥ wC(b2)≥ . . . ≥
wC(bl), then the guessing entropy of the cover C is

EC =

|Img(C)|∑
i=1

(i ·wC(bi))

Intuitively, the guessing entropy is the expected number
of feature descriptors in Img(C) that an attacker would
need to examine (and perform the corresponding recon-
struction) to find hpwda for a randomly chosen account a.
Moreover, this expected value supposes that the attacker
knows the “weight” wC(b) of each element in Img(C)
(plus the password itself) and thus examines elements
of Img(C) in an optimal order to minimize this expected
value. As described above, in the worst case an attacker
will know Img(C) and wC for a cover C that minimizes
EC, and so it is this cover we use in our computations of
Sect. 8.2. In practice, however, it is unlikely that an at-
tacker could know such a cover, and so we believe our
analysis to be very conservative.

8.2 Performance evaluation

Our analysis methodology consisted of the following steps
for each value of k. We first found values D and L that

4 This example also illustrates that the use of pattern classifiers
that aim to separate a population given some similarity measure
(e.g., linear discriminant analysis; see [7]) would not necessar-
ily yield good results for our purposes. That is, in the example
above the distinguishing feature for each account could be used by
a classifier to perfectly separate the population. Nevertheless, our
scheme would not leverage this separation to make the attacker’s
task more difficult, since again the attacker need only attempt two
different feature descriptors.

F. Monrose et al.: Password hardening based on keystroke dynamics 81

maximized the guessing entropy, when ti =D for each du-
ration feature φi and when ti = L for each latency feature
φi. More specifically, for each pair of candidate integer
values D and L in the ranges 50ms ≤D ≤ 150ms and
50ms ≤ L ≤ 150ms, we computed the feature descrip-
tor for each account and a cover C for these feature de-
scriptors with minimum guessing entropy. We then chose
a pair D, L that resulted in the highest guessing entropy
from this calculation. We thereby captured the guessing
entropy faced by the attacker in the case that the system
was configured with optimal values ofD and L.

False negatives were computed by calculating the per-
centage of each account’s logins that would have failed
in logging into that user’s account, given these values of
D, L and a number of error corrections. False positives
were computed by calculating the average percentage of
impersonations per login given these values of D and L
and a number of error corrections. If there were multiple
D, L pairs that yielded the same maximum guessing en-
tropy as computed above, thenD and L were chosen from
among them as the pair yielding the smallest sum of false
positives and false negatives. The average number of dis-
tinguishing features d per user given k,D, and L was then
computed. Note that even though the number of error
corrections is not factored into the calculation of the num-
ber of distinguishing features for a given set of k,D, andL
values, it does factor into the calculation of false negatives
and positives, and consequently into the choice of the best
D and L. This results in a different curve per number of
error corrections for the average number of distinguish-
ing features for the best D, L pair. These curves are are
qualitatively the same, however, and so Fig. 3 shows the
average of these curves over the cases of 0–3 corrections.

The results of this analysis are shown in subsequent
figures. In Fig. 2, the guessing entropy is shown for values
of k ranging from 0.1 to 0.65. Note that the choice of k =
0.1 yields a guessing entropy of 10.5, which is the max-
imum possible guessing entropy given the number of users
(20) in our study. Moreover, this choice yields roughly 14
distinguishing features for the average account, as shown
in Fig. 3. Naturally, the entropy and number of distin-
guishing features decreases as k increases.

Fig. 2. Guessing entropy as a function of k

Fig. 3. Average number of distinguishing features

The implications of these numbers become clear only
in light of the false negative curves for varying values of
k and varying numbers of error corrections. These curves
are shown in Fig. 4. Each of these four graphs shows the
false negative percentages for a fixed number of error cor-
rections. Again, for completeness, false positive curves are
also included.

Figure 4 demonstrates that the value of k yielding
a reasonable false negative rate when there are no error
corrections is very large, and indeed beyond the range
of analysis that we were able to complete. For such
a large value of k, there will tend to be few distinguish-
ing features per account and low entropy associated with
keystroke patterns; see Figs. 2 and 3. Consequently, we
conclude that correcting no errors (and similarly, one
error) is a suboptimal approach. In examining the graphs
for three error corrections, we see that the false nega-
tive rate is under 10% in the vicinity of k = 0.2. This is
a reasonable false negative rate that is coupled with high
guessing entropy; see Fig. 2. Therefore, choosing a small
value for k and correcting for three errors would seem to
be a good configuration for our system.

We reiterate that the false positive curves in Fig. 4 are
of little interest to us here (see Sect. 3.2). They do, how-
ever, show why we do not rely on keystroke patterns alone
to authenticate users. Indeed, in the configurations we
suggest above – for example, k = 0.2 and correcting three
errors – the false positive rate is greater than 20%. Thus
we do not employ keystrokes alone, but rather simply use
them to augment the strength of passwords.

In the analysis above, we chose a D, L pair based
on data that had been collected previously, and then
computed various statistics using this pair. Since in prac-
tice D and L need to be set in advance of use, a nat-
ural question is how difficult it is to choose close-to-
optimal values for D and L. To address this issue we
illustrate in Fig. 5 how guessing entropy varies with D
and L. There are two relevant points illustrated. First,
there are significant ranges for both D and L that yield
substantial guessing entropy. That is, guessing entropy
does not appear highly sensitive to small variations of
D and L. As a result, in practice it should be sim-

82 F. Monrose et al.: Password hardening based on keystroke dynamics

Fig. 4. False positive (FP) and false negative (FN) percentages

ple to choose D and L that yield significant entropy:
our data suggests that 90ms ≤ D,L ≤ 110ms should
suffice. Second, the guessing entropy is more sensitive
to variations in D than in L. This is consistent with
previous works that have found keystroke durations to
be more variable among users than keystroke latencies
(e.g., [27]).

Fig. 5. Guessing entropy as a function of D and L

We remind the reader that all of the foregoing analy-
sis is based on a relatively small trial of our techniques:
20 users, 481 logins, and 1 password. It is thus difficult to
draw firm conclusions as to the effectiveness of our tech-
niques, and further trials are thus appropriate. That said,
all evidence in our trial suggests that our techniques offer
significantly improved security and adequate usability.

9 Conclusion

We have presented a novel approach for hardening pass-
words by exploiting the keystroke dynamics of users. Our
approach enables the generation of a long-term secret
(the hardened password) that can be tested for login pur-
poses or used for encryption of files, entry to a virtual pri-
vate network, etc. Our technique increases the time that
it would take an attacker to exhaustively search for this
hardened password (or the text password used to gener-
ate it), and can be used in conjunction with salting to slow
the attacker further.

Our analysis suggests that our technique is viable
for use in practice. It adapts to gradual changes in
a user’s keystroke dynamics over time, while still gener-
ating the same hardened password. Furthermore, using
recorded keystroke data we have provided evidence that

F. Monrose et al.: Password hardening based on keystroke dynamics 83

our scheme both improves upon the security of conven-
tional passwords and is easy to use by the average user.
There remains a small risk in our scheme that due to
a sudden shift in typing behavior, a user will be unable to
log into her account. This risk can be minimized if the use
of our scheme is restricted to local logins on the same key-
board (e.g., on laptops). In addition, our scheme can be
coupled with recovery mechanisms, as we have described.

Though we have empirically validated our techniques
only for keystroke behavior, it should be clear that they
naturally adapt to other biometrics. That is, for any re-
peatable, unpredictable physical phenomenon for which
one can measure features, these features can be used in
place of the keystroke durations and inter-keystroke la-
tencies examined in this paper. Our ongoing work focuses
on the use of other biometric measurements in this way
(e.g., [24, 25]).

Acknowledgements. We are particularly thankful to Daniel Blei-
chenbacher, who suggested improvements to the original scheme of
Sects. 5.1 and 5.2 to address potential weaknesses. We are grateful
to Markus Jakobsson and Amin Shokrollahi for insightful discus-
sions. Phil MacKenzie and the anonymous referees for the Sixth
ACM Conference on Computer and Communications Security pro-
vided helpful comments that improved the presentation of an ear-
lier version of this paper.

References

1. Bleha S, Slivinksy C, Hussein B (1990) Computer-access se-
curity systems using keystroke dynamics. IEEE Trans Pattern
Anal Mach Intell 12:1217–1222

2. Bleichenbacher D, Nguyen P (2000) Noisy polynomial inter-
polation and noisy Chinese remaindering. In: Preneel B (ed)
Advances in cryptology – EUROCRYPT 2000. (Lecture notes
in computer science 1807) Springer, Berlin Heidelberg New
York, pp 53–69

3. Bohannon P, Jakobsson M, Srikwan S (2000) Cryptographic
approaches to privacy in DNA databases. In: Proceedings of
the 2000 International Workshop on Practice and Theory in
Public Key Cryptography, Melbourne, Australia, 18–20 Jan-
uary

4. Brickell EF (1989) Some ideal secret sharing schemes. J Com-
bin Math Combin Comput 9:105–112

5. Cachin C (1997) Entropy measures and unconditional secu-
rity in cryptography. (ETH series in information security and
cryptography, vol 1) Hartung-Gorre, Konstanz, Germany

6. Davida GI, Frankel Y, Matt BJ (1998) On enabling secure
applications through off-line biometric identification. In: Pro-
ceedings of the 1998 IEEE Symposium on Security and Pri-
vacy, Oakland, Calif., 3–6 May, pp 148–157

7. Duda R (1973) Pattern Classification and Scene Analysis. Wi-
ley, New York

8. Ellison C, Hall C, Milbert R, Schneier B (2000) Protecting
secret keys with personal entropy. Future Gen Comput Syst
16:311–318

9. Feldmeier D, Karn P (1990) UNIX password security – Ten
years later. In: Advances in cryptology – CRYPTO 1989.
(Lecture notes in computer science 435) Springer, Berlin Hei-
delberg New York

10. Gaines R, Lisowski W, Press S, Shapiro N (1980) Authenti-
cation by keystroke timing: some preliminary results. (Rand
report R-256-NSF) Rand Corporation, Santa Monica, Calif.

11. Guruswami V, Sudan M (1998) Improved decoding of Reed-
Solomon and algebraic-geometric codes. In: Proceedings of the
39th IEEE Symposium on Foundations of Computer Science,
Palo Alto, Calif., 8–11 November, pp 28–37

12. Horng G (1995) Password authentication without using
a password table. Inform Process Lett 55:247–250

13. Joyce R, Gupta G (1990) Identity authorization based on
keystroke latencies. Comm ACM33:168–176

14. Juels A, Wattenberg M (1999) A fuzzy commitment scheme.
In: Proceedings of the Sixth ACM Conference on Computer
and Communication Security, Singapore, 1–4 November, pp
28–36

15. Klein D (1990) Foiling the cracker: a survey of, and improve-
ments to, password security. In: Proceedings of the Second
USENIX Security Workshop, August, 1990

16. Lin CH, Chang CC, Wu TC, Lee RCT (1991) Password
authentication using Newton’s interpolating polynomials. In-
form Syst 16:97–102

17. Leggett G, Williams J (1988) Verifying identity via keystroke
characteristics. Int J Man Mach Stud 28:67–76

18. Leggett G, Williams J, Umphress D (1989) Verification of user
identity via keystroke characteristics. In: Carey JM (ed) Hu-
man factors in management information systems. Norwood,
New York

19. Lennon RE, Matyas SM, Meyer CH (1981) Cryptographic au-
thentication of time-invariant quantities. IEEE Trans Comm
29:773–777

20. Manber U (1996) A simple scheme to make passwords based
on one-way functions much harder to crack. Comput Secur
15:171–176

21. Massey JL (1994) Guessing and entropy. In: Proceedings of
the 1994 IEEE International Symposium on Information The-
ory, Trondheim, Norway, 27 June – 1 July, p 204

22. Menezes AJ, van Oorschot PC, Vanstone SA (1997) Handbook
of applied cryptography. CRC, Boca Raton, Fla.

23. Monrose F, Rubin A (1997) Authentication via keystroke dy-
namics. In: Proceedings of the Fourth ACM Conference on
Computer and Communications Security, Zurich, Switzerland,
2–4 April, pp 48–56

24. Monrose F, Reiter MK, Li Q, Wetzel S (2001) Cryptographic
key generation from voice (extended abstract). In: Proceed-
ings of the 2001 IEEE Symposium on Security and Privacy,
Oakland, Calif., 13–16 May, pp 202–213

25. Monrose F, Reiter MK, Li Q, Wetzel S (2001) Using voice
to generate cryptographic keys. In: Proceedings of the 2001
Speaker Recognition Workshop, Crete, Greece, 18–22 June,
pp 237–242

26. Morris R, Thompson K (1979) Password security: A case his-
tory. Comm ACM 22:594–597

27. Omote K, Okamoto E (1999) User identification system based
on biometrics for keystroke. In: Proceedings of the Second In-
ternational Conference on Information and Communication
Security, Sydney, Australia, 9–11 November

28. Power R (2001) 2001 CSI/FBI computer crime and security
survey. Comput Secur Issues Trends 7

29. Rivest RL (1990) Cryptography. In: van Leeuwen J (ed) Hand-
book of theoretical computer science. Elsevier, Amsterdam,
pp 717–755

30. Robinson JA, Liang VM, Chambers JA, MacKenzie CL (1998)
Computer user verification using login string keystroke dy-
namics. IEEE Trans Syst Man Cybern 28:236

31. Shamir A (1979) How to share a secret. Comm ACM 22:612–
613

32. Soutar C, Tomko GJ (1996) Secure private key generation
using a fingerprint. In: Proceedings of the Cardtech/Securetech
Conference, pp 245–252

33. Spafford E (1992) Observations on reusable password choices.
In: Proceedings of the Third USENIX Security Symposium

34. Wu T (1999) A real-world analysis of Kerberos password se-
curity. In: Proceedings of the 1999 Network and Distributed
System Security Symposium, San Diego, Calif., 3–5 February

