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SUMMARY

Developing concurrent applications is not a trivial task. As programs grow larger and become more
complex, advanced concurrency control mechanisms are needed to ensure that application consistency
is not compromised. Managing mutual exclusion on a per-object basis is not sufficient to guarantee
isolation of sets of semantically-related actions. In this paper, we consider ‘atomic blocks’, a simple and
lightweight concurrency control paradigm that enables arbitrary blocks of code to access multiple shared
objects in isolation. We evaluate various strategies for implementing atomic blocks in Java, in such a way
that concurrency control is transparent to the programmer, isolation is preserved, and concurrency is
maximized. We discuss these concurrency control strategies and evaluate them in terms of complexity and
performance. Copyright  2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Writing concurrent programs is a challenging task. While it is well known that shared resources must
be protected from concurrent accesses to avoid data corruption, guarding individual resources is often
not sufficient. Sets of semantically related actions may need to execute in mutual exclusion to avoid
semantic inconsistencies. While databases have native support for such ‘transactional’ constructs, most
concurrent programming languages lack adequate mechanisms to handle this task.

The system model and assumptions of concurrent applications are generally different from those of
databases: Unlike databases, concurrent programs generally manipulate transient data and may not be
able to ‘undo’ a set of actions (rollback). This means that concurrency control mechanisms should avoid
situations where rollback is necessary (such as deadlocks), and should implement conflict avoidance
rather than conflict resolution. This can translate into the use of pessimistic locking strategies instead
of the optimistic strategies often used in databases. Another difference is that the code of a concurrent
application may be arbitrarily complex and may not easily be reduced to read and write operations on
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data items. This is especially true of code that was not developed with concurrency in mind, but is
executed a posteriori in a concurrent context.

Concurrency control mechanisms that implement mutual exclusion of multiple actions in concurrent
applications face a tradeoff: On the one hand, control over shared resources must be acquired in a
conservative way to avoid situations where rollback would be necessary. On the other hand, control over
these shared resources must be held for the shortest amount of time possible to increase concurrency.
While this tension has been extensively studied in databases [1], surprisingly little work has been
performed in the context of concurrent programming languages.

This paper discusses concurrency control mechanisms for implementing atomic sets of actions in
Java, a general-purpose, object-oriented concurrent programming language. The goal is to provide
simple yet efficient mechanisms to implement mutual exclusion on arbitrary sets of objects, in order
to increase concurrency of multi-threaded applications without violating safety. We take advantage of
the object-oriented nature of the language to guarantee isolation in a transparent way and decouple
the declaration of critical sections from the underlying mutual exclusion mechanisms. Code executing
in an atomic block does not need to be aware of concurrency, and existing applications only require
trivial modifications for taking advantage of our mechanisms. Several concurrency control strategies
are presented and evaluated in terms of complexity and performance. While the mechanisms discussed
in this paper have been packaged as a class library for ease of implementation, they could easily be
added to the language through a simple extension of Java’s ‘synchronized’ statement.

This paper makes several contributions: First, we discuss the provision of advanced concurrency
control mechanisms that preserve consistency and isolation of shared objects across multiple operations
in multi-threaded environments. We identify several deadlock-free locking strategies that satisfy the
requirements of our application model—four variants of two-phase locking protocols and a tree-based
locking protocol—and we discuss the benefits and drawbacks of each strategy.

Second, we specifically address the problem of transparent concurrency management in Java. The
mechanisms introduced in this paper permit seamless addition of concurrency control to arbitrary
blocks of Java code, without modifications to the actual code within critical sections. Because
concurrency management is fully decoupled from the application logic, features like the locking
strategy can be modified as late as at runtime, independently of the application’s code.

Finally, we evaluate the cost of transparent concurrency control in Java applications. We make a
comparative analysis of the locking strategies implemented in our framework under various workloads
and we measure the overhead of the techniques used to make concurrency management transparent to
the application’s code.

The rest of the paper is organized as follows. Section 2 introduces background concepts and
presents the motivations of this work. Section 3 briefly discusses related work. Section 4 describes the
various locking policies supported by our Java concurrency control framework. Section 5 discusses the
implementation of atomic blocks in Java using the locking policies previously introduced. Section 6
presents experimental results from our Java implementation, and compares the different policies in
terms of concurrency and runtime performance. Finally, Section 7 concludes the paper.

2. BACKGROUND AND MOTIVATIONS

Consider the simple problem of transferring money from one bank account to another. This transfer
operation must be atomic, in the sense that any other entity accessing these accounts concurrently will
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1 class Bank {
2 void transfer(Account from, Account to, int amount)
3 {
4 atomic {
5 from.withdraw(amount);
6 to.deposit(amount);
7 }
8 }
9 }

Figure 1. Atomic transfer between bank accounts with an hypothetical ‘atomic’ keyword.

see their balance before or after the transfer, but not in between the withdrawal and the deposit. For
instance, a concurrent operation that computes the sum of both bank accounts would return inconsistent
results if it sums the balance of bank accounts after the withdrawal but before the deposit: the sum of
the balances is a semantic invariant that should not be violated.

Databases have native support for such constructs. They guarantee that operations gathered into
transactions satisfy the four so-called ACID properties: atomicity, i.e. transactions executes completely
or not at all; consistency, i.e. transactions are a correct transformation of the state; isolation, i.e. even
though transactions execute concurrently, it appears for each transaction T that others transactions
execute either before T or after T , but not both; and durability, i.e. modifications performed by
completed transactions survive failures. Databases implement this behavior by controlling access to
shared data, and undoing the actions of a transaction that did not complete successfully (roll-back).

The cost of running a transaction in a database is not negligible, and applications that do not need
all four ACID properties could benefit from using more lightweight mechanisms. In this paper we only
focus on isolation guarantees for concurrent applications that essentially manipulate transient data, do
not need durability and never need to abort (mandating arbitrary actions of a concurrent application to
be reversible is incompatible with the goals of keeping concurrency management transparent). Using a
database in this context is obviously inadequate.

In our bank application, application consistency can be preserved by making the withdrawal and the
deposit part of an atomic block that cannot be interrupted by concurrent threads accessing the same
bank accounts. In the rest of this paper, we will refer to the set of operations of an atomic block using
the generic term of ‘transactions’, even though they are not formally equivalent to database transactions
that satisfy all four ACID properties. Figure 1 shows how the bank transfer might be implemented in
Java if the language had an ‘atomic’ keyword for declaring atomic blocks.

In a programming language that does not natively support transactions, like Java, isolation must
be implemented using concurrency control mechanisms. Java’s built-in concurrency support allows
programmers to create multiple threads and let them execute simultaneously. Each Java object contains
a synchronization lock which can be used to implement mutual exclusion: only one thread at a time
can hold the lock. Additional concurrency control mechanisms, such as semaphores, can be easily
constructed using Java objects’ synchronization locks.
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Java defines the ‘synchronized’ keyword to acquire the lock of an object and guard a method or a
block of code. Synchronized methods acquire the lock of the target object or class for the duration
of the method. The more versatile synchronized block construct locks an arbitrary Java object for the
duration of the block. However, it is not possible to atomically acquire the locks of multiple objects for
a synchronized block.

As noted in [2], there are essentially two approaches to solving the bank transfer problem in Java. A
first solution consists in making the ‘transfer’ operation of the bank object a synchronized method (or,
equivalently, associating a binary semaphore to the bank object and acquiring/releasing it before/after
the transfer). The synchronization lock of the bank object is acquired when entering the method and
released upon completion, thus ensuring that no two threads can execute this method concurrently.
This approach systematically serializes concurrent transfers, even if they do not access the same
accounts and thus do not interfere. If the bank manages a large number of account and interferences
are not frequent, this approach is obviously inadequate: it guarantees isolation but significantly limits
concurrency.

The second approach alleviates the limited concurrency problem through the use of multiple locks.
Instead of acquiring a lock on the bank, threads obtain the locks on all account objects involved in the
transaction. This can be implemented using nested synchronized blocks or multiple binary semaphores.
The major problem of this solution is that it introduces risks of deadlock. A deadlock is a form of
liveness interference in that it prevents progress. Two threads performing concurrent transfers on the
same accounts but in the reverse order may block forever: if one thread locks the first account at the
same time as the other thread locks the second account, we run into a deadlock situation because each
thread will try to acquire a lock held by the other thread. Database systems traditionally solve deadlocks
by selectively aborting some transactions. In a concurrent program, it is generally not possible to
detect deadlocks and/or abort transactions, and the appropriate strategy is to avoid deadlock. Deadlock
avoidance may be implemented by imposing a total order on lock acquisition (in our example, we could
for instance acquire the lock in increasing order of account number), but at the price of some increase
in the complexity and size of the application code.

Another problem of this second approach is that it cannot easily be applied to an arbitrary number
of objects (not known statically). For instance, it is not straightforward to implement a method that
takes an array of bank accounts and compute the sum of their balances, because the number of nested
synchronized blocks depends on the number of accounts, which is not known at compile time. The
limitations of Java’s concurrency control mechanisms for transactional operation are further discussed
in [2].

The main motivation of this work is to provide generic mechanisms to solve these kinds of problems.
Isolation mechanisms should have minimal impact on the application’s code (non-intrusiveness) and
should increase concurrency while avoiding deadlocks, i.e. provide both liveness and safety.

3. RELATED WORK

There exist numerous languages or libraries for parallel programming with various levels of
transactional support (see [3] for a survey). They introduce high-level tools and paradigms adapted
to the development of parallel applications, by enabling the decomposition of complex programs into
multiple tasks that can execute concurrently on parallel or distributed architectures. When available,
transactional semantics are generally implemented through distributed commit protocols.
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In contrast, general-purpose programming languages with multi-threading support (such as Java)
generally provide low-level concurrency-control mechanisms like locks, semaphores or monitors that
guarantee mutual exclusion to specific sections of code [4]. While flexible, these mechanisms are not
well adapted to non-trivial problems such as the isolation of multiple concurrent transactions.

For efficiency reasons, database management systems (DBMSs) generally implement advanced
concurrency control mechanisms for executing numerous transactions concurrently while guaranteeing
ACID properties [1]. DBMSs focus on persistent data management and provide no or limited
concurrency control mechanisms for code executing outside of the DBMS.

The mechanisms presented in this paper have a different, less ambitious goal than parallel
programming languages or DBMSs. Instead of defining new tools and paradigms for parallel
programming or transaction management, our goal is to provide a few simple, transparent mechanisms
for increasing the concurrency of Java applications while preserving some limited form of transactional
integrity. These mechanisms can be easily added to existing applications, without the need of a
specialized programming language or deployment of the application’s data in a DBMS.

Java already offers two transaction frameworks: the Java Transaction API (JTA), part of the
enterprise edition of the Java platform (J2EE) [5], and Jini Transactions [6]. The Java Transaction
API is a set of local interfaces between a transaction manager and the parties involved in a distributed
transaction system: the application, the resource manager and the application server. It includes
transactional application interfaces, a Java mapping to the standard X/Open XA protocol and a
transaction manager interface.

While JTA aims at providing a complete set of transactional mechanisms to Java applications, the
Jini Transaction Specification provides a minimal set of protocols and interfaces to allow objects to
implement transactional semantics. The responsibility of actually implementing these semantics is left
to the individual objects that take part in a transaction. Coordination between transaction objects is
achieved through a two-phase commit protocol, which is the most widely used protocol for distributed
transactions.

Both Java transaction frameworks differ from the work presented in the paper by several aspects.
First, both JTA and Jini transactions essentially target distributed transactions, (1) as APIs to a
complete distributed transaction system or (2) as minimal interfaces for distributed coordination
between transactional Java objects. A consequence of distribution is that these frameworks must deal
with situations where transactions abort because of exceptional conditions that affect only some of the
distributed components (such as partial failures or local scheduling conflicts). Finally, JTA and Jini
transactions essentially provide a declarative API to the basic components of a transactional system
and thus require a transaction participant to support specific interfaces and take part to well-defined
protocols. In contrast, the work presented in this paper is more restrictive in that it does not deal with
distributed transactions, it does not guarantee transaction durability nor allow transactions to abort, and
it focuses on providing transparent integration of transactional facilities into the programming language
rather than through a programmatic API.

4. LOCKING POLICIES

To ensure mutual exclusion on a set of shared resources, threads must lock these resources prior to
accessing them, and release the locks when they are no longer needed. The strategy used for acquiring
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T1 : a.op() ; b.op() ; c.op() ; d.op()

T2 : a.op() ; b.op()

T3 : c.op() ; d.op()

Figure 2. Three sample transactions.

and releasing locks is called the locking policy. Locking policies try to maximize concurrency by
minimizing the time during which locks are held. In this paper, we only consider locking policies that
avoid deadlocks and thus do not require undoing partial transaction execution.

In this section, we present several locking policies that offer various tradeoffs in terms of overhead,
concurrency, and required transaction knowledge. A good understanding of these policies is important
for maximizing the performance of a concurrent application. The first few policies are variations of
so-called two-phase locking (2PL) strategies [7], while the last one is a non-2PL policy. Our Java
implementation of atomic blocks can use any of these policies.

To illustrate these locking policies, we consider the following simple example that involves three
transactions T1, T2 and T3 executed concurrently on four objects a, b, c and d (Figure 2). Unlike
typical database transactions, we do not distinguish between read and write operations: we assume that
each object has a set of operations (‘op’ in the figure) that can perform arbitrary accesses to the state
of the object.

4.1. Two-phase locking

The best-known deadlock-free locking policy is two-phase locking (2PL). All objects accessed by a
transaction are locked during the first phase and released during the second phase. It is not possible
to unlock an object before all objects have been locked, or to lock an object once any lock has been
released. There exist several variations of 2PL protocols, some of which are discussed in the rest of
this section.

In order to avoid deadlocks, objects should be locked in an order consistent with a total order on
the objects. We assume that there exists a unique value #o associated with each object o that can
be used to assign ranks to objects. Objects are always locked in increasing rank order, thus avoiding
deadlocks (the order in which resources are unlocked does not matter). In our example, we assume that
#a < #b < #c < #d .

4.1.1. Conservative 2PL

The most basic 2PL protocol is conservative 2PL (also known as static 2PL). With this protocol, all
objects are locked before starting the transaction, and unlocked after the transaction has completed.
Operations of the transaction execute only when all objects are locked.
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Figure 3. Execution of the transactions of Figure 2 with various locking strategies. (a) Conservative 2PL.
(b) Late locking. (c) Early unlocking. (d) Optimal locking.

Figure 3(a) shows an execution history of the transactions of Figure 2 with a conservative 2PL policy.
A transaction is represented by a horizontal line, split into multiple segments that represent individual
operations. We indicate above each operation the object accessed by that operation. Lock acquisition
and release are represented in the figures using the notation L(o) for locking an object o and U(o)

for unlocking o. We consider that each individual operation consumes one unit of time and successful
locking and unlocking takes no time. Therefore, execution of all three transactions take 6 units of time.

4.1.2. 2PL with late locking

A first optimization to conservative 2PL is to wait until an object is actually accessed for locking it.
This technique, known as strict 2PL in the database world, will be referred to as 2PL with late locking
in this paper. As with conservative 2PL, objects are locked in increasing rank order to avoid deadlocks.
The late locking protocol works as follows (Figure 3(b)). Before accessing an object o, the transaction
T checks if o is already locked. If it is not the case, T locks every object o′ accessed by T such that
#o′ ≤ #o and o′ is not yet locked, in increasing rank order. Therefore, the effectiveness of this policy
strongly depends on the order in which objects are accessed. If objects are mostly accessed in the same
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order as their rank, then the late locking policy can significantly increase concurrency over conservative
2PL. On the other hand, if the first object accessed by a transaction is the object with the highest rank,
then late locking is equivalent to conservative 2PL.

4.1.3. 2PL with early unlocking

2PL with early unlocking is another variation of 2PL. However, unlike late locking, the effectiveness
of early unlocking does not directly depend on the order in which objects are accessed. First, all
objects accessed by a transaction are locked at the beginning of the transaction (Figure 3(c)). After
each operation, the protocol checks if the object accessed by the last operation will be accessed again
by the transaction. If this is not the case, the lock on that object is released. In other words, objects are
locked from the begin of the transaction up to the last operation that accesses them.

Early unlocking usually performs better than conservative 2PL. It also generally achieves better
concurrency than late locking, because late locking requires objects to be accessed in the same order as
they are locked to perform optimally. On the other hand, the early unlocking protocol has the drawback
of requiring to know when an object is no longer needed in the transaction, i.e. the application must
provide a description of the transaction for taking advantage of early unlocking.

4.1.4. Generalized 2PL

The last flavor of 2PL discussed in this paper is generalized 2PL. It combines the optimizations of
late locking and early unlocking. Locks can be acquired late and released early as long as the locking
pattern complies with the basic 2PL protocol. In practice, a generalized 2PL protocol usually tries to
acquire locks as late as possible and, when all locks have been obtained, releases them soon as they are
no longer needed. (Note that this might not lead to an optimal 2PL schedule.) With the transactions of
Figure 2, this protocol is almost equivalent to late locking and executes in 5 units of time.

4.2. Tree locking

The deadlock-free 2PL locking policies have in common that no object can be unlocked before all
objects have been locked, and objects must be locked in a predefined order. Tree locking [8] is a non-
2PL policy that avoids these limitations by using different rules to decide when and in which order to
lock and unlock objects. Tree locking is a deterministic, deadlock-free locking policy that is optimal
for our example: it executes all three transactions in 4 units of time, as shown in Figure 3(d) (lock
acquisition and release are not shown in the figure and will be discussed after the tree locking protocol
has been introduced).

Tree locking was originally developed to take advantage of the hierarchical structure of a database,
represented as a tree. Transactions always access data items by following paths in the tree. Any node in
the tree can be locked, and locks held on a node implicitly propagate to all of its children. A transaction
starts by locking‡ the top-most node of the tree. Then, it travels down to the data item to be accessed,

‡For simplification we assume that there is only one type of lock.

Copyright  2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:261–285



ADVANCED CONCURRENCY CONTROL IN JAVA 269

N N

N

a b dc

0

1 2

Figure 4. With tree locking, shared resources are organized in a tree.

locking every intermediate node. A node N can be unlocked when the transaction has obtained all the
locks it needs on N’s children. Once unlocked, a node cannot be locked again. A direct consequence
of this protocol is that the order in which locks are obtained depends on the structure of the tree, not on
an order relation between individual data items.

To increase concurrency of atomic actions in concurrent applications, we use a variation of the tree
locking protocol used in databases. Resources are organized in a tree: data items (i.e. shared objects)
are located on leaves of the trees, and internal nodes are ‘artificial’ objects that impose relationships
between resources and coordinate lock acquisition and release. Since internal nodes are not data
items, the tree does not depend on the physical structure of the data and can dynamically evolve into
configurations that are optimal for the transactions being processed. Details of the tree locking protocol
are given in Appendix A.

The tree locking protocol with the tree of Figure 4 results in optimal execution for the transactions
of Figure 2. It takes only 4 units of time, which is the length of the longest transaction, and there
are always two transactions executing concurrently. Tree locking has, however, the same drawback as
early unlocking: the protocol needs to know when an object is no longer needed in the transaction.
In addition, the runtime overhead of tree locking is the biggest among all protocols presented in this
paper, since more locks need to be acquired and released. Indeed, transactions need to lock the nodes
of the tree, in addition to the data items actually accessed.

4.3. On performance and concurrency

In this section, we have presented several 2PL locking protocols, as well as a non-2PL tree locking
protocol. Each locking protocol has benefits and drawbacks. A general rule is that complex protocols
have more runtime overhead but potentially achieve increased concurrency. Although we will discuss
performance in Section 6, we present a few preliminary observations here.

First, when there is low contention (i.e. it happens rarely that two transactions compete to access
a shared object at the same time), policies that have small runtime overhead perform better. In this
scenario, conservative 2PL is generally the best choice.

However, when there is much contention it is important to maximize concurrency, even at the price
of additional runtime overhead. In these situations, a locking policy like generalized 2PL or tree locking
is more adequate. Experiments show that 2PL policies permit significantly more concurrency than tree
locking with a static tree and random transactions. However, with a tree that is ‘adequate’ for a set of
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transactions (i.e. the structure of the tree is optimized for these transactions), tree locking can increase
concurrency substantially over 2PL protocols. In particular, tree locking appears to be a promising
approach when working with structured data.

The problem of finding a tree that is adequate for a given set of transaction is not trivial. We have
identified four adequacy criteria that characterize a good tree for a given set of transactions (see
Appendix B): (1) The root node of a transaction should be as deep in the tree as possible. (2) The
acquisition of a node must pay off and concurrency can be optimal when transactions access all
resources located below that node. (3) Concurrency is increased if accesses to the resources of a subtree
are adjacent in a transaction. (4) Concurrency is generally increased if shared resources are accessed
by multiple transactions in the same order.

When data are naturally organized in a hierarchical manner and accesses follow structured patterns
(e.g. traversal of a sub-tree), then a good tree can be trivially inferred from the data’s hierarchical
structure. However, when data and accesses are not structured, finding a tree that is optimal for a given
set of transactions appears to be computationally hard (a more detailed discussion can be found in [9])
and we know of no efficient algorithm for computing an optimal tree in general. As a result, we have
primarily focused on heuristics for building a good tree efficiently. To evaluate the effectiveness of tree
locking with unstructured data and transactions, we have implemented a simple greedy algorithm that
produces balanced binary trees where objects are organized according to their frequency and proximity
in the transactions. This algorithm tries to place objects that are close in the given transactions in
the same subtree, with the priority given to objects that are accessed more often. The details of the
algorithm are given in Appendix C. Experiments results with tree locking and the tree construction
algorithm are discussed in Section 6.

5. ATOMIC BLOCKS IN JAVA

This section describes the implementation of atomic blocks in our Java Concurrency Framework (JCF).
We first present the design goals and introduce the notions of atomic object and atomic block. We then
describe the various mechanisms used for providing transparent concurrency management and discuss
the benefits and drawbacks of each of them. For ease of implementation, these mechanisms have been
packaged as a set of Java classes; we do, however, believe that basic support for atomic blocks would
be a desirable extension to the Java language, as proposed at the end of this section.

5.1. Goals

Implementation of atomic blocks in JCF was influenced by the following design goals.

• Transparency: code should not be modified for executing within an atomic block.
• Generality: atomic blocks can be placed around arbitrary Java code.
• Efficiency: atomic blocks should add as little runtime overhead as possible while maximizing

concurrency.
• Separation of concerns: the declaration of an atomic block should be independent of the locking

strategy.
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The first goal—transparency—states that atomic blocks should not be visible by code executing
within the block and should not require modifications to that code. This also means that legacy
code, written without concurrency in mind, can execute safely in a concurrent environment just by
surrounding critical operations with atomic block constructs.

The second goal—generality—requires support for arbitrary code inside atomic blocks, as within a
‘synchronized’ statement. This code can perform arbitrary operations and use any language construct,
as long as it executes in the context of a single thread of control. Transactions do not need to be
described in a separate language, such as SQL, for managing concurrency and maintaining consistency.

The third goal—efficiency—means informally that the runtime overhead of concurrency control
mechanisms should not be higher than the performance improvements resulting from increased
concurrency. On the one hand, serial execution can be implemented with very low runtime overhead,
but no effective concurrency. On the other hand, advanced concurrency control mechanisms have
higher runtime overhead, but also better concurrency. Atomic blocks should try to minimize runtime
overhead and maximize concurrency.

The last goal—separation of concerns—states that the locking strategy used for ensuring isolation
of atomic blocks should be independent of the atomic block declaration. In other words, the
application developer can declare an atomic block without having to know how concurrency control
is implemented, and the system developer can program a locking strategy for atomic blocks without
having to know the application’s code. It follows that it must be possible to configure the locking
strategy at deployment time (or even at runtime) without changes to the application’s code.

Note that JCF does not aim at being a full transaction framework, intended to replace a DBMS.
It rather focuses on transparent mechanisms to ensure isolation and atomicity of concurrent object
invocations and seamless integration with programming language constructs. A consequence of our
transparency goals is that we do not distinguish between read and write operations and we consider a
restricted transaction model that does not guarantee durability and does not allow transactions to abort
(no rollback). JCF can be used, for instance, to maintain consistency of in-memory data structures (e.g.
B-tree, XML data tree) accessed by multiple threads. Such data do not need to be persistent, but its
complex structure and large size can making explicit concurrency control error-prone and subject to
poor performance. JCF hides this complexity by allowing non-trivial operations such as moving data
or traversing subtrees to be performed concurrently on arbitrary nodes without having to explicitly deal
with concurrency control.

5.2. Atomic objects and atomic blocks

An atomic object [10] is an object that can be accessed concurrently by several threads. Even though
accesses are concurrent, an atomic object behaves as if accesses occur one at a time, in an order which is
consistent with the order of invocations and responses. The smallest granularity of atomicity supported
by JCF is the invocation of an atomic object. JCF also provides concurrency control mechanisms that
guarantee isolation of sequences of invocations on atomic objects. Such a sequence of invocations
forms an atomic block.

An atomic object is essentially an application-specific object whose concurrency is managed by
JCF. Application can render an arbitrary object atomic by calling a JCF-specific method (this is a
one-time procedure performed during application initialization). If the application object does not
already behave like an atomic object (i.e. it does not support concurrent invocations), JCF transparently
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1 class Bank {
2 void transfer(Account from, Account to, int amount)
3 {
4 AtomicBlock ab = Atomic.newAtomicBlock(new Object[] {from, to});
5 ab.begin();
6 from.withdraw(amount);
7 to.deposit(amount);
8 ab.end();
9 }
10 }
11 // Initialization
12 for(int i = 0; i < accounts.length; i++)
13 accounts[i] = (Account)Atomic.makeAtomic(accounts[i]);
14
15 // Thread 1:
16 bank.transfer(accounts[0], accounts[1], 1000);
17 // Thread 2:
18 bank.transfer(accounts[1], accounts[2], 2000);
19 // Threads 1 and 2 conflict and execute in isolation
20
21 // Thread 3:
22 bank.transfer(accounts[3], accounts[4], 1500);
23 // Thread 3 executes concurrently with treads 1 and 2

Figure 5. Atomic blocks improve concurrency while ensuring isolation.

serializes invocations to that object. This guarantees that objects remain consistent individually. Global
(or transactional) consistency is maintained using atomic blocks.

An atomic block executes sequences of invocations to atomic objects (and other instructions) in
isolation. It is instantiated with the set of atomic objects that it manages as a parameter, and is
semantically bound to a thread of control. Atomic blocks can be arbitrarily nested in practice, but in that
case—similarly to ‘synchronized’ statements—there exists a risk of deadlock. Atomic blocks provides
two methods, ‘begin’ and ‘end’, that act as delimiters. The code executing between these methods
executes in isolation of other atomic blocks. Atomic blocks are represented by objects that implement
the ‘AtomicBlock’ interface. There are several kinds of atomic blocks that implement different locking
policies.

Figure 5 shows an implementation of the bank application of Section 2 that uses atomic blocks.
Initially, all account objects are made atomic (lines 12–13). In the transfer method, an atomic block
is instantiated with the source and destination account as parameter (line 4). The money transfer is
performed inside the atomic block (lines 6–7), delimited by the invocations to ‘begin’ and ‘end’ on the
atomic block object (lines 5 and 8). The runtime concurrency control mechanisms ensure that the first
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and second transfers (lines 16 and 18), which conflict, execute in isolation. The third transfer (line 22),
which does not conflict with the other transfers, can execute concurrently.

Atomic blocks can be customized in several ways (via overloading of the ‘newAtomicBlock’
method). In particular, they are optionally parameterized by a locking policy, which can be chosen
at runtime (some guidelines for selecting a locking policy are given in Section 5.4). In the case of
tree locking, the programmer can also provide a tree generator, whose function is to construct a tree
adequate for the given transactions. Trees can evolve over time, and it is possible to use different trees
for non-intersecting sets of objects. For locking policies that require a description of the transactions’
structure (tree locking and 2PL policies that implement early unlocking), atomic blocks are further
parameterized by a ‘Transaction’ object, which enumerates the individual operations of the transaction
and the objects they access.

5.3. Intercepting invocations

As previously stated, a major goal of atomic blocks is to manage arbitrary code, without having to
perform modifications to that code. A direct consequence is that the JCF runtime must be able to
transparently perform concurrency control operations during execution of an atomic block. Indeed, all
locking policies discussed in this paper except conservative 2PL acquire and release locks in the middle
of atomic blocks, immediately before or after invocations to atomic objects.

JCF performs dynamic concurrency control management by intercepting invocations to atomic
objects. As part of the process through which objects are made atomic, JCF transparently encapsulates
the application object inside a system-level wrapper that can pre- and post-process any request targeted
to the application object. The wrapper holds a binary semaphore and other data structures used by
JCF to manage concurrent accesses to the application object. Among the operations performed by this
wrapper are object atomicity (if an application object is not atomic, the wrapper serializes invocations
to that object) and block isolation (lock acquisition and release according to the atomic block’s locking
policy).

JCF performs the actual interception of invocations through the well-known technique of object
proxying. A proxy is an object that acts as a surrogate or delegate for another object, and usually
behaves in such a way that the its invokers have no indication that they are dealing with a proxy
instead of the underlying object being proxied (see the proxy design pattern in [11]). Object proxying
is implemented in JCF using one of three approaches: dynamic proxies, static proxy generation and
custom proxies. These approaches are described in the rest of this section.

5.3.1. Dynamic proxies

Dynamic proxies are a mechanism introduced in Java 1.3, which permit the creation of a class that
implement a set of interfaces specified at runtime [12]. A dynamic proxy object receives all invocation
targeted at the proxied object(s) and can perform arbitrary tasks instead of, prior to or after forwarding
the request to its actual target.

JCF’s dynamic proxy implementation permits registration of pre- and post-invocation handlers. Each
locking protocol provides its own invocations handlers, which are registered upon entering an atomic
block and unregistered at its end. Various locking protocols have different needs in terms of invocation
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handlers: conservative 2PL does not use invocation handlers, 2PL with late locking only uses pre-
invocation handlers, 2PL with early unlocking only uses post-invocation handlers, and generalized
2PL and tree locking use both. In addition to pre- and post-invocation handlers, dynamic proxies also
ensure object atomicity.

Dynamic proxies have three drawbacks. First, they are a recent addition to the Java language and are
not widely deployed yet. Second, because of their dynamic nature, they have a non-negligible runtime
overhead. Indeed, dynamic proxies intercept and process requests using Java’s reflection API, which
has a high cost in terms of performance. Finally, dynamic proxies only intercept operations declared
on interfaces. In other words, for using dynamic proxies, all operations of the application object must
be declared in interfaces implemented by that object.

5.3.2. Static proxy generation

The second approach for intercepting invocations consists is generating static proxies for atomic
objects. A static proxy implements the same methods as the actual object. Each method of the static
proxy performs three operations: pre-processing, invocation to the actual object and post-processing.
During pre- and post-processing, the static proxy performs the same concurrency control operations as
dynamic proxies. The actual processing of the request is delegated to the target object through a static
method call.

The static proxy generator uses reflection to discover the methods implemented by application
objects. Proxy generation can happen at compile-time or at runtime. In the first case, the code of the
proxy is generated in a file that must be compiled to produce the proxy class. In the second case, the
proxy is directly generated as bytecode and dynamically loaded in memory by the Java class loading
mechanisms. The latter approach is more convenient because the developer does not need to deal with
proxy classes. It does, however, require runtime permissions that may not be granted to code executing
in a protected environment, such as applets.

Since static proxies intercept and invoke operations on application objects statically, their runtime
overhead is significantly smaller than dynamic proxies. Static proxies also do not suffer from the
same limitations as dynamic proxies, which only intercept invocations to the methods declared on
the interfaces implemented by an object.

5.3.3. Custom proxies

JCF provides a third approach to intercept invocations, in which the developer can explicitly control
how concurrency control is applied to application objects. With this method, the programmer is
responsible for ensuring atomicity of objects, and for calling JCF pre- and post-invocation handlers
at relevant places in the code (concurrency control is explicitly delegated to JCF).

Custom proxies are the most flexible approach, because the programmer can control when and how
concurrency control is applied to application objects. This may lead to fine-grain optimizations, such
as disabling concurrency control for methods that are not required to execute in isolation. However,
custom proxies are also the most ‘dangerous’ approach because the programmer has to comply with a
set of rules that, if not followed, may lead to violations of transaction isolation or deadlocks. In addition,
it requires code modifications, which makes its application to legacy code less straightforward.
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5.4. Design and runtime choices

JCF is a versatile concurrency framework that offers a variety of choices. The locking strategy
influences the concurrency degree of the application, and the interception mechanisms affects the
runtime overhead and in some respects the programming model.

Decisions about the locking strategy can be performed late in the development cycle, as late as at
runtime. It is possible to use multiple locking policies in the same application, with the following
restrictions. All 2PL policies are compatible with each other and any combination of these policies can
be used simultaneously in an application. Tree locking and 2PL are not compatible and they should
not be used to manage the same resources. When using tree locking for a set of objects, all threads that
access these objects concurrently must use the same tree to guarantee isolation. This is enforced by
JCF runtime, which does not allow an object to be part of multiple trees.

The locking policy should be chosen to yield the best performance for the application. The
experimental results presented in Section 6 can give guidelines on how locking strategies behave with
some type of applications. If the application exhibits repeatable access patterns, it may be wise to test
each locking strategy and choose the most efficient prior to deploying the application.

Unlike with locking policies, the criteria for selecting an interception mechanism are not only based
on performance. Transparency and security constraints are other factors that can influence this choice.
Dynamic proxies require almost no modifications to legacy application but are limited to proxying
interfaces and add significant runtime overhead. Static proxies are more efficient and powerful, but
they can be cumbersome to manage and require additional permissions in the case of runtime proxy
generation. Custom proxies are the most flexible approach, but it requires the programmer to perform
substantial modification to his/her code. The runtime impact of the different interception mechanisms
is discussed in greater detail in Section 6. Note that all three approaches are compatible with each
other: objects that use different interception mechanisms can coexist in the same application.

5.5. Limitations and programming pitfalls

Atomic blocks have a few limitations that programmers need to be aware of to ensure correct execution
of concurrent applications.

• Atomic blocks only guarantee isolation of invocations to the objects declared at block
instantiation. In particular, concurrency control is not applicable to primitive types.

• Atomic blocks control concurrency of accesses to shared objects on a per-thread basis. When a
new thread is forked inside an atomic block, isolation is not guaranteed for accesses by the new
thread.

• As discussed previously, some locking strategies are not compatible together and they should
not be used simultaneously for the same set of objects.

• Atomic block operations never throw exceptions. However, the application code within an atomic
block may throw an exception. The programmer is responsible for explicitly terminating an
atomic block, even when an exception is thrown inside the block. Therefore, a good practice
is to include the instructions of an atomic block in a ‘try-finally’ statement and end the atomic
block in the ‘finally’ block. This ensures that all resources and locks acquired by the concurrency
control protocol will be released when exiting the atomic block.
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Note that most of these limitations are due to the fact that atomic blocks are implemented as a library
rather than as an extension of the Java language.

5.6. Atomic blocks as an extension to the Java language

The Java language defines a ‘synchronized’ statement that locks an individual object for the duration
of the associated block. A simple extension to support atomic blocks in the Java language would be
to allow multiple objects as argument of the ‘synchronized’ statement. Without offering the whole
spectrum of concurrency control strategies discussed in this paper, the virtual machine could use a
conservative 2PL policy to lock all objects in a deadlock-free manner. Since conservative 2PL does not
need to know the structure of the transactions in advance, nor does it need to acquire and release locks
during execution of the atomic block, no additional modifications should be performed to the syntax
and semantics of the ‘synchronized’ statement. In contrast, support for other locking strategies would
require additional information to be provided to the Java runtime, e.g. using a thread-specific interface
or extra arguments to the ‘synchronized’ statement.

6. EXPERIMENTAL RESULTS

This section presents experimental results with JCF and the locking policies described in this paper.
These results confirm other studies found in the literature (e.g. in [13]). We also quantify and discuss
the runtime overhead of the different interception mechanisms presented in Section 5.

6.1. The model

For concurrency measurements, we assume that the actions of locking and unlocking an object take a
negligible amount of time. This assumption is realistic with applications where operations that execute
in mutual exclusion are time consuming (e.g. disk access, remote invocation, complex computations).
The goal of these experiments is not to provide absolute performance figures, but rather to measure the
degree of concurrency of an application relative to a serial version of the same application.

For runtime overhead measurements, we concentrate on the cost of concurrency management and
interception mechanisms. For this purpose, we ran transactions with operations that do not perform any
actual processing (empty operations). All tests have been performed with Java 1.3 on a single-processor
PC (P3/750) running Windows NT 4.0.

We have implemented a benchmarking application to compare the different concurrency control
strategies. This application tests the different features of JCF under various workloads. The test
environment permits the specification of the number of concurrent threads, the length of transactions,
the number of objects in the system, the duration of operations, etc. Time consuming operations are
simulated by yielding the processor to other threads for a given amount of time (as an I/O operation
would do, for instance). The transactions are chosen randomly, but the same transactions are used
for all concurrency control strategies. In the following tests, we only used binary trees for tree
locking. The benchmarking application and an implementation of JCF are available at http://www.bell-
labs.com/user/felber/atomic/.
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Figure 6. Low contention tests.

6.2. Low contention tests

We first consider the case of applications where contention is low, i.e. conflicts are infrequent. For
instance, in the example of the bank application, transactions typically have few operations (two for
transfers) and the number of accounts is much larger than the number of concurrent transactions, thus
leading to low contention.

We have run tests with 32 concurrent transactions, each composed of two randomly-chosen
operations, on a set of object of variable size. As the number of object grows, contention decreases.
The experimental results are shown in Figure 6. The ordinate shows the concurrency degree expressed
in percentage with respect to serial execution (i.e. in the case where there is no effective concurrency).

As one can see on the figure, all 2PL locking policies perform well and the concurrency degree
approaches the theoretical optimum (3200%) as the number of object grows and contention decreases.
There is only little gain from using more elaborate 2PL strategies (e.g. generalized 2PL) over strict
2PL.

However, tree locking performs poorly and remains almost constant as the number of object grows§.
This is due to the fact that, with random transaction, there is a 50% likelihood that a transaction with
two operations accesses objects located in different halves of the tree, and contention appears on the
root and intermediary nodes of the tree rather than on the actual object being accessed. This example
demonstrates that tree locking is not suitable for random transactions.

§Figures 6 and 7 show the performance of tree locking with ‘non-optimized’ trees, i.e. without using our algorithm for
construction good trees: there was no noticeable improvement when running these experiments with optimized trees, because of
the random nature of the transactions.
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Figure 7. High contention tests.

6.3. High contention tests

In situations where a large number of threads compete for a small number of resources, contention is
high. This may be the case with resources such as files, I/O devices (disks, printers, network interfaces)
or more generally, application objects that have a large granularity (e.g. a bank object instead of an
individual account). The nature of such applications strongly limits the concurrency degree and, as
contention grows, we can expect only little gain over serial execution.

Figure 7 shows execution of 32 concurrent transactions, each composed of variable number of
randomly-chosen operations, on a set of 16 objects. As one can see on the figure, as the number of
operation per transaction grows and contention increases, the concurrency degree approaches a constant
value approximatively 1.5 times better than serial execution. Conservative 2PL and early unlocking
even show no gain over serial execution starting from 8 (respectively 16) operations per transaction.
Tree locking performs empirically better than 2PL locking policies when contention is high. However,
the difference may not be significant enough to justify the use of tree locking over a 2PL policy.

6.4. Hierarchical data tests

In situations where data can be organized in a hierarchy, it is straightforward to build a tree that matches
this hierarchy and is adapted to tree locking. For instance, XML data can be naturally stored as a tree.
Let a ‘subtree transaction’ be a transaction that accesses every object of some subtree exactly once. We
have performed tests with 32 concurrent subtree transactions on a variable set of objects. Since we only
consider balanced binary trees, the number of objects in the tree is always a power of 2. In addition,
because each transaction accesses all the objects of sub-tree (set), transactions also have a length equal
to a power of 2. The subtree accessed by each transaction is chosen randomly.

Figure 8 shows that, with subtree transactions tree locking performs as much as five or six times
better than 2PL locking policies. This can be explained by the fact that, since the structure of the
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Figure 8. Hierarchical data tests.

tree matches the access patterns of transactions, many transactions that conflict can still execute
concurrently with tree locking. Therefore, the nature of an application and the access pattern of its
transactions have a strong impact on the effectiveness of locking strategies and are the key factor for
choosing the best strategy.

6.5. Tree construction algorithm

When data accesses in a set of transactions are purely random, we noticed that tree locking does not
perform well, independent of the structure of the locking tree. We also showed that for hierarchical data
and structured accesses, tree locking can significantly increase concurrency. We performed additional
experiments to test the effectiveness of the greedy tree construction algorithm presented in Appendix C.
For this purpose, we have generated ‘skewed’ transactions, where the objects accessed are chosen
according to a Zipf distribution [14]. Some objects are accessed much more often than others, making
it important to locate these objects close to each other. For this experiment, we have used short
transactions and a variable number of threads.

The results (Figure 9) show significant improvement with the optimized tree, even though the tree
generated by the algorithm is sub-optimal. Since real-world applications do not generally access objects
at random but according to repeatable patterns, algorithms for generating locking trees adapted to these
patterns could be a promising approach for increasing concurrency of those applications.

6.6. Runtime overhead

In this section, we compare the runtime overhead of the various locking policies and the different
interception mechanisms. For this purpose, we have run experiments with a single thread that executes
a sequence of transactions, each made of 32 empty operations. Since there is only one thread and
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operations take no time, the results reflect the cost of concurrency management when there is no
contention and no effective processing.

Results are shown in Figure 10. We have measured the cost of each locking policy with dynamic
and static proxies. The column labeled ‘no locking’ corresponds to execution of the application with
the interception mechanisms but with no actual concurrency management. Serial locking acquires
and releases a single global lock. 2PL locking policies acquire locks on all objects accessed by the
transaction. Tree locking additionally locks and unlocks intermediary nodes of the tree.

The results are not surprising. Static proxies are clearly more efficient than dynamic proxies.
The cost of using reflection to intercept invocations appears to be significantly bigger than the cost
of concurrency management. In applications that perform time-consuming operations, the runtime
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overhead of dynamic proxies may be negligible in comparison to processing time. However, in
applications that perform short operations, this overhead may become a bottleneck and static proxies
should be preferred.

Among all locking policies, tree locking exhibits the highest overhead. This is easily explained
by additional concurrency management performed on the nodes of the tree. Early unlocking and
generalized 2PL pay the cost of post-invocation filters. Late locking performs slightly better because
it only uses the less costly pre-invocation filters. Conservative 2PL does not use invocation filters at
all and has the smallest overhead among 2PL policies. Finally, serial locking prevents concurrency by
using a single global lock, thus minimizing runtime overhead. While these figures show the benefits of
using simple locking policies, one has to balance the runtime costs with the increased concurrency of
more complex locking policies. For application that perform time-consuming operations, concurrency
must be the key factor for choosing a locking policy and runtime overhead should be ignored.

7. CONCLUSION

In this paper, we have presented mechanisms for implementing atomic sets of actions in Java. These
mechanisms transparently manage isolation on a set of shared objects on behalf of the application, by
increasing concurrency while preserving safety and liveness. They reduce the burden of the developer
of concurrent applications, reduce the likelihood of semantic errors, and have the potential of increasing
concurrency in complex applications.

We have presented various locking policies adapted to our application model, which consider a
simplified form of transactions where operations are performed on transient data (no durability) and
actions never need to be undone. Each strategy has specific benefits and drawbacks, and the choice of
the best strategy ultimately depends on the nature of the application.

We have introduced several techniques used for the implementation of atomic blocks in Java and
given some guidelines for choosing the technique best adapted to a given application. Transparent
concurrency control management is achieved through object proxying. Finally, we have presented
experimental results that illustrate the concurrency degree and runtime overhead of the various
strategies discussed in this paper. These results show that there are tradeoffs between concurrency
degree, runtime overhead, transparency, and flexibility.

We believe that basic mechanisms for atomic blocks would be a relevant addition to the Java
language. A simple yet elegant approach for this purpose, without adopting all the features of our
Java concurrency framework, consists in extending the ‘synchronized’ keyword so that it can take an
array of objects as argument and lock them conservatively using a deadlock-free conservative 2PL
strategy. We are considering implementing this extension in an open source Java compiler.

APPENDIX A. THE TREE-LOCKING PROTOCOL

The tree locking protocol follows these simple rules.

• A transaction T always starts by acquiring the lock on its root node, which is the lowest common
ancestor of all the objects accessed by T .
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Figure A1. Execution of the transactions of Figure 2 with a tree locking protocol. (a) T1 executes in the left branch.
T3 can execute concurrently in the right branch. (b) T1 and T3 do not interfere because they execute in separate
branches. T3 completes. (c) T1 moves to the right branch. T2 can execute concurrently in the left branch. (d) T1

and T2 finish their execution in separate branches without interfering.

• To access an object o, T follows the path that leads from the last accessed node (initially the root
node) to the leaf holding o. On that path, T performs the following operations.

– Let N be the current node in the path, and N ′ the next node in the path. T first acquires
the lock on N ′ (if T does not already hold that lock).

– If there is no object o′ in the remaining operations of T such that N is an ancestor of o′,
then T releases the lock on N . (This situation happens if T has performed all its operations
on the objects of a branch, and is moving upstream along the path.)

– Otherwise, if for each object o′ in the remaining operations of T such that N is an ancestor
of o′, N ′ is also an ancestor of o′, then T releases the lock on N . (This situation happens
if all remaining operations of T are confined in one branch, and T is moving downstream
along the path towards that branch.)

• After its last operation, T releases the lock on the last accessed object.

Figure A1 shows an execution history of the transactions of Figure 2 with a tree locking policy. The
tree is a balanced binary tree with three levels, three internal nodes, and four leaves. Transaction flow is
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represented by dashed arrows. Intermediary actions (i.e. locking, unlocking, operation execution) are
indicated along the arrows as they occur. The different transactions on a figure execute concurrently
and time flows in the direction of arrows.

APPENDIX B. ADEQUACY CRITERIA FOR LOCKING TREES

We discuss here the four criteria that we have identified to characterize a good tree for a given set of
transactions.

A first observation is that transactions can execute concurrently if they are confined in separate
branches of the tree. Obviously, if all transactions compete to lock the root node of the tree, then
concurrency will be equivalent to or worse than conservative 2PL. On the other side, if the root node
of some transactions are in separate subtrees, they can execute in complete independence. Criterion 1:
The lower the root node of a transaction is, the better concurrency is.

Nodes high in the tree are more crucial than nodes low in the tree, because they control a larger
number of resources. It can be highly inefficient to lock a node high in the tree to access a single
resource below that node. For instance, with the tree of Figure A1, a transaction that accesses a

and c will prevent concurrent accesses to b and d because it locks nodes that control these objects.
Concurrency is thus better if the transactions that lock a node access a large number of the resources
controlled by that node. Criterion 2: The acquisition of a node must pay off and concurrency can be
optimal when transactions access all resources located below that node.

The order in which transactions access resources is also an important factor for concurrency. If a
transaction leaves a subtree in which it will return later, it has to keep locks on that subtree. On the
other hand, if a transaction leaves a subtree definitively, it can release the locks it holds on the subtree.
Therefore, if all accesses to the resources of a subtree are adjacent, the transaction can release all
locks on the subtree when leaving it. This is the case of T1 with the tree of Figure A1: once T1 has
accessed a and b, it can leave the left branch of the tree and release all the locks it holds on that branch
(Figure A1(c)). Criterion 3: Concurrency is increased if accesses to the resources of a subtree are
adjacent in a transaction.

The first three criteria apply to individual transactions, i.e. they define if a tree is adequate for each
transaction in isolation. A fourth criterion can be defined on sets of transactions. It derives from the
observation that, if multiple transactions access the same subtrees, concurrency can be increased if
they access these subtrees in the same order. For instance, in the tree of Figure A1, if we define a new
transaction T ′

1 which accesses the same objects as T1 in the same order, T ′
1 can start executing in the left

branch as soon as T1 moves to the right branch. If T ′
1 was accessing objects in the reverse order from

T1, then it would have to wait until T1 completes before starting execution. Criterion 4: Concurrency
is generally increased if shared resources are accessed by multiple transactions in the same order.

APPENDIX C. TREE CONSTRUCTION ALGORITHM

Given a set of n transactions T1, . . . , Tn with sizes m1, . . . ,mn, where each transaction Ti is
composed of mi individual operations oi

1, . . . , o
i
mi

on shared resources r1, . . . , rl . Informally, our
greedy algorithm for building binary locking trees works as follows.
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T1 : a.op() ; b.op() ; a.op() ; c.op()

T2 : c.op() ; b.op() ; d.op()

T3 : a.op() ; b.op()

Figure A2. Three sample transactions.

ba

c d

3,3

4,2 3,2 1,1

2,1

Figure A3. Access graph for the transactions of Figure A2.

1. Shared resources r1, . . . , rl are organized in an ‘access’ graph G = (V ,E) with a weight
function w such that w(ri , rj ) is a pair of values (wd,wn): wn is the number of occurrences
of operations on both ri and rj in each transaction T1, . . . , Tn, and wd is the sum of the distance
between these operations. Let L be an (ordered) list initially empty.

2. Select the vertex u that maximizes
∑

(u,v)∈E,v∈V wn(u, v). If there is more than one candidate
vertex, select the one that minimizes

∑
(u,v)∈E,v∈V wd(u, v). Add u to L.

3. Select the vertex u′ /∈ L that maximizes
∑

(u′,v)∈E,v∈L wn(u
′, v). If there is more than one

candidate vertex, select the one that minimizes
∑

(u′,v)∈E,v∈L wd(u′, v). Append u′ to the end of
L. Repeat this step until L contains all vertices of V .

4. Create a balanced binary tree with l leaves and arrange the resources the resources r1, . . . , rl in
the leaves of the tree in the same order as they appear in L.

For instance, given the transactions T1, T2, and T3 in Figure A2, the algorithm will produce the graph
in Figure A3 and a tree equivalent to that of Figure 4.
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